Software Effort Estimation Using Functional
Link Neural Networks Tuned with Active
Learning and Optimized with Particle
Swarm Optimization

Tirimula Rao Benala'®®, Rajib Mall?, Satchidananda Dehuri?,
and Pala Swetha'

! Department of Information Technology,

Jawaharlal Nehru Technological University Kakinada,
University College of Engineering, Vizianagaram 535003, India
{b. tirimula, palaswetha}@gmail. com
2 Department of Computer Science and Engineering,

Indian Institute of Technology Kharagpur, Kharagpur, India
rajib@cse. iitkgp. ernet. in
3 Department of Information and Communication Technology,
Fakir Mohan University, Vyasa Vihar, Balasore 756019, Odisha, India
satchi. lapa@gmail. com

Abstract. This paper puts forward a new learning model based on the col-
laborative effort of active learning and particle swarm optimization (PSO) in
functional link artificial neural networks (FLANNS) to estimate software effort.
The active learning uses quick algorithm to detect the essential content of the
datasets by which the dataset is reduced and are processed through PSO opti-
mized FLANN. The PSO uses the inertia weight, which is an important
parameter in PSO that significantly affects the convergence and
exploration-exploitation in the search space while training FLANN. The
Chebyshev polynomial has been used for mapping the original feature space
from lower to higher dimensional functional space. The method has been
evaluated exhaustively on different test suits of PROMISE repository to study
the performance. The computational results show that the active learning along
with PSO optimized FLANN greatly improves the performance of the model
and its variants for software development effort estimation.

Keywords: Software effort estimation + PSO - Active learning and FLANN

1 Introduction

Software effort estimation is the process of prediction of effort, cost, schedule, and
staffing levels for successful project management [10, 11]. Accurate software cost
estimation is highly required for the effective software project management. It signif-
icantly affects management activities such as resource allocation and creating

© Springer International Publishing Switzerland 2015
B.K. Panigrahi et al. (Eds.): SEMCCO 2014, LNCS 8947, pp. 223-238, 2015.
DOI: 10.1007/978-3-319-20294-5_20

224 T.R. Benala et al.

reasonable schedule. The major contributing factor for accurate estimation is effort.
This has led researchers to conduct extensive research on software effort estimation
methods. Recently, it is boosted to many of the researchers of computational intelli-
gence field to design an intelligent semi-automatic estimator for the aforesaid task [14].
In continuation, this paper investigates the control parameters of FLANN for software
effort estimation. The beauty of this approach is that it does not do minimal approxi-
mation about the function to be evaluated for effort prediction. Basing on the structure
of the dataset the model function parameters are calibrated. The Active Learning
algorithm employs tuning of training dataset to characterize the essential content of
software effort estimation data; i.e., the least number of features and instances are
required to capture the information within software effort estimation data [Active
learning]. This work is an improvement and fine tuned of our earlier work
PSO-FLANN [11].

FLANN proposed by Pao, is a type of neural network consisting of one input layer
and an output layer for forming arbitrarily complex decision regions to guide real world
applications. FLANN has been widely used in many application areas of pattern rec-
ognition [12], data mining [13], time series forecasting [15], etc. A good survey of
FLANN and its variants can be obtained in [13]. FLANN generates output (effort) by
expanding the inputs (cost drivers) by nonlinear orthogonal functions like Chebyshev
polynomial and then processing the final output layer. Each input neuron corresponds
to a component of an input vector. The output layer consists of one output neuron that
computes the software development effort as a linear weighted sum of the outputs of
the input layer [9, 10]. The non-normal characteristics of the datasets always lead
FLANN to low prediction accuracy and high computational complexity. To alleviate
these drawbacks the proposed technique has been formulated to exploit the best fea-
tures of PSO and FLANN. It is named as ACTIVE-FLANN-PSO (a. k. a FAS).

Functional link neural networks and cost estimation fundamentals are briefly
reviewed in Sect. 2. The active learning and particle swarm optimization are described
in Sects. 3 and 4. Our approach is presented in Sect. 5. In Sect. 6, numerical examples
from Cocomo81 (Coco81), Nasa93, Maxwell dataset is used to evaluate the perfor-
mance. Section 7 concludes this paper.

2 Background

In this section background of this work is discussed. Software cost estimation and
FLANN architecture are described in Sects. 2.1 and 2.2, respectively.

2.1 Software Effort Estimation

Software effort estimation (SEE) is one of the important steps in software project
management. It can be defined as the task of estimating the total effort required to
develop a software system [6]. SEE is incorporated by a set of attributes (also known

Software Effort Estimation Using Functional Link Neural Networks 225

as, cost drivers) representing a software project to predict (or estimate) the cost, in
terms of person-months, in turn to predict the required time to develop the software
system [2, 7]. SEE assist the project managers to take strategic decisions such as
bidding on a new project, managing development, maintenance or customization of the
software, planning, and allocation of resource. Software effort estimation has been the
process of building regression models. However, regression models may lead to
underestimation and overestimation. The underestimation of software effort drops the
software product quality as some of the software development life cycle activities are
skipped to avoid cost over runs and to meet the deadline. The overestimation leads to
wastage of resources and loss of new projects as most of the resources are engaged
without any effective output [1]. According to Oliveira [2, 7], the major bottlenecks for
software projects are the schedule and effort (cost) to finish it; the ever changing
dynamics of project scope make the process of cost estimation complex. Due to the
typical characteristics of each project, the accurate measurement of the cost and devel-
opment time of software can be determined only after the project is completed [3, 7].
However, it is necessary to perform estimations before the project begins. There are
various techniques and methods which can be employed to estimate software devel-
opment effort, cost, and time. This paper introduces an innovative technique aimed to
predict (estimate) the software development effort based on Active Learning, PSO, and
FLANN.

2.2 Architecture of FLANN

A typical FLANN structure is illustrated in Fig. 1. FLANN is a typical two layer
network with an implicit hidden layer. The original input space is mapped into
n-dimensional feature space (n is a user defined parameter, varies across the domains) by
functional expansion such that the feature space becomes linearly separable in higher
space. The Chebyshev polynomial functional expansion is better suited as basis function
in software cost estimation as it produces low error estimates [11, 19]. The output of
the basis function is multiplied by random weights chosen in the range [—0.5, 0.5] and
the summation of all such multiplications is feed to sigmoid function to predict the
development effort of ‘n’ Person-Months [9, 10]. The learning process involves
updating the weights of FLANN in order to minimize a given cost function. The weight
vector is evolved by PSO, which has unique characteristics like the rapid convergence of
global solutions and less number of parameters to be optimized.

226 T.R. Benala et al.

I | Functio Xy =To(hh) Actual
— nal output
Expansi
on
Tn (1 1)
I, A

Xe =To(l1)

v

> Functio
nal

Expansi
on

Tn(lz)

X190 = Ta(11)

H Weights updating by

° learning algorithm

Functio

I nal

n
Expansi
on

Xnya = Ty (I
Tn(lz) n+4 4-(1)

Y

«

Fig. 1. FLANN architecture

3 Active Learning

Active learning is a special case of semi-supervised machine learning. To characterize
the essential content of Software effort estimation data points i.e., the minimum number
of features and instances required to capture the information within SEE data. If the
essential content is very small then the contained information must be very succinct and
the value-added complex learning schemes must be minimal [4].

In active learning, some heuristic (in our case, each row’s popularity value) is used
to sort instances from most interesting to least interesting. The data is then explored
according to that sort order. Learning can terminate early, if the results from all the N
instances are not better than from a subset of M instances, where M < N [Active
learning].

QUICK is an active learning method that assists in reducing the complexity of data
interpretation by identifying the essential content of SEE data sets [4]. QUICK works
as follows:

Group rows and columns by their similarity,

Discard redundant columns (synonyms) that are too similar,

Discard outlier rows (outliers) that are too distant, and

In the remaining data, generate an estimate from the nearest example.

Software Effort Estimation Using Functional Link Neural Networks 227

Let us assume that the TrainDataset is the training dataset after sampling the datasets into training and
test datasets,
Algorithm-1: Quick(TrainDataset[1..N — 1,1 ... M])
Repeat until Pop(j) < 1 are exhausted orMRE < 0.1 or
If the A best(Error)~ worst(Error)of last n instances in Active Pool is very small
%% Active Pool is nothing but our obtained reduced size of the Normalized Training Dataset%%
Step 1: Start
Step 2: Synonym Pruning
Step 2.1: D[1..N—1,1..M] = TrainDataset[1..N —1,1..M]%
calculate distance matrix for the transposed training dataset. %
Step 2.2: DM [1..M,1..M] = EuclideanDistance (D’,D") % Assign a
rank based on nearest neighbor elements %

Step 2.3:Enn[1..M,1..M] = rank
Ex: IfDM[i, j] = 3, it means j is the i" third nearest neighbor
Step 2.4: Calculate E(k)[1...M,1...M]
i E[1..M,1..M]<kE[1..M1..M] =1
else E[1..M,1..M] =0
Step 2.5: Calculate Popularity index Pop[1,1...M]
Pop[1,1..M] = SUM(E(K)[1..M,1..M])
K=Sum of popularity index whose value is not equal to zero
Step 2.6:SPD[1..N—11..M—k] =
TrainDataset(1 ...N — 1, Index(Pop[1,1...M] == 0))
%oselect those features whose popularity index value is Zero%
Step 3: Synonym Pruning Ends
Step 4: Outlier Pruning starts
Step 4.1:DM[1...N — 1,1 ...N — 1] = EucledianDistance (SPD,SPD)
%Assign a rank based on nearest neighbor elements%
Step 4.2: Enn(1..M,1...M) = rank
Step 4.3: Calculate E (k)[1...M,1 ... M]
fE[1..M1. .M <kE[1.M1.M =1
else E[1..M,1..M] =0
Step 4.4: Calculate Popularity index Pop[1,1 ... M]
Pop[1,1..M] = SUM(E(k)[1..M,1...M]
n=Sum of popularity index whose value is not equal to zero
Step 4.5:0PD[1..N —n,1..M —k] =SPD(1..N —1,1..M — k)
Step 5: Outlier Pruning Ends

4 Particle Swarm Optimization

Particle swarm optimization is a nature inspired algorithm, invented by Kennedy and
Eberhart [21], for dealing with problems in which the best solution can be represented as a
point or surface in an n-dimensional space. Hypothesis are plotted in this space and
seeded with an initial velocity, as well as a communication channel between the particles.
Particles then move through the solution space, and are evaluated according to some
fitness criterion after watch time step. Over time, particles are accelerated towards those
particles within their communication grouping which have better fitness values [11].

In the particle swarm optimization algorithm, particle swarm consists of “m” particles,
and the position of each particle represents for the potential solution in D-dimensional
space. The particles change its condition according to the following three principles:

228 T.R. Benala et al.

(1) To keep its inertia(w),
(2) To change the condition according to its most optimist position,
(3) To change the condition to the swarm’s most optimist position.

The speed and position of each particle changes according to the following equations,

Vit = vy + err (pbestly — xy) + cars (gbestly — xy)
-

Algorithm-2: PSO(Y, Y, ¢y, c,, 1,7,, velocity, position, w, pbest, gbest)
Step 1: Calculate PSOError=sqrt((Y - ?)2)
%Find the minimum Fitness or error %
Step 2: from 1...kk
Step 3: Fitness(kk) = minimum(Fitness(l kk))& MinWtnum = kk
Step 4: End
Step 5: pbest=wts(MinWitnum)
Step 6: gbest=minimum(pbest)
%%Update weights wts[1...10,1...M X 5](position) and change Weights
changewts|[1...kk, 1 ..M x 5](velocity) %%
Step 7: changewts[1 ...kk, 1 ...kk] = iw X changewts|[1...kk,1..M X 5] + C; x
1, X (pbest —wts(1...kk,1..kk)) + C, x 1, x (gbest —wts(1 ...kk,1...kk))
Step 8: wts(1..kk, 1 ...kk) = wts(1 ... kk, 1 ... kk) + changewts(1 ...kk, 1 ... kk)
wtls(1..kk,1...kk) = wts(1 ...kk, 1 ...kk) + changewts(1 ... kk, 1 ... kk)
%% Updating Inertia of Weights%%
Step 9:iw = A X iw + (1 — 1) X Variance
Step 1: A = 0.95
Step 2: Variance = VF
% Finding Variance%
F1 = absolute (FitFunn(l .. kk) —Average(FitFunn(l ...kk)))
F2 = max(F1)
if F2<1

else
F3 = —absolute (max(F2))
F = sum((F1/F3)?)
%Finding variance Ends%
Step 3: End
Step 10: End

% updated weights are send again for training dataset%

Software Effort Estimation Using Functional Link Neural Networks 229

5 ACTIVE-FLANN-PSO Algorithm

In this section, we first present the methodology for software cost estimation, next
algorithm, and finally performance evaluation metrics.

5.1 Methodology

ACTIVE-FLANN-PSO (a. k. a FAS) is a typical two layer feed forward neural network
consisting of an input layer and output layer with an implicit hidden layer. The nodes
between input layer and output layer are connected without weight vector and the
nodes between hidden layer and output layer are assigned with weight vector.
Unlike FLANN, the weight vector is evolved by PSO learning algorithm. There are M
input nodes and N data points in every dataset. Our Active learning algorithm computes
the Euclidean distance between rows (instances or data points) and columns (features
depend on the cost drivers of a particular dataset) of SEE data, then prunes synonyms
(similar features) and outliers (distant instances). This reduced size training dataset is
processed by FLANN. The input nodes of the reduced size train dataset are expanded
by a basis function to m number of nodes, where m is functionally expanded nodes. In
software cost estimation domain Chebyshev polynomial basis function is the most
effective function for functional expansion [9, 10, 19]. The basis function maps the
input space to higher dimension.

230 T.R. Benala et al.

5.2 Algorithm-3

Let us assume, D is the dataset, ND is the normalized Dataset. TrainDataset and TestDataset are the
training and testing parts respectively, P is the data point of reduced size, L and H are lower and
higher dimensions respectively, and TC is the termination criteria, O is the output layer, W is the
weighted sum, E is the error, current best fitness value is CF. Fitness value is F, GB represents global
best, PV is the particle velocity.

Step 1: For each Dataset D[1...N,1...M]

Step 1.1: ND[1...N,1...M] = Normalization(D[1..N,1...M])
Step 2: Divide ND 2/3" parts into TrainDataset and 1/3" part into TestDataset.
Step 3: For each TrainDataset

Step 3.1: Apply Quick(TrainDataset[1..N —1,1...M])
Step 4: For each P

Step 4.1: Map from L to H.
Step 5: For each particle initialize with small values from [-1, -1].
Step 6: While(!TC)

{

Apply PSO(Y, Y, ¢;, c;, 131, velocity, position, w, pbest, ghest)

{

For each swarm
{

For each particle in the swarm

{

For each sample in the training sample

s
1§

Calculate W, and send it as input to O.
Calculate E.

Assign E to F.
If (F is better than CF)

Assign Fto CF

Assign CF to GB
)

J
For each particle
s

{
Call Reduced () and Find PV.
Update Particle Position

)

s

K
}

The overall architechture of the FAS model with training and testing process is
shown in Fig. 2.

5.3 Performance Evaluation Metrics

Five evaluation criteria were used to assess the degree of accuracy to which the
estimated effort matches actual effort. These evaluation criteria have been chosen as
they are widely accepted benchmark metrics for performance evaluation in the software
cost estimation literature. They are as follows: Mean Magnitude of Relative Error
(MMRE), Median Magnitude of relative error (MdMRE), and PRED (0.25) [5, 8, 20],
Standardized Accuracy (SA) and Delta [17].

Software

Effort Estimation Using Functional Link Neural Networks

Testing Procedure including Training:

This procedure is
repeated for each
Experiment from 1 to
size (Dataset (number of
rows)), we get Train
Dataset and Test Dataset.

DATASETS
TestDataset
Normalization

FAS MODEL

‘ Sampling method LOOCV

Actual
output

¥~ Train Dataset

Update weights
(position) & change

Active Learning Algorithm weights (velocity)

Reduced size
Train Dataset

PSO
Algorithm

Actual
output

Last Updated weights
(position) & change
weights (velocity) are
given to Test Dataset

‘ . .
DATASETS B ~ Each datasets contains N number of instances or rows

|/

Normalization

and M number of columns or features]

After normalization each datasets contains N
number of instances or rows and M number of
columns or features values of range from O to 1.

Fig. 2. Overall proposed methodology

231

232 T.R. Benala et al.

The software effort estimation literature says a good prediction model should have
MMRE and MdMRE less than 0.25, and that value of PRED (0.25) should not be less
than 0.75.

MMRE is defined as the average of all MRE’s (Magnitude of relative errors).

MMRE = Z2EE M
n

where, MRE = mod (C’%C,),

n is the total number of projects,
C; is the original value and
C! is the new estimated value.

MAMRE is defined as median of all MRE’s. It is more likely in proper evaluation
than MMRE as in case of extreme values (outliers) of MREs, MMRE predicts a model
incorrectly due to the fact that while calculating the arithmetic average of MREs in case
of MMRE the outliers will influence the result and wrongly assess the model.

MdMRE = median(MRE's), ()

PRED (0.25) is the percentage of estimations that are within 25 % of original value.
_k

PRED = 4 3)

where k is the number of MRE values which are less than 0.25 and n represents the
number of projects.

The paper [5, 17] shows that measures based on MRE are potentially inappropriate
due to their asymmetry, biasing towards prediction models that under-estimate. It
includes the very popular performance measure based on MRE in the SEE literature:
MMRE. Another measure, MAE, does not present asymmetry problems and is not
biased. However, it is difficult to interpret, since the residuals are not standardized. So,
measures such as MMRE have kept being widely used by most researchers in the area.
However, Shepperd and MacDonell [18] very recently proposed a new measure called
Standardized Accuracy (SA). To judge the effect size we use Delta. These are defined
as follows:

SA can be interpreted as the ratio of how much better P; is the random guessing,
giving a very good idea of how well the approach does.

MAEp,

SA=1-

MAEp,’ Q)

Where MAEp, is the mean absolute error of the prediction model P; and MAEp, is
the mean value of large number, typically 1000, runs of random guessing. This is
defined as predicting y for the example t by random sampling over the remaining n — 1
examples and taking y, = y,, where r is drawn randomly with equal probability from

1...nAr#t.

To judge the effect size, he following measure is suggested:

MAEp, ~MAEp,
= 5 5)

Sp0

Software Effort Estimation Using Functional Link Neural Networks 233

Where sp, is the sample standard deviation of the random guessing strategy. The
values of A can be interpreted in terms of the categories proposed by Cohen [16] of
small (= 0.2), medium (= 0.5) and large (= 0.8).

6 Experiments, and Results

In this section, studies were carried out on three PROMISE repository datasets, namely,
Cocomo81 (Coc81), Nasa93, Maxwell [7] to investigate the performance of our
method. These datasets are available at promisedata.googlecode.com.

6.1 Dataset Preparation

Before the experiments, all input variables (a. k. a features) are normalized using
min-max normalization in order to eliminate the possibility of unequal influences. The
three datasets shown in Table 1 are subjected to Leave-one-out cross-validation; in
each iteration all the data points except for the single observation are used for training
and the model is tested on that single observation. Table 1 provides main features of the
data sets, including the number of features, size, the skewness, minimum, mean and
maximum of effort and size in KLOCS.

Table 1. Descriptive statistics for public datasets [22]

Dataset Nasa93 Maxwell Coc81
Features 17 27 17

Size 93 62 63
Units Months Hours Months
Minimum 8 583 6

Effort

Median 252 5189.5 98
Mean 624 8223.2 683
Maximum effort 8211 63694 11400
Skew 4.2 3.26 44

6.2 Cost Estimation Models

This study explored the feasibility of using different models based on FLANN. The
functional expansion, namely, Chebyshev polynomial based FLANN (C-FLANN)
model is included in our experiments. Hereafter, C-FLANN will be annotated as
FLANN. The proposed models using Particle Swarm Optimization and Active
Learning is:FAS. For a comprehensive evaluation of the proposed models, for com-
parison, other popular estimation models including, Functional Link Artificial Neural
Networks (FLANN) [9, 10], PSO-FLANN, and Artificial Neural Networks (ANN), are
also included in the experiments.

https://promisedata.googlecode.com/

T.R. Benala et al.

234

(440! 0 86660 66660 I T] 90°160€'S| SORILOY'L| 909€6EL'S| SOSILSI'S NNV
1vLT0 0 66660 66660 I 1] 90°LY¥6'1 G0-9TT6ES | 90-°SS8Y'c| S0-20L89°9 NNVTId
L9Tv'e 0 ¢SL60 82660 I IT| SO9€9ELy| S098988°C| PO98EIY'] S0-98L10°8 Svd
8CLE 0 I 66660 1910°0 T| S0-°06I¢€C| €S0°986C°¢C| LO968YET| S0-°L0C8'S| NNVTII-OSd
Sunsol,| Sumrer| Sunsey| Suwrer] | Sunsel | Sururei], Sunsay, Sururel], Sunsay, Sururel],

v.L1ad VS (ST°0) agdd TANPIN AN POYRIN

Jasejep [[PMXBIA € dqe],

¥658°0 0 86660 66660 1 ! S¥00°0 8100°0 £500°0 000 NNV
19L0°0 0 66660 66660 I I YO2IEI6'L| ¥0960£8°L 1200°0 €100°0 NNVId
close 0 6960 8166°0 1 ! $026910°6 | ¥0-2L89E™9 67000 <2000 Svd
orIeT 0 I 66660 8010°0 ! 0-209¢1°T YOR1ESTY | LO9VT88°6 CI000| NNVT4-OSd
Sunsag, Surure1], Sunsay, Sururery, Sunsa, Sururery, Sunsay, Surure1y, Sunsa, Sururei],

vLI1dd VS (Sz°0) aaud JINPIN HININ POURIN

1oseIep €HBSEN T JqBL

235

Software Effort Estimation Using Functional Link Neural Networks

VLLT'T 0 86660 86660 1 ! 1100 L¥00°0 8S10°0 05000 NNV
LOTE0 0 66660 0000°T 1 ! Y0-9LEO8Y | YO-98LYY9 17000 2000 NNVIH
LyTy'e 0 0¥86°0 £566°0 1 ! Y0-°TEE]’L 11000 6¥00°0 ¥€00°0 Svd
6LEY'C 0 I 66660 6S10°0 1 0-98LY0'T Y09LL60'6 | 9098LEE'T €000 NNVTII-OSd
Sunsay, Sururex], Sunsay, Sururel], Sunsay, Sururer], Sunsay, Sururely, Sunsay, Sururery,

vLI1dd VS (Sz0) aaud HINPIN HININ PO

1serep 18900 °p AqEL

236 T.R. Benala et al.

6.3 Experimental Procedure

For the purpose of validation, we adopt Leave-one-out cross validation to evaluate the
generalization error of the methods. In this scheme for each dataset of n data points and
given m candidate models, each model is trained with n-1 data points and then it is
tested on the sample that was left out. This process is repeated n times until every data
point in the dataset have been used as cross-validation instance. Then the average
training error and testing error across all three trails are computed. The advantage of
this scheme is that it does not matter how the data is split since each data point is
assigned in a test set, a training set and a validation set respectively once. At first, the
performances of PSO-FLANN, FLANN, FAS, and ANN are investigated. The best
variants on training set are selected as the candidates for comparison. Next, the opti-
mizations of parameters of the machine learning methods are performed on the training
dataset by searching through their solution space. Thirdly, the training and testing
results of the best variants of all estimation methods are summarized and compared.
The experimental results and the analysis are presented in the next section [20].

6.4 Experimental Results

Tables 2, 3 and 4 present a summary of all the methods applied on three PROMISE
repository datasets given in Table 1. The second column, third column and fourth
column in each table shows the performance of various methods with respect to per-
formance metrics MMRE, MdAMRE and PRED (0.25) respectively. Similarly, the
fourth and fifth column represents SA and DELTA respectively.With these values it
can be interpreted that the testing results in the proposed methods outperform the
testing results of FLANN, ANN. The FAS model has comparable results with
PSO-FLANN in terms of MMRE. MdMRE and PRED (0.25) and performs well in
terms of DELTA in NASA93 and Coc81compared to PSO-FLANN.

Our experiments suggest that a hybrid combination of ACTIVE-FLANN-PSO
(FAS) improves the accuracy very effectively when compared to FLANN, ANN and
has comparable results with respect to PSO-FLANN.

7 Conclusion and Future Work

Software cost estimation by hybrid system using Active learning, PSO and FLANN-an
improvement of PSO-FLANN, has been presented in this work. We have evaluated the
performance of FAS. The experimental results show that our method gives improved
performance as compared to conventional FLANN, ANN and outperforms the com-
petitive techniques such as PSO-FLANN with respect to performance measure
DELTA. As a future note, our best effort towards the development of a good effort
estimation technique will be based on meta-heuristic techniques like artificial bee
colony (ABC) algorithm, and stochastic technique like differential evaluation (DE), and
simulated annealing.

Software Effort Estimation Using Functional Link Neural Networks 237

References

10.

11.

12.

13.

14.

18.

16.

17.

18.

19.

. Bakr, A., Turhan, B., Bener, A.: A comparative study of estimating software development

effort intervals. Softw. Qual. J. 19, 537-552 (2010)

de Araujo, R.A., Oliveria, A.L.I., Soares, S.: A shift-invariant morphological system for
software development cost estimation. Expert Syst. Appl. 38, 4162-4168 (2011)

Braga, P.L., Oliveria, A.L.I, Ribeiro, G.H.T., Meria, S.R.L.: Software effort estimation
using machine learning techniques with robust confidence intervals. In: Proceedings of IEEE
International Conference on Tools with Artificial Intelligence (ICTAI), pp. 181-185 (2007)
Kocaguneli, E., Menzies, T., Keung, J., Cok, D., Madachy, R.: Active learning and effort
estimation: Finding the essential content of software effort estimation data. IEEE Trans.
Softw. Eng. 39(8), 1040-1053 (2013)

Foss, T., Stenrud, E., Kitchenham, B., Myrtveit, I.: A Simulation study of the model
evaluation criterion MMRE. IEEE Trans. Softw. Eng. 29(11), 985-995 (2003)

Keung, J.W.: Theoretical maximum prediction accuracy for analogy-based software cost
estimation. In: Proceedings of 15th Asia-Pacific Software Engineering Conference, pp. 495—
502 (2008)

Menzies, T., Caglayan, B., Kocaguneli, E., Krall, J., Peters, F., Turhan, B.: The PROMISE
Repository of Empirical Software Engineering Data. Department of Computer Science, West
Virginia Universit (2012). http://promisedata.googlecode.com

Stensrud, E., Foss, T., Kitchenham, B.A., Myrtveit, I.: An empirical validation of the
relationship between the magnitude of relative error and project size. In: Proceedings of the
IEEE 8th Metrics Symposium, pp. 3—-12 (2002)

Tirimula Rao, B., Sameet, B., Kiran Swathi, G., Vikram Gupta, K., Raviteja, Ch., Sumana,
S.: A novel neural network approach for software cost estimation using functional link
artificial neural networks. Int. J. Comput. Sci. Netw. Secur. (IICSNS) 9(6), 126-131 (2009)
Tirimula Rao, B., Dehuri, S., Mall, R.: Functional link artificial neural networks for software
cost estimation. Int. J. Appl. Evol. Comput. (IJAEC) 3(2), 62-82 (2012)

Tirimula Rao, B., Chinnababu, K., Mall, R., Dehuri, S.: Particle swarm optimized functional
link artificial neural networks (PSO-FLANN) n software cost estimation. In: Proceedings of
the International Conference on Frontiers of Intelligent Computing: Theory and Applications
(FICTA), Advances in Intelligent Systems and Computing, vol. 199, pp. 59—66 (2013)
Dehuri, S., Cho, S.-B.: Evolutionarily optimized features in functional link neural network
for classification. Expert Syst. Appl. 37(6), 4379-4391 (2010)

Dehrui, S., Cho, S.-B.: A comprehensive survey on functional link neural networks and an
adaptive PSO-BP learning for CFLNN. Neural Comput. Appl. 19(2), 187-205 (2010)
Tirimula Rao, B., Dehuri, S., Mall, R.: Computational intelligence in software cost
estimation: an emerging paradigm. ACM SIGSOFT Softw. Eng. Notes 37(3), 1-7 (2012)
Chakravarty, S., Dash, P.L., Pandi, V.R., Panigrahi, B.K.: An evolutionary functional link
neural fuzzy model for financial time series forecasting. Int. J. Appl. Evol. Comput. 2(3),
27-38 (2011)

Cohen, J.: Quantitative methods in psychology: a power primer. Psychol. Bull. 112(1), 155-
159 (1992)

Minku, Leondro L., Yao, Xin: Ensembles and locality: insight on improving software effort
estimation. Inf. Softw. Technol. 55(8), 1512-1528 (2013)

Shepperd, M., MacDonell, S.: Evaluating prediction systems in software project estimation.
Inf. Softw. Technol. 54(8), 820-827 (2012)

Abutheraa, M.A., Lester, D.: Computable function representations using effective
Chebyshev polynomial. Int. J. Math. Comput. Phys. Quantum Eng. 1(7), 294-300 (2007)

http://promisedata.googlecode.com

238

20.

21.

T.R. Benala et al.

Tirimula Rao B., Mall, R., Dehuri, S., ChinnaBabu, K.: Software effort prediction using
unsupervised learning (clustering) and functional link artificial neural networks. In:
Proceedings of the IEEE World Congress on Information and Communication
Technologies, India, pp. 115-120 (2012)

Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE
International Conference on Neural Networks, Perth, Australia, pp. 1942-1948 (1995)

	Software Effort Estimation Using Functional Link Neural Networks Tuned with Active Learning and Optimized with Particle Swarm Optimization
	Abstract
	1 Introduction
	2 Background
	2.1 Software Effort Estimation
	2.2 Architecture of FLANN

	3 Active Learning
	4 Particle Swarm Optimization
	5 ACTIVE-FLANN-PSO Algorithm
	5.1 Methodology
	5.2 Algorithm-3
	5.3 Performance Evaluation Metrics

	6 Experiments, and Results
	6.1 Dataset Preparation
	6.2 Cost Estimation Models
	6.3 Experimental Procedure
	6.4 Experimental Results

	7 Conclusion and Future Work
	References

