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Abstract—Virtualization technology starts becoming more and more widespread in the embedded space. The penalties incurred by
standard software-based virtualization is pushing research towards hardware-assisted solutions. Among the existing commercial
off-the-shelf technologies for secure virtualization, ARM TrustZone is attracting particular attention. However, it is often seen with some
scepticism due to the dual-OS limitation of existing state-of-the-art solutions.
This letter presents the implementation of a TrustZone-based hypervisor for real time embedded systems, which allows multiple RTOS
partitions on the same hardware platform. The results demonstrate that virtualization overhead is less than 2% for a 10 milliseconds
guest-switching rate, and the system remains deterministic. This work surpasses related work by implementing a TrustZone-assisted
solution that allows the execution of an arbitrary number of guest OSes while providing the foundation to drive next generation of
secure virtualization solutions for resource-constrained embedded devices.

Index Terms—Virtualization, TrustZone, Monitor, Real Time, Embedded Systems, RODOS, ARM.
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1 INTRODUCTION

V IRTUALIZATION technology is a mainstream tool in the
server and desktop space, presenting huge benefits in

terms of load balancing, power management and service
consolidation [10]. In the embedded systems arena, virtu-
alization has also the potential to be a game-changer [6].
Driven by the possibility of consolidation, co-existence and
isolation of multiple and heterogeneous OS environments,
virtualization has attracted automotive, aeronautics, space
and medical industries to build systems with reduced Size,
Weight, Power and Cost (SWaP-C) budget [6], [8].

The traditional existing embedded virtualization solu-
tions [8], [11], [12] follow typically two different approaches:
full-virtualization and paravirtualization. Between both ap-
proaches there is a trade-off between flexibility and perfor-
mance: para-virtualization [8], [11] incurs a higher design
cost, while full-virtualization [12] incurs a higher perfor-
mance cost. More recently, taking into consideration the
top-level requirements (e.g., performance, memory, power,
safety, security) that drive the development of current em-
bedded devices, academia and industry have focused on the
development of hardware-assisted virtualization. The big
players on the processors market have also introduced their
commercial off-the-shelf (COTS) virtualization technologies,
which are being exploited to implement efficient virtualiza-
tion solutions [3], [7], [9].

Among existent COTS technologies, ARM Virtualization
Extensions (VE) and ARM TrustZone [1] are gaining par-
ticular attention due to the ubiquitous presence of ARM-
based processors into the embedded sector. Although ARM
VE is the specific answer from ARM for virtualization,
ARM TrustZone, a hardware security technology, is also
seen as an alternative hardware-based form of system
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virtualization, with important differences from traditional
virtualization (e.g. memory is not virtualized but parti-
tioned) [5]. However, it is seen as the only implementable
hardware-based approach on those ARM processors where
VE are not available. Furthermore, with the recent ARM
announcement of introducing TrustZone technology in all
Cortex-M and Cortex-R processors series, this technology is
gaining momentum as it is being seen as the unique path
to break the barrier to the adoption of system virtualiza-
tion in resource-constrained embedded devices. TrustZone
provides two completely separated execution environments
as well as an additional privileged execution mode. The
non-secure world acts as a virtual machine (VM) under
control of a hypervisor running in the secure world side.
Many TrustZone-based solutions have been proposed [2],
[4], [5], [9] but they fail in providing ability to support an
arbitrary number of guests. They mainly rely on a dual-OS
configuration - a real time operating system (RTOS) side
by side with a general purpose operating system (GPOS)
- where the number of VMs coincides exactly with the
number of virtual environments directly supported by the
processor.

This letter goes beyond state-of-the-art, presenting a
completely new TrustZone-assisted virtualization solution
that allows the execution of an arbitrary number of guest
OSes. It demonstrated how multiple guests of an RTOS
can efficiently co-exist, completely isolated from each other,
on the same hardware platform, and still present reduced
performance overhead, memory footprint and deterministic
execution. To the best of authors’ knowledge, this is the
first attempt to run more than one RTOS instance on top
of a TrustZone-assisted hypervisor targeting the real time
domain. The main contributions of this letter are: (i) a com-
pletely new TrustZone-assisted hypervisor that supports an
arbitrary number of VMs; (ii) the applicability of TrustZone-
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assisted virtualization on real time applications; and (iii) a
real evaluation about the penalties incurred on real time
metrics.

2 ARM TRUSTZONE

TrustZone is a hardware security technology inherent in
modern ARM applications processor cores. It virtualizes a
physical core as two virtual cores, providing two completely
separated execution environments: the secure and the non-
secure worlds. An extra bit - the NS (Non-Secure) bit - in-
dicates in which world the processor is currently executing.
To switch between the secure and the non-secure world, a
special new secure processor mode, called monitor mode, was
introduced. To enter the monitor mode, a new privileged in-
struction was also specified - SMC (Secure Monitor Call). The
monitor mode can also be enabled by configuring it to han-
dle interrupts and exceptions in the secure side. TrustZone
allows system designers to add a TrustZone Address Space
Controller (TZASC). This component extends isolation to
the memory infrastructure, allowing the partitioning of all
or just some portions of memory into distinct segments,
each of which can be configured to be used in the secure or
non-secure world. The TrustZone-aware Memory Manage-
ment Unit (MMU) provides two distinct MMU interfaces
(each world has a local set of memory address translation
tables), and isolation is still available at the cache-level.
The AXI (Advanced eXtensible Interface) system bus carries
extra control signals to restrict access to the main system
bus. Devices can be (static or dynamically) configured as
secure or non-secure, which enforces isolation at the device
level. The Generic Interrupt Controller (GIC) supports the
coexistence of secure and non-secure interrupt sources. It
allows the configuration of secure interrupts with a higher
priority than the non-secure interrupts, and supports sev-
eral interrupt models which allow the assignment of Fast
Interrupt Requests (FIQs) and Interrupt Requests (IRQs) to
secure or non-secure interrupt sources.

3 TRUSTZONE-ASSISTED HYPERVISOR

Fig. 1 depicts the complete system architecture for a single-
core configuration. The multicore extension and all related
questions are out of the scope of this paper. As it can be
seen, the hypervisor runs in the most privileged mode of the
secure world side, i.e., monitor mode, and has the highest
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Fig. 1. TrustZone-assisted Virtualization Architecture

privilege of execution; it is responsible for managing the
virtual CPUs, to provide time and spatial isolation, as well
as mediate interrupts assigned to inactive guests. Unmodi-
fied guest OSes can be encapsulated between the secure and
non-secure world sides: the active guest partition runs in
the non-secure world side, while inactive guests state are
preserved in the secure world side. For the active guest the
RTOS runs in the kernel mode, while real time applications
run in user mode.

3.1 Guest Switching

Existing TrustZone-based solutions implement a dual-OS
approach, where each guest is running in a different world.
In this particular case, the virtual CPU support is guar-
anteed by the hardware itself. The proposed solution is
completely different, since it is able to support an arbitrary
number of guest partitions, all of them executed from the
non-secure side (one at a time), dictating the sharing of
the same virtual processor supported by software. For that
reason, the virtual CPU (vCPU data structure) of each guest
should be preserved. This vCPU includes the core registers
for all processor modes, the CP15 registers and some regis-
ters of the GIC, encompassing a total of 55 registers.

3.2 Memory Partition

The existence of a TZASC is a major requirement for the pro-
posed system. The memory segmentation feature provided
by the TZASC is exploited to guarantee spatial isolation be-
tween guests, by dynamically changing the security state of
their memory segments. Only the guest partition currently
running has its own memory segment configured as non-
secure, while the remaining memory is configured as secure.
If the running guest tries to access a secure memory region
(e.g. belonging to an inactive guest partition), an exception
is automatically triggered and redirected to the hypervisor.
Since only one guest can run at a time, there is no possibility
for inactive guests (belonging momentously to the secure
side) to change the state of another guest. Because there is
no second level memory translation, all guest OSes have
to cooperate on sharing a single physical memory address
space. This imposes a strong requirement to the system: all
guests have to know the physical memory segment they can
use, requiring relocation and consequent recompilation of
the guest OS. This means the chance to use multiple closed-
source guest OSes (only available as binary image) is very
reduced, because different OS providers typically compile
their software to run on the same memory address space of
a specific platform.

3.3 Device Partition

The proposed solution implements device virtualization
adopting a pass-through policy, which means devices are
managed directly by guest partitions. To achieve isolation at
device level, devices assigned to guest partitions (at build
time) are dynamically configured as non-secure or secure,
depending on its state (active or inactive). This guarantees
an active guest cannot compromise the state of a device
belonging to another guest, and if an active guest partition
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tries to access a secure device, an exception will be auto-
matically triggered and handled by the hypervisor. Shared
device access was not taken into consideration and it is
outside of the scope of this letter.

3.4 Interrupt Management

The hypervisor configures secure interrupts as FIQs, and
non-secure interrupts as IRQs. Secure interrupts are redi-
rected to the hypervisor, while non-secure interrupts are
redirected to the active guest. When a guest partition is
under execution, all interrupts belonging to the active guest
are locally and directly managed by the OS without any
hypervisor interference. This guarantees no jitter is added
to the interrupt latency of an active guest. A more complex
problem arises when a critical interrupt for one (inactive)
guest partition arrives when a different active guest is run-
ning. Different handling mechanisms, with different trade-
offs on performance, latency and inter-guest interference
were implemented and they are available to be statically and
accordingly configured to the partition criticality level. For
example, an interrupt can be deferred until the target guest
is next scheduled for execution by configuring the respective
interrupt sources as disabled FIQs, or force immediately a
context switch to the target guest to handle the interrupt
by configuring the respective interrupt sources as enabled
FIQs.

3.5 Time Management

The implemented hypervisor provides a hybrid Round
Robin scheduler that can be configured at build time for
strong or weak time isolation. Different guests can be (stat-
ically) configured with different time slices accordingly to
their level of criticality and application needs. The hypervi-
sor manages two timers: one 32-bit timer for the hypervisor
tick and one 64-bit timer to keep track of the wall-clock time.
Timers dedicated to the hypervisor are configured as secure
devices, i.e., they have higher privilege of execution than
timers dedicated to the active guest. This means that despite
of what is happening in the active guest, if an interrupt
of a timer belonging to the hypervisor is triggered, the
hypervisor takes control of the system. Under a weak time
isolation scenario, the hypervisor can preempt the execution
of an active guest if a critical asynchronous event of an
inactive guest occurs. This kind of policy guarantees the
timing requirements of the system can be preserved, but
the system designer should tune them adequately.

At the partition level, whenever the active guest is exe-
cuting, timers belonging to the guest are directly managed
and updated by the guest OS. The problem lies in how
to deal and handle time from inactive guests. Since the
proposed solution only supports tickless guest OSes, for
inactive guests the hypervisor implements a virtual tickless
timekeeping mechanism based on a time-base unit that
measures the passage of time (the aforementioned 64-bit
timer). Therefore, when a guest is rescheduled, its internal
clocks and related data structures are updated with the time
elapsed since its previous execution.

TABLE 1
Memory footprint results (bytes)

.text .data .bss Total
Hypervisor 5568 192 0 5760

4 EVALUATION

The hypervisor was tested on a Xilinx ZC702 evaluation
board targeting a dual ARM Cortex-A9 running at 600MHz.
As aforementioned, in spite of using a multicore hardware
architecture, current implementation only supports a single-
core configuration. The evaluation focused on memory foot-
print (experiment 4.1) and performance (experiment 4.2).
MMU, data and instruction cache and branch prediction
support for guests were enabled and disabled. In all test
scenarios sotfware stacks were compiled using the ARM
Xilinx toolchain with compilation optimizations (-O2). Re-
altime Onboard Dependable Operating System (RODOS), a
tickless RTOS already in used in several satellites, were used
as guest OS.

4.1 Memory Footprint
To access memory footprint results, the size tool of ARM
Xilinx Toolchain was used. Table 1 presents the collected
measurements, where boot code and drivers were not taken
into consideration. As it can be seen, the memory overhead
introduced by the hypervisor - and in fact the trusted com-
puting base (TCB) of the system - is around 6 KB. The main
reasons behind this low memory footprint are the hardware
support of TrustZone technology for virtualization and the
careful design and static configuration of each hypervisor
component.

4.2 Performance
The Thread-Metric Benchmark Suite consists of a set of
specific benchmarks to evaluate RTOSes performance. The
suite comprises 7 benchmarks, evaluating the most com-
mon RTOS services and interrupt processing: cooperative
scheduling (CS); preemptive scheduling (PS); interrupt pro-
cessing (IP); interrupt preemption processing (IPP); syn-
chronization processing (SP); message processing (MP);
and memory allocation (MA). Each benchmark outputs a
counter value, representing the RTOS impact on the running
application: the higher is the value, the smaller is the impact.

For the first part of the experiment the hypervisor was
configured with a 10 miliseconds (ms) guest-switching rate.
The system was set to run one single guest partition, and
the hypervisor scheduler was forced to reschedule the same
guest, so that results can translate the full overhead of the
complete guest-switching operation. Benchmarks were exe-
cuted in the native version of RODOS and then compared to
the virtualized version. Fig. 2 presents the achieved results,
corresponding to the relative performance and variation (as
well as the average absolute performance) of 50 collected
samples for each benchmark. In both test case scenarios -
Fig. 2a and Fig. 2b -, it is clear that the virtualized version of
RODOS only presents a very small performance overhead
when compared with its native execution - <0.5% and
<2.0%, respectively -, as well as a variation in the same
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Fig. 2. Thread-Metric benchmarks results.
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Fig. 3. Correlation between guest-switching rate and performance over-
head

order of magnitude as the native version. This means the
virtualized system remains as deterministic as the native
one. In Fig. 2a (caches disabled) the performance overhead
is smaller, because the guest-switching operation does not
require to perform several operations such cleaning and
invalidating data and instruction caches.

The focus of the second part of the experiment was on
how the guest-switching rate correlates with guest perfor-
mance. Instead of fixing the guest-switching rate in 10 ms,
the same experiments were repeated for a guest-switching
rate between 1 to 1000 ms. Fig. 3 shows achieved results,
where each mark corresponds to the average performance
overhead of measured results for the 6 benchmarks. As it
can be seen, the performance overhead of the virtualized
RODOS range from 3.69% to 0.06% and 8.10% to 0.01% with
caches disabled and enabled, respectively. When caches are
enabled the significant rise of overhead above 5 milliseconds
is mainly explained by two reasons: firstly, as aforemen-
tioned, when MMU and caches are enabled, the list of
internal activities of context-switch operation is higher; and
secondly, since caches have to be cleaned and invalidated
each time a partition is rescheduled, partitions will not take
advantage of them until they are filled. Nevertheless, guest-
switching rate should be tuned accordingly to the maximum
acceptable latency among each guest, otherwise the real
time characteristics of the system can be compromised.

5 CONCLUSION

This letter describes how ARM TrustZone technology can be
exploited to implement an embedded virtualization solution
allowing the co-existence of multiple OSes on the same
hardware platform. The hypervisor was implemented on
a commercial Xilinx ZC702 board, demonstrating how it
is possible to host an arbitrary number of guest OSes on
the non-secure world side of TrustZone-enabled processors.
Evaluations demonstrated that virtualization overhead has

only a slight impact on execution performance, and the
hypervisor has a reduced TCB size. This work seems very
promising regarding next generation of secure virtualization
solutions for resource-constrained embedded devices. Work
in the near future will focus on an extensive and exhaustive
evaluation of real-time aspects with short-term and long-
term tests. Extension for multicore and new generation of
low and middle-end ARM platforms is also under scope.
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