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Abstract 

With the wide application of virtualization technology in cloud data centers, how to effectively place virtual   
machine (VM) is becoming a major issue for cloud providers. The existing virtual machine placement (VMP) solutions are 
mainly to optimize server resources. However, they pay little consideration on network resources optimization, and they do 
not concern the impact of the network topology and the current network traffic. A multi-resource constraints VMP scheme 
is proposed. Firstly, the authors attempt to reduce the total communication traffic in the data center network, which is 
abstracted as a quadratic assignment problem; and then aim at optimizing network maximum link utilization (MLU). On 
the condition of slight variation of the total traffic, minimizing MLU can balance network traffic distribution and reduce 
network congestion hotspots, a classic combinatorial optimization problem as well as NP-hard problem. Ant colony 
optimization and 2-opt local search are combined to solve the problem. Simulation shows that MLU is decreased by 20%, 
and the number of hot links is decreased by 37%. 
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1  Introduction   

Most of physical servers in cloud data center use 
virtualization technology [1–2]. Based on service level 
agreement (SLA) with cloud providers, the tenants order a 
group of virtual machines (VMs) which are placed in 
different hosts and allow communications from each other; 
each VM requires a certain amount of resources, such as 
central processing unit (CPU), memory and uplink/downlink 
bandwidth etc. to maintain the application performance 
isolation and security. Moreover, virtualization technology 
enables multiple virtual servers to run on the same 
physical machine (PM), which is helpful to improve 
resource utilization and then to reduce energy consumption. 
Therefore, virtualization can help cloud managers achieve 
orderly and on-demand resource deployment, which 
provides an effective solution to the flexible resource 
management. 

For public cloud with virtualization, one of its major 
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services is infrastructure as a service (IaaS), such as 
Amazon EC2 [3]. Tenants pay is to rent VM, and based on 
SLA, cloud providers take advantage of VM’s flexible 
placement on PM to optimize resources allocation so as to 
meet the tenants’ demands. Since different resource 
utilization is caused by different mappings between VMs 
and PMs, so for cloud providers, the main issue should be 
how to place multiple VMs demanded by tenants onto 
physical servers so as to achieve workload balance, 
optimize the resource utilization and avoid service 
performance degradation. From that on, the authors define 
the problem as VMP, which is right now becoming a hot 
issue in the current cloud computing research. 

On the issue of VMP recently, researches mostly 
concentrate on the constraints of PM, such as CPU, 
memory and storage etc., but how to optimize network 
resources is with less concerned. For instance, recent 
studies [4–6] were proposed to reduce hosts number with 
virtualization to optimize energy consumption, Singh   
et al. [7] considered cloud data centers with server and 
storage virtualization facilities, and strived to increase load 
balancing at multiple layers. But they did not consider the 
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impact of the network topology and the current network 
traffic. In addition, as the scarce resources in the data 
center, network resources are directly affect the application 
performance [8]. VMP not only can change the position of 
the VMs, which will correspondingly change the PMs, but 
also change the traffic sender and receiver between VMs, 
so that the layout of the network traffic can be changed. 
Different VMs on PMs may cause different mappings, 
which continuously cause different traffic distributions and 
network link utilization. Therefore, the authors mainly 
apply VMP to optimize the network traffic distribution and 
improve the network performance in data centers. 

The latest studies such as in Refs. [9–10] considered the 
network resource in VMP. In Ref. [9], the authors focused 
on the problem of network-aware with the goal of reducing 
the aggregate traffic in data center network (DCN), but it 
did not consider link capacity constraints, which may lead 
to the congested links in DCN. From point of view of 
traffic engineering, the MLU is one of the standards to 
measure the network performance. In Ref. [10], the 
authors mainly proposed VMP to be applied to solve the 
network congestion. Minimizing MLU is its main goal of 
the optimization, the authors of Ref. [10] assumed that 
more localized traffic means that greater percentage of data 
is exchanged within a rack or nearby racks, and traffic 
localization shares similar objective with the MLU goal. 
However, this proposal, on one hand, can reduce the 
congestion of the core layer in DCN, on the other hand, it 
will increase the risk of congestion between aggregation 
layer and access layer. Generally, the smaller the total 
traffic in the network, the more possibly MLU will be 
reduced, but the goals are not the same. 

As can be seen from Fig. 1, a communication traffic is 
assumed between VM1 and VM2, VM1 is placed on P1 
and VM2 is on the other PM. It is shown that the network 
performance is different, which causes the different total 
communication traffic and network link utilization. In  
Fig. 1(a), VM2 is placed on P4, the total communication 
traffic is less than that of P5 in Fig. 1(b). Obviously, MLU 
values in Fig. 1(a) and Fig. 1(b) are remarkably different. 

In view of the above, a multi-resourced constraints 
scheme is presented. When meeting the constraints of PM 
resources (CPU, memory, etc.), the different mappings of 
VMs and PMs, the authors firstly try to minimize the total 
network traffic, and puts the VM pairs with large traffic on 
the same PM or same switch to reduce communication 
traffic in network and to improve the network scalability; 

and then try to minimize MLU so as to reduce the network 
congestion. Thus, the main aim in the article is both to 
optimize MLU and total network traffic in order to 
effectively improve the network performance. During 
modeling, minimizing total communication traffic was 
thought as a quadratic assignment problem (QAP) [11], 
which is not only a classic combinatorial optimization 
problem but also a NP-hard problem [12]. From point of 
view of traffic engineering, to minimize MLU is a NP-hard 
problem [13]. A proposal is given to solve the combinatorial 
optimization by ant colony optimization (ACO) joint with 
2-opt local search, and compared with clustering algorithm, 
local search (LS) and simulated annealing (SA), the 
proposal obtains better optimization results. 

 
(a) 

 
(b) 

Fig. 1  The impacts on network link by VMP 
The main contribution of this article is summarized as 

following:  
1) Address a VMP scheme based on multi-constraints in 

order to optimize total traffic and MLU.  
2) Combine ACO with 2-opt to solve.  
3) Run the algorithm on different topologies, such as 

Tree [8], VL2 [14], Fat-Tree [15] and analyze the fitness 
respectively. 

The article is organized as following. Sect. 2 is the 
background and motivation. Sect. 3 is the design and 
model. Sect. 4 is the detailed algorithm. Sect. 5 provides 
simulations, which validates the running time and 
correctness of our algorithms. Sect. 6 is the related work, 
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Sect. 7 is the conclusion and the point of future work. 

2  Background and motivation 

Cloud data center is a widely used platform for variety 
of important business, such as MapReduce, web search, 
social network etc. The mass deployment of these 
applications causes a bottleneck of the network resources, 
and the network resources become scarce resources [16]. 
Although the network in data center is with characteristics 
of high bandwidth and low latency, research shows that 
congestions were also emerged [14,16–17], especially 
when aggregation layer switches simultaneously connect 
with multiple core layer switches, there usually occurs the 
bandwidth convergence rate [18], the elephant flow 
collision in equal-cost multi-path (ECMP) [19], TCP-Incast 
etc. Refs. [14,16–17] show that frequent congestion leads 
to throughput decrease, packet loss and latency increase, 
which correspondingly cause the degradation of business 
application performance. Therefore, network congestion 
becomes a challenge in cloud computing.   

Multi-rooted tree, fat-tree, VL2 and other topologies are 
used in the data center for their multi-paths fault-tolerance 
and traffic load balance. Since the conventional minimal 
spanning tree algorithms are outdated, ECMP [19] is 
applied randomly to assign different flows to different 
paths. However, ECMP only guarantees the traffic load 
balancing in static situation, and load imbalance will occur 
in DCN situation, because flow size and duration has great 
gap in DCN, the static hash will assign the two large flows 
to the same path, which will cause path congestions, while 
the other path is light-loaded. 

In order to solve the uneven traffic load caused by static 
random distribution, the dynamic scheduling was  
proposed in Refs. [20–21] according to the flow by using 
OpenFlow [22] to achieve fine-grained traffic engineering. 
Al-Fares et al. [20] proposed an improved routing 
algorithm, which is applied to a dynamic flow scheduling 
system with multi-root tree topology, and readjusts the 
flow in the link to be uniformly and evenly is distributed 
so as to improve the utilization of the switch and avoid the 
link blocking. Benson et al. [21] focused on network 
routing variation, mice flow takes ECMP protocol and the 
elephant flow takes dynamic routing to change the existing 
switch or router strategy. These studies mainly take 
centralized scheduling strategies to optimize traffic and to 
avoid link congestion. However, such solutions demand 

the concentration of controller and make flow control 
become more complex. 

In the virtualized data center, the network traffic 
between VMs readjusted by VM placement/migration can 
also be seen as the traffic engineering. The traditional 
methods in traffic engineering optimize routing protocols 
to bypass the congested links and maintain the link balance 
by minimizing MLU. In addition, the traditional traffic 
engineering aims at the traffic matrix which can be 
measured, and the sending and receiving ends are fixed; 
while VM placement can change the position of VM, that 
is, change its corresponding physical server, and then the 
sending or receiving ends. The traffic matrix can all be 
changed to achieve the optimization of the network traffic 
in DCN. Therefore, the main objective in the article is to 
apply VMP to improve the network performance and 
reduce the hot links in cloud data center. 

3  Design and model  

The article tries to achieve two objectives by applying 
VMP. 

1) By minimizing the total traffic using VMP in DCN, it 
can readjust the traffic layout between VMs, and let the 
VMs with large traffic be placed on the same PM or on the 
same switch. 

2) The issue of minimizing MLU is also considered, 
which allows the network traffic to be allocated evenly and 
avoid congestion hotspots.  

Table 1  Key notations and their meaning 
Symbol Description  

pn  Number of PMs, indexed by p1, 2,...,m n=   

vn  Number of VMs, indexed by v1, 2,...,i n=   
( )iπ  Mapping function , PM on which VM i is placed 

ie  The traffic between VM i and external communications of 
data center 

stl  Network link utilization 

ij
stx  

The traffic which is assigned to the link ( , )s t  from traffic 
demand of VM i and VM j 

A  
Communication traffic matrix, ( )ija  is the traffic between 
VM i and VM j 

B  
Communication cost matrix, The communication cost is 
equivalent to the number switch that the traffic between PMs 
traverse. 

 
To estimate the traffic matrix based on users demands 

and network topology, then to decide which PM can host 
VM. The traffic statistics depends on the hypervisors of 
VM or switch. The basic inputs are network topology, link 
capacity, traffic routing and traffic demand, it doesn’t need 
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to place the traffic demands to the appropriate link so as to 
get a more balanced traffic distribution. 

3.1  Optimization of total traffic  

Given two matrices: traffic matrix
v v

( )ij n n×A = a , 

communication cost matrix 
p p

( )hp n n×B = b , ija  represents 

the traffic between VM i and VM j, hpb  represents the 
communication cost of PM h and PM p, vn  is the number 
of VMs, and pn  is the number of the PM. Here, the 

communication cost refers to the number of switches 
which traffic through between PMs. The more number of 
switches, the greater the cost of communication. 

The goal is to find a mapping function ( )iπ  to meet 
VM i placed on PM, a VM can only be placed on a single 
PM, but a PM can place multiple VMs.  

The objective function can be formally expressed as: 

min 
v v

cos ( ) ( ) ( )
, 1 1

n n

t ij i j i i
i j i

T a b e gπ π π
= =

= +∑ ∑                (1) 

where ie  is the traffic between VM i and external 
communications of data center, ( )igπ  is the 

communication cost from the PM which places VM i to 
the external switch. The second part of the function is seen 
as a fixed number, but it has to be considered if affecting 
MLU, and it will be affected due to the different location 
of VM. 

3.2  Optimization of MLU 

ij
stx  is the traffic which is assigned to the link ( , )s t  

from traffic demand of VM i and VM j. stc  represents the 
capacity of network link ( , )s t . 

Network link utilization stl  is expressed as: 

,
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x
l

c
=

∑
                              (2) 

To let stl  be as small as possible, the problem can be 
expressed as: 
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3.3  Optimization of total traffic and MLU 

The goal is to minimize MLU and total traffic: 
Min  cos cost tf T Lγ= +                        (4) 
where, γ  is the weight coefficient. It is a multi-objective 
optimization problem and is also a classic combinatorial 
optimization problem, so the authors use a heuristic 
algorithm and design an optimization approach by 
combining ACO with 2-opt local search. 

Table 2  Key notation of ACO algorithm 
Symbol Description  

k
ihp  Probability ant k selects which VM i is placed on PM h  

ihη  Heuristic information to optimize physical server with which 
that VM i is placed onto PM h 

ihτ  Pheromone by which VM i is placed onto PM h 
ρ Volatile factor 

4  Algorithm 

4.1  ACO algorithm for VMP 

ACO [23] found an optimal algorithm from the positive 
feedback and the distributed cooperation. It operates 
through paralleled cooperation and is consistent with the 
characteristics of the cloud computing; it is a kind of 
heuristic search algorithm based on ant colony 
optimization; it makes full use of the biological ant colony 
characteristics to search the collective optimal feature for 
the shortest path from the ant nest to the food by simply 
individual information. This process shares some 
similarities with the solution to the optimization, and it 
achieves better results in dealing with combination 
optimization [24]. 

Ant k begins to construct solutions without any VM 
placement, ant k is randomly placed in VM i, in each 
construction step, with constraints of PM resource hH ,  

( )k
ihp t  is defined as the probability by which ant k is 

selected to put VM i on PM h. 
{ } 0

( )

0

arg max ( ) ( ) ;    

;    

k
h

uh uh
u N t

t t r r
i

I r r
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∈
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≤
              (5) 

r ~ (0,1)U , 0 [0,1]r ∈  is the specific parameter values 
specified by the algorithm. 

In I, ant k decides the probability to VM i on PM h: 
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( )tτ  represents the pheromone that VM i is placed on 
PM h, the larger the pheromone value, the greater the 
likelihood of placement. k

hN  represents the collections of 
VMs on which all the unallocated VMs can be placed.  

The objective function is expressed as a combination of 
distance matrix and traffic matrix potential vector. 

v v
( )ij n n×A = a  is traffic matrix, 

p p
( )hp n n×B = b  is 

communication cost matrix, vector  iA  and hB  can be 
defined as: 

v
1

p
1

;    1, 2,...,

;    1, 2,...,

1

v

p

n

i ij
j

n

h hp
p
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i h
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ihη  is heuristic inclination, and it also represents the 
potential benefits when VM i is assigned to PM h. The 
smaller the value of i h⋅A B  is, the greater the possibility 
of VM assigned to h. 

best best( 1) (1 ) ( ) ( ) ( )i g
ih ih ih iht t t tτ ρ τ τ τ+ = − + Δ + Δ        (8) 

ρ  is a volatile factor. 

best ( )
0

ih

Q
ftτ

⎧
⎪Δ = ⎨
⎪⎩      

                      (9) 

The value of f is determined by the Eq. (4). The smaller 
this value is, the better is the corresponding placement, the 
greater best

ihτ . Q is a fixed value determined by ant colony 
algorithm. besti

ihτΔ  is the best optimal solution of the 
current iteration. bestg

ihτΔ  is the best global optimal 
solution. The best ant is selected from the global optimal 
solution or the current iteration to enhance the pheromone. 

4.2  ACO joints with 2-opt local search  

For large data calculation, ACO has a long way-finding, 
slow convergence and high time complexity. To reduce the 
time complexity by reducing the ant number or the number 
of iterations may fall into local optimum, that is, all 
individuals may find the same solution, so it may be 
failure to find the global optimum. Based on the above, we 
will combine 2-opt local search with ACO to improve 
search speed and accelerate the convergence speed. 

To accept the modification when an exchange has a 
better solution compared with other exchanges in possible 

random order. 
( ) ( ) ( ) ( )
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π

−
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( ) ( ) ( ) ( )                  ( )( )il jl j l i la a b bπ π π π−− −           (10) 
If ( , , ) 0f i jπΔ < , then accept the modification. 

4.3  Algorithm description 

Algorithms 1  ACO algorithm for VMP 
 
Input: network topology, link capacity, traffic routing, traffic demand 
Output : VM to PM mapping function ( )h iπ=   
  Initialization parameters , , nAnts, ncMaxα β   
  While nc≤ ncMax do 
    For node i= 1 to vn  do 

      For ant k= 1 to nAnts do 
        Calculate ( )k

hN t , ihη  using formula (7)  

        If  ( )k
hN t ≠ ∅   then 

           If 0r r≤  then 

              Select I according to the random proportional  rule 
using formula (5) 

           else  
             Calculate ( )k

ihp t  select i using formula (6) 

          Endif 
       Endif 
     Endfor 
   Endfor 
   Refine iterative optimal solution with local search using  

formula (10)  
   For each map ( , )i h π∈  do 

     Update the pheromone deposits on using formula (8) (9)  
   End for 
  End while 
  Return bestπ  

5  Evaluation  

5.1  Simulation setup 

The authors use C++ to develop an improved ACO 
simulation program, select the clustering algorithm [25], 
LS algorithm and SA algorithm, then compare these three 
algorithms with ACO.  

Assume there are 256 VMs and 64 PMs, under different 
network topologies. Tree, VL2 and fat-tree are selected to 
conduct the simulation. For tree, the shortest path routing 
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is applied, ECMP is applied for fat-tree, and valiant load 
balancing (VLB) for VL2. For VM traffic matrix, the 
experiments took the traffic patterns in Ref. [9]. 

ACO parameter values affect so much; these parameters 
greatly depend on better convergence. Relevant parameters 
of ACO are initialized values in Table 3. We select nAnts 
in each generation to search path, and ncMax refers to 
maximum number of iterations. These parameters are 
mainly with reference to Ref. [23]. 

Table 3  Parameter ACO algorithm 
α  β  ρ   ncMax nAnts 
1 2 0.1 200 31 

5.2  Results 

5.2.1  Optimization total traffic without optimization MLU 

Fig. 2 shows the results of total traffic without 
optimizing MLU. Clustering algorithm has better 
optimization effect for total traffic, LS is less effective, and 
ACO almost has no difference from SA and LS. The total 
traffic by tree topology is smaller than by fat-tree.  

 
Fig. 2  Total traffic before optimizing MLU 

Fig. 3 shows MLU of different algorithms on different 
topologies. Fig. 4 shows minimum link utilization of 
different algorithms on different topologies. As it is seen in 
Fig. 3 and Fig. 4, tree topology has better total 
optimization, and it also has the largest MLU. It can be 
concluded that the tree topology is more likely to generate 
the congestion among the same VM traffic. This also 
confirms our viewpoint: although Fat-Tree has large total 
traffic, it can make traffic more evenly distributed due to 
multi-path connections. For VL2, there is a great gap 
between minimum link utilization and MLU, so there is 
uneven traffic distribution.  

 
Fig. 3  MLU before optimizing MLU 

      
Fig. 4  Minimum link utilization before optimizing MLU  

5.2.2  Optimization of total traffic and MLU 

Eq. (4) and algorithms 1 are used not only to optimize 
the network total traffic, but also to optimize the network 
link utilization. ACO-TM refers to the situation in which 
ACO both optimizes the total traffic and MLU, while 
ACO-T refers to the situation in which ACO only 
optimizes the total traffic. By using the same data as in 
experiment 1, the traffic is applied among the same VMs 
to different network topologies. Fig. 5 shows the 
comparison of total traffic using LS, ACO-T and ACO-TM 
in different topologies. Compared with ACO-TM and LS, 
ACO-T’s optimization effect is the best while that of 
ACO-TM is the poorest, however, the gap between them is 
slight. Fig. 6 shows the comparison of MLU using LS, 
ACO-T and ACO-TM in different topologies. Compared 
with LS and ACO-T, ACO-TM greatly reduces MLU, and 
Fat-Tree is decreased by 20%. As can be seen from Fig. 5 
and Fig. 6, although ACO-TM slightly increases the total 
traffic, it most successfully reduces MLU and achieves 
better network performance. For different topologies, 
ACO-TM can effectively reduce MLU. As fat-tree and 
VL2 use multi-paths, their optimizing effects are more 
remarkable. 
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Fig. 5  Total traffic variation caused by ACO-T and ACO-TM 

      
Fig. 6  MLU variation caused by ACO-T and ACO-TM 

5.2.3  Hotspot patterns 

If overloading some traffic when generating VM traffic 
matrix, the network link will produce hot spots which will 
cause the congestion. Fig.7 shows the variation of hotspots 
number using ACO-T and ACO-TM in different topologies. 
Compared with ACO-T, the number of hotspot links of 
ACO-TM is significantly decreased, and the hotspot link 
number of Fat-Tree decreases by 37%. Although ACO-TM 
cannot completely avoid the network congestion, they 
greatly improve the network performance.   

 
Fig. 7  Hotspot number variation caused by ACO-T and ACO-TM 

5.3  Discussions 

5.3.1  Performance  

ACO’s execution time is in the second-level. Due to the 
parallel features of ACO, ACO can be run on many 
machines and parallel computing is used to reduce the time 
and improve the performance. The second-level execution 
time is acceptable to solve the in the data center, 
particularly to solve NP-complete problem. By comparison, 
although the time performance of ACO is a little weak, 
ACO shows more accurate result. The experiments verify 
that it is feasible to apply ACO to solve the problems. 

5.3.2  Convergence  

Better convergence is also expected when 
accompanying with the improved accuracy, local search is 
so used to improve ACO convergence. Here, the authors 
mainly concern the number of iterations and the number of 
ants. In the experiment, when taking time performance into 
account, the maximum iteration number is 500. A group of 
VMs is selected, and different maximum iterations and ant 
number are set, when iteration number is 200 and the ant 
number is 31, there is little difference between 
experimental results. 

5.3.3  Robustness 

After initializing ACO parameter, iterations times and 
ant number, the authors conduct experiments and observe 
the results of each experiment in order to eliminate the 
noise data.  At last, the robustness of ACO is analyzed. 
Multiple runs and less jitter results can verify the less 
possibility for local optimum, and ACO has quite good 
robustness. 

6  Related work 

The objectives of VMP are mainly for energy   
savings [4–5], fault tolerance [26] and QoS management 
[6], etc.. However, these studies did not consider the 
network resources, which may cause uneven network 
traffic and low utilization of network resources, so the 
proposal is to optimize the network traffic and improve the 
network performance on the condition of meeting the 
needs of physical server resources, and Refs. [9–10,27–29] 
are similar to our solution. 
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Jiang et al. [27] attempted to improve physical node 
utilization and to optimize the network link utilization by 
changing traffic routing. In fact, the traffic routing path 
will be changed, so this scheme did not consider the 
optimization of total traffic in DCN. 

Meng et al. [9] used traffic-related to improve the 
network scalability. By optimizing VM position in 
physical host, VM traffic is associated with their network 
physical distances, VM with larger communication traffic 
can be placed between two physical hosts nearby so as to 
reduce the total traffic. Biran et al. [28] proposed to 
allocate a placement which not only satisfies the predicted 
communication demands but is also resilient to demand 
time-variations. However, these two schemes can’t 
consider the optimization of MLU. 

Wen et al. [10] presented an efficient online algorithm to 
reduce congestion with controllable VM migration traffic 
as well as low time complexity. When VM are initially 
placed, the traffic is localized, which is similar to the target 
of minimizing MLU. Thus, the scheme proposes to 
substitute minimum total traffic for minimizing link 
utilization, but we consider that these two goals are 
different. 

Shrivastava et al. [29] optimized network performance, 
traffic or end-to-end delay by using VM migration. The 
scheme was recommended on overloaded VM migration to 
balance PM workload, its main objective is to eliminate 
the overloaded PM and minimize the congestion. Thus, the 
main focus of that scheme is on the network traffic of VM 
migration, which is inconsistent with our optimization 
goal.  

7  Conclusions 

VMP problem is one of the challenging tasks in cloud 
data centers. In the VMP scheme, the authors consider 
multi-resource constraints of PM and attempt to improve 
network performance, optimize the total network traffic to 
improve the network scalability, and the network MLU to 
improve the network performance, avoiding the congestion. 
This  is  a much  more  complex  problem  both  due  
to  its  quadratic  nature (being  the  communication  
between  a  pair  of  VMs)  and factors beyond the 
physical host such as the network topologies  and  the  
routing  scheme. Lastly, ACO is combined with 2-opt 
local search algorithm as the solution, the simulation 
results show that our proposal achieves good results. 

The article proposes a VMP method to improve the 
network performance and effectively alleviate the 
congestion in DCN. If VMP is combined with the dynamic 
flow adjustment method, better results may be achieved. 
This will be one of the future researches. In addition, VMP 
is an initial placement, how to achieve the live migration 
will be another task in future, because how to minimize 
VM migration cost without affecting application 
performance is an important issue. 
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