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Ant  Colony  Optimization  is  a population-based  meta-heuristic  that  exploits  a  form  of  past  performance
memory  that is inspired  by the  foraging  behavior  of real  ants.  The  behavior  of  the  Ant Colony  Optimization
algorithm  is  highly  dependent  on  the  values  defined  for its parameters.  Adaptation  and  parameter  control
are recurring  themes  in  the  field  of bio-inspired  optimization  algorithms.  The  present  paper  explores  a
new fuzzy  approach  for diversity  control  in Ant  Colony  Optimization.  The  main  idea  is to  avoid  or slow
down  full  convergence  through  the  dynamic  variation  of  a particular  parameter.  The  performance  of
different  variants  of  the  Ant  Colony  Optimization  algorithm  is  analyzed  to choose  one  as  the basis  to  the
CO
uzzy logic
uzzy control
obotics
uzzy ACO

proposed  approach.  A  convergence  fuzzy  logic  controller  with  the  objective  of  maintaining  diversity  at
some level  to avoid  premature  convergence  is  created.  Encouraging  results  on  several  traveling  salesman
problem  instances  and  its  application  to the design  of  fuzzy  controllers,  in  particular  the  optimization
of  membership  functions  for  a unicycle  mobile  robot  trajectory  control  are  presented  with  the  proposed
method.

©  2014  Elsevier  B.V.  All  rights  reserved.
. Introduction

Ant Colony Optimization (ACO) is inspired by the foraging
ehavior of ant colonies, and is aimed at solving discrete optimiza-
ion problems [8].

The behavior of the ACO algorithm is highly dependent on the
alues defined for its parameters as these have an effect on its con-
ergence. Usually these are kept static during the execution of the
lgorithm. Changing the parameters at runtime, at a given time or
epending on the search progress may  improve the performance
f the algorithm [25–27].

Controlling the dynamics of convergence to maintain a balance
etween exploration and exploitation is critical for good perfor-
ance in ACO. Early convergence leaves large sections of the

earch space unexplored. Slow convergence does not concentrate
ts attention on areas where good solutions are found.

Fuzzy control has emerged as one of the most active and fruitful

reas of research in the application of fuzzy sets and fuzzy logic. The
ethodology of fuzzy logic controllers is useful when processes are

oo complex for analysis by conventional quantitative techniques

∗ Corresponding author. Tel.: +52 6646236318.
E-mail address: ocastillo@tectijuana.mx (O. Castillo).

ttp://dx.doi.org/10.1016/j.asoc.2014.12.002
568-4946/© 2014 Elsevier B.V. All rights reserved.
or when the available sources of information are interpreted in a
qualitatively inaccurate or uncertain way [40].

Determining the correct parameters for the fuzzy logic con-
troller is a complex problem and it is also a task that consumes
considerable time. Because of their ability to solve complex NP hard
problems we made use of ACO for the selection of those already
mentioned parameters.

There is also some recent interest in using ACO algorithms in
mobile robotics [5,28]. Nowadays robotic automation is an essen-
tial part in the manufacturing process. Autonomous navigation
of mobile robots is a challenge. A mobile robot can be useful in
unattainable goal situations due to geological conditions or where
the human are being is endangered. So, mobile robotics is an inter-
esting subject for science and engineering.

This paper explores a new method of diversity control in ACO.
The main idea is to prevent or stop the total convergence through
the dynamic adjustment of certain parameter of the algorithm
applied to the design of fuzzy controllers, specifically to the opti-
mization of membership functions of a trajectory controller for a
unicycle mobile robot.
The rest of the paper is organized as follows. Section 2 presents
an overview of ACO. Section 3 describes a performance analysis on
several TSP instances. Section 4 presents a new method of param-
eter tuning using fuzzy logic, Section 5 shows some simulation

dx.doi.org/10.1016/j.asoc.2014.12.002
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2014.12.002&domain=pdf
mailto:ocastillo@tectijuana.mx
dx.doi.org/10.1016/j.asoc.2014.12.002
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Table 1
TSP instances considered.

TSP Number of cities Best tour length

Burma14 14 3323
Ulysses22 22 7013
Berlin52 52 7542
Eil76 76 538
kroA100 100 21,282

Table 2
Parameters used for each ACO variant.

ACO  ̨  ̌ � m �0

AS 1 2 0.5 n m/Cnn

ASRank 1 2 0.1 n 0.5r(r − 1)/�Cnn

EAS 1 2 0.5 n (e + m)/�Cnn

m = n.
Cnn = 20 for each tsp except burma14 where Cnn = 10.
EAS: e = 6.
ASRank: r = w − 1; w = 6.

Table 3
Performance obtained for the TSP instance Burma14.

ACO Best Average Successful runs

AS 3323 3323 30/30
ASRank 3323 3329 19/30
EAS 3323 3323 30/30

Table 4
Performance obtained for the Ulysses22 TSP instance.

ACO Best Average Successful runs

AS 7013 7022 30/30
ASRank 7013 7067 19/30
EAS 7013 7018 30/30

Table 5
Performance obtained for the Berlin52 TSP instance.

ACO Best Average Successful runs

extracted from TSPLIB [33], using the parameters recommended by
the literature (Table 2) [8].

The behavior of AS and EAS is very similar in all experiments
(Tables 3–7), the performance of the three variants began to worsen

Table 6
Performance obtained for the Eil76 TSP instance.
O. Castillo et al. / Applied So

esults in TSP problems, Section 6 describes the optimized fuzzy
ontroller, Section 7 presents the considerations that are used to
mplement the ACO algorithm in the optimization of membership
unctions, Section 8 describes how the proposed method is applied,
ections 9 and 10 show simulation results in the membership func-
ions optimization problem, and finally Section 11 presents some
onclusions.

. Ant Colony Optimization

The first ACO algorithm was called Ant System (AS) and its main
bjective was to solve the traveling salesman problem (TSP), whose
oal is to find the shortest route to link a number of cities. In each
teration each ant keeps adding components to build a complete
olution, the next component to be added is chosen with respect to a
robability that depends on two factors. The pheromone factor that
eflects the past experience of the colony and the heuristic factor
hat evaluates the interest of selecting a component with respect
o an objective function. Both factors weighted by the parameters

 and  ̌ respectively define the probability P in (1)

k
ij =

[
�ij

]˛[
�ij

]ˇ

∑
l ∈ Nk

i [�il]
˛[�il]

ˇ
, if j ∈ Nk

i (1)

In (1) �ij represents the pheromone value between nodes i and j
nd �il represents the heuristic factor that evaluates the interest of
electing a component with respect to an objective function. Finally,
i represents a neighborhood of node i.

After all ants have built their tours, the pheromone trails are
pdated. This is done by decreasing the pheromone value on all
rcs by a constant factor (2), which prevents the unlimited accu-
ulation of pheromone trails and allows the algorithm to forget

ad decisions previously taken.

ij ← (1 − �)�ij, ∀(i, j) ∈ L (2)

And by depositing pheromone on the arcs that ants have crossed
n its path (3). The better the tour, the greater the amount of
heromone that the arcs will receive. In (2) � represents the rate of
heromone evaporation, which is a value between 0 and 1.

�ij ← �ij +
n∑

k=1

��k
ij, ∀(i, j) ∈ L

��k
ij
=

⎧⎨
⎩

1
Ck

, if arc (i, j) belong to Tk;

0, otherwise;

(3)

In (3) C represents the cost of an arc in a graph. A first improve-
ent on the initial AS, called the elitist strategy for Ant System (EAS)

s as follows. The idea is to provide strong additional reinforcement
o the arcs belonging to the best tour found since the start of the
lgorithm (4) [8].

�ij ← �ij +
n∑

k=1

��k
ij + e��bs

ij , ∀(i, j) ∈ L

��bs
ij
=

⎧⎨
⎩

1
Cbs

, if arc (i, j) belong to Tbs;

0, otherwise;

(4)

In (4) the term ��  represents the pheromone increment and the
s indication is to distinguish the best-so-far ant. Another improve-

ent over AS is the rank-based version of AS (denoted ASRank). In
Srank each ant deposits an amount of pheromone that decreases
ith its rank. Additionally, as in EAS, the best-so-far ant always
eposits the largest amount of pheromone in each iteration [8]. In
AS 7542 7557 2/30
ASRank 7542 7580 17/30
EAS 7542 7554 6/30

(5) w represents a number of ants considered in the ranking and r
is an index for the ants in this set of w ants.

�ij ← �ij +
w−1∑
r=1

(w − r)��r
ij + ��bs

ij (5)

3. Performance analysis of ACO

To analyze the performance of the AS, EAS and ASRank variants,
30 experiments were performed by method for each instance of the
examined TSP (Table 1), which are in the range of 14–100 cities, all
ACO Best Average Successful runs

AS 547 556 0/30
ASRank 538 543 1/30
EAS 544 555 0/30
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Table  7
Performance obtained for the KroA100 TSP instance.

ACO Best Average Successful runs

AS 22,305 22,483 0/30
ASRank 21,304 21,549 0/30
EAS 22,054 22,500 0/30

Fig. 1. Average results of each presented approach.
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Fig. 3. Convergence plot of the ACO algorithm ASRank variant.

vergence of the algorithm was  created in this work (Fig. 5). Fuzzy
ig. 2. Percentage of success in finding the global minimum of each presented
pproach.

y increasing the problem complexity, however the ASRank perfor-
ance decreased to a lesser extent than their counterparts when

he number of cities was greater than 50 (Tables 5–7).
Since ASRank has more success finding the minimum and

chieved lower averages with more complex TSP instances than
he other approaches presented (Figs. 1 and 2). It can be concluded
hat AS and EAS have better performance when the number of cities
s low, unlike ASRank that works better when the number of cities
s not too small due to the pheromone deposit mechanism of this
pproach, where only the w − 1 ants with the shorter tours and the
nt with the best so far tour are allowed to deposit pheromone.
his strategy can lead to a stagnation situation where all the ants
ollow the same path and construct the same tour [8] as a result
f excessive increase in the pheromone trails of suboptimal routes
Figs. 3 and 4).

. Fuzzy logic convergence controllers
Based on the obtained results it was decided to use ASRank as
he basis for our proposed ACO variant. The main idea is to prevent
Fig. 4. Behavior of the average lambda branching factor during the execution of the
ACO algorithm ASRank variant.

or stop the total convergence through the dynamic variation of the
alpha parameter.

Alpha has a large effect in the diversity. Is recommended to keep
 ̨ in the range of 0 <  ̨ < 1 [8]. A value closer to 1 will emphasize

better paths but reduce diversity, while lower  ̨ will keep more
diversity but reduce selective pressure [26].

However, it appears impossible to fix a universally best ˛. In
most approaches it is taken to be 1, so that the selection probability
is linear in the pheromone level.

An adaptive parameter control strategy is proposed in this
paper; this takes place when there is some form of feedback from
the search that is used to determine the direction and/or magni-
tude of the change to the strategy parameter [9]. In our case, the
average lambda branching factor is used, and this factor measures
the distribution of the values of the pheromone trails and provides
an indication of the size of the search space effectively explored [8].

A convergence fuzzy controller to prevent or delay the full con-
control can be viewed as the translation of external performance
specifications and observations of a plant behavior into a rule based
linguistic control strategy [40].
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Fig. 5. Block diagram of the proposed system to control the convergence of the ACO algorithm variant ASRank.

Fig. 6. Rules of the proposed fuzzy system to control the convergence of the ACO
algorithm.

Fig. 7. Membership functions of the input variables of the proposed fuzzy system
to  control the convergence of the ACO algorithm.

Fig. 8. Membership functions of the output variables of the proposed fuzzy system
t

b
g

c
i
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Fig. 9. Behavior of the average lambda branching factor during the execution of the
developed approach.

Table 8
Performance obtained by the strategy proposed in the instances discussed above.

TSP Best Average Successful runs

Burma14 3323 3323 30/30
Ulysses22 7013 7013 30/30
Berlin52 7542 7543 26/30
Eil76 538 539 21/30
KroA100 21,292 21,344 0/30

Table 9
Null and alternative hypothesis for the statistical hypothesis testing performed for
TSP problems.

Case Null hypothesis (H0) Alternative hypothesis (Ha)

The 3 ACO variants mentioned above are analyzed in addition to
the approach developed in 5 instances of the TSP, 30 experiments
are performed for each instance, 150 experiments are made in total
o  control the convergence of the ACO algorithm.

The objective of the controller is to maintain the average lambda
ranching factor at a certain level to avoid a premature conver-
ence, so its rules are designed to fulfill this goal (Fig. 6).

The controller of the  ̨ increment uses as inputs the error and
hange of error (Fig. 7) with respect to an average lambda branch-
ng factor reference level (this is the objective value) and provides
s output an increase in the value of the parameter alpha (Fig. 8).
f course, in Fig. 7 the membership functions are defined over nor-
alized ranges of values between −1 and 1, and in Fig. 8 the range

f  ̨ increment is defined between −0.05 and 0.05, which was found

y performing previous experiments to be a good interval.
1 �AS ≤ �ASRank+ConvCont �AS > �ASRank+ConvCont

2 �EAS ≤ �ASRank+ConvCont �EAS > �ASRank+ConvCont

3 �ASRank ≤ �ASRank+ConvCont �ASRank > �ASRank+ConvCont

5. Simulation in TSP problems

The fuzzy controller is able to maintain diversity in a more
appropriate level, thus avoiding the full convergence of the algo-
rithm (Fig. 9).

The same number of experiments mentioned in the above anal-
ysis is performed and we  obtained the following results. Table 8
shows the performance of the proposed method in the same
instances of TSP.

It was found that the proposed method is able to improve the
results of the strategies studied, obtaining lower averages (Fig. 10)
and reaching the global minimum on more occasions than the ana-
lyzed variants (Fig. 11).

To verify the above results in a more formal way a Z test for
means of two samples is performed (Table 9).
of we  extracted a 30 data random sample for each method.
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Fig. 10. Average of the results obtained by the proposal and each approach under
review.

Fig. 11. Percentage of success in finding the global minimum of the proposal and
each approach under review.

Fig. 12. Results of the statistical hypothesis testing performed for (a) AS vs.
ASRank + ConvCont, (b) EAS vs. ASRank + ConvCont, (c) ASRank vs. ASRank + ConvCont for
T

t
(
f
p
v
a

Fig. 13. Membership functions of the fuzzy trajectory controller input variables.

plant, and as output variables, the right (�1) and left (�2) torques of
the mentioned robot (Fig. 14).

The membership functions of the input variables are trape-
SP  problems.

With a significance level of 5% it was found sufficient statis-
ical evidence to claim that the averages of AS (Fig. 12a), EAS
Fig. 12b) and ASRank (Fig. 12c) are higher than the one obtained
or ASRank + ConvCont in the experiments, which means that the
roposed approach improved the performance of the discussed
ariants on the studied problems, as had been observed in the first

nalysis.
Fig. 14. Membership functions of the fuzzy trajectory controller output variables.

6. Fuzzy trajectory controllers for a unicycle mobile robot

It was decided to optimize a fuzzy trajectory controller for a uni-
cycle mobile robot to test the developed method in a more complex
problem. The control proposal for the mobile robot is as follows:
Given a path qd(t) and a desired orientation, a fuzzy logic con-
troller must be designed to apply an adequate torque �, such that
measured positions q(t) reach the reference trajectory qd(t). That
is:

lim
t→∞

∥∥qd(t) − q(t)
∥∥ = 0 (6)

The fuzzy system to be optimized [23] is of Takagi-Sugeno type,
and for simplicity it was decided to modify and convert it into a
Mamdani type controller so that the input and output parameters
are represented by linguistic variables.

The controller receives as input variables the error in the lin-
ear (ev) and angular (ew) velocities (Fig. 13), that is, the difference
between the predefined desired speed and the actual speed of the
zoidal for the negative (N) and positive (P) linguistic terms, and
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Fig. 15. Rules of the of the fuzzy trajectory controller discussed.

Fig. 16. Membership functions of the input variables of the fuzzy system to control
the robot trajectory.
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Table 10
Relation variable weight for the linear velocity error input of the fuzzy system to
optimize.

Variable Relation

c c = −1 + 0.475

(
(d1,j1

+d2,j2
)

2

)
+ 0.475

X1

X1 = c +
(

m1

(
(d3,j3

+ d4,j4
)

2

)
+ C1

)

m1 = − c

2
C1 = −(c + m1)

Y1 Y1 = 0.5

(
(d5,j5

+d6,j6
)

2

)
+ 0.5

i  i = 1 − 0.475

(
(d11,j11

+d12,j12
)

2

)
+ 0.475

X2

X2 = i +
(

m2

(
(d7,j7 + d8,j8

)

2

)
+ C2

)

m2 = c

2
C2 = i − m2

Y2 Y2 = 0.5

(
(d9,j9

+d10,j10
)

2

)
+ 0.5

Table 11
Relation variable weight for the angular velocity error input of the fuzzy system to
optimize.

Variable Relation

c c = −1 + 0.475

(
(d13,j13

+d14,j14
)

2

)
+ 0.47

X1

X1 = c +
(

m1

(
(d15,j15

+ d16,j16
)

2

)
+ C3

)

m3 = − c

2
C3 = −(c + m3)

Y1 Y1 = 0.5

(
(d17,j17

+d18,j18
)

2

)
+ 0.5

i i = 1 − 0.475

(
(d23,j23

+d24,j24
)

2

)
+ 0.475

X2

X2 = i +
(

m4

(
(d19,j19

+ d20,j20
)

2

)
+ C4

)

m4 = c

2
C4 = i − m4

Y2 Y2 = 0.5

(
(d21,j21

+d22,j22
)

2

)
+ 0.5

Table 12
Relation variable weight for the right torque output of the fuzzy system to optimize.

Variable Relation

b b = 0.5

(
(d25,j25

+d26,j26
)

2

)
− 0.5

span1 span1 = 0.475

(
(d27,j27

+d28,j28
)

2

)
+ 0.525

span2 span2 = 0.475(d29,j29
) + 0.525

h h = 0.5

(
(d30,j30

+d31,j31
)

2

)
+ 0.5

span3 span3 = 0.475

(
d32,j32

+d33,j33
2

)
+ 0.525
ig. 17. Membership functions of the output variables of the fuzzy system to control
he robot trajectory.

riangular for the zero (Z) linguistic term. The output variables
ave three membership functions, negative (N), zero (Z), positive
P) of triangular shape and the fuzzy system uses nine fuzzy rules
hich are shown below (Fig. 15):

. ACO for membership functions optimization

ACO is used to find the membership functions optimal parame-
ers through its adjustment and by the subsequently evaluation of
he system.

The parameters a, b, f, j, k corresponding to the membership
unctions of the input variables remain fixed to simplify the prob-
em. The algorithm will find the optimal values of the parameters
, i in a straightforward manner and, through the optimum posi-
ion of the intersection points (X1, Y1), (X2, Y2), the value of the
arameters d, e, g, h (Fig. 16).

Regarding the membership functions of the output variables,
he algorithm will search for the optimum center (b, h, except e
hat remains fixed for simplicity) and span of each one (a, c, d, f, g,

) (Fig. 17).

The application of ACO to optimize membership functions
nvolves some considerations. First, encode all parameters in a

eighted graph. For this goal we choose a complete graph of 43
nodes to maintain the similarity of the problem with a classical TSP
where a minimum Hamiltonian circuit is searched.

The range of each variable was discretized in 22 normalized val-
ues in the range [−1, 1], and a symmetric data matrix of 43 × 43
with the distance between nodes was  created. The parameters of
the membership functions of the fuzzy system are obtained through
the distance between two nodes using the relations of Tables 10–13.

The algorithm will find the optimal values of c, i in a direct man-
ner and using the optimal positions of the intersection points (X1,
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Table  13
Relation variable weight for the left torque output of the fuzzy system to optimize.

Variable Relation

b b = 0.5

(
(d34,j34

+d35,j35
)

2

)
− 0.5

span1 span1 = 0.475

(
(d36,j36

+d37,j37
)

2

)
+ 0.525

span2 span2 = 0.475(d33,j33
) + 0.525

h h = 0.5

(
(d39,j39

+d40,j40
)

2

)
+ 0.5
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Fig. 18. Membership functions of the input variables of the fuzzy system proposed
to  control the convergence of the ACO algorithm without heuristic information.

ij ij
w∑
span3 span3 = 0.475

(
d41,j41

+d42,j42
2

)
+ 0.525

1), (X2, Y2) the values of parameters d, e, g, h where:

d = (0 − C1)
m1

, e = (0 − C2)
m2

,

m1 =
(Y1 − 1)
(X1 − c)

, m2 =
(1 − Y1)
(0 − X1)

,

C1 = 1 − m1c, C2 = 1,

−1 < c < −0.05, c < X1 < 0, 0 < Y1 < 1,

g = (0 − C3)
m3

, h = (0 − C4)
m4

,

m3 =
(Y2 − 1)
(X2 − 0)

, m4 =
(1 − Y2)
(i − X2)

,

C3 = 1, C4 = 1 − m4i,

0.05 < i < 1, 0 < X2 < i, 0 < Y2 < 1

here m1, m2, m3 and m4 are the slopes in Fig. 16.
The next step is to define an appropriate objective function to

valuate the performance of ACO. The objective function represents
he quality of the solution, and acts as an interface between the opti-

ization algorithm and the considered problem. The mean square
rror is used to evaluate the fitness of the fuzzy system.

SE  = 1
N

N∑
K=1

[y(k) − ỹ(k)]2 (7)

here y(k) = Reference value at instant k; ỹ(k) = Computed output
f the system at instant k; N = Number of samples considered.

Since the system is responsible for controlling the linear (v) and
ngular (w) velocities of the plant, the overall error is given by:

MSEV =
1
N

N∑
K=1

[v(k) − ṽ(k)]2

MSEW =
1
N

N∑
K=1

[w(k) − w̃(k)]2

Errorglobal = MSEv + MSEw

This is used to represent the entire length of each ant generated
raph.

. ASRank + ConvCont for membership functions
ptimization

Due to the nature of the problem, we do not have previous
euristic information to make a balance between the influence of
he knowledge we have a priori of the problem and the pheromone

rails that ants have generated, thus the dynamic variation of the
lpha parameter had a null effect on the convergence of the algo-
ithm when applied to the optimization of membership functions
Fig. 18).
Fig. 19. Rules of the proposed fuzzy system to control the convergence of the ACO
algorithm without heuristic information.

Then it was decided to continue with the same strategy of con-
vergence control, but this time by varying the evaporation rate (�)
and the weight to be given to the amount of pheromone that each
ant leaves on its trail (w) to control diversity, so another fuzzy
system is implemented for this task.

The controller now uses as inputs, the error (e) and change of
error (ce)  with respect to an average lambda branching factor ref-
erence level (Fig. 18) and provides as output the evaporation rate
corresponding to arcs, which belong (�bs) and do not belong (�) to
the best so far tour, in addition to an increase in the weight that is
given to the pheromone increment of the arcs that form part of the
best so far tour (ubs) and the remaining arcs (u) in ASRank (Fig. 19).

Again the rules are created with the intention to keep the aver-
age lambda branching factor at some particular level to slow the
convergence process and are shown below (Fig. 20):

Thus Eqs (2) and (4) corresponding to the evaporation and
pheromone deposit process in ASRank become:

�bs
ij
← (1 − �bs)�bs

ij
, ∀(i, j) ∈ Tbs

� ← (1 − �)� , ∀(i, j) /∈ Tbs
�ij ← �ij

r=1

(w − r)(u)
(w − 1)

��r
ij + ubs��bs

ij

��r
ij
= 1

cr
and ��bs

ij =
1

cbs
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Fig. 20. Membership functions of the output variables of the proposed fuzzy system
to  control the convergence of the ACO algorithm without heuristic information.
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Table 14
Parameters used for each ACO algorithm in the membership function optimization
problem.

ACO  ̨  ̌ � m �0

AS 1 0 0.5 n m/Cnn

ASRank 1 0 0.1 n 0.5r(r − 1))/�Cnn

EAS 1 0 0.5 n (e + m)/�Cnn

ASRank + CONVCONT 1 0 Dynamic n 0.1

m = n.
Cnn = length of a tour generated by a nearest-neighbor heuristic.
EAS: e = 6.
ASRank, ASRank + CONVCONT: r = w − 1; w = 6.

Table 15
Results obtained by the proposal and each approach under review algorithm in the
membership function optimization problem.

ACO Best Average

AS 0.0015 0.0172
EAS  0.00013 0.0161
ASRank 0.00015 0.0572
ASRank + CONVCONT 0.00029 0.0131

Fig. 22. Trajectory obtained by the best generated controller.

Table 16
Null and alternative hypothesis for the statistical hypothesis testing performed for
membership function optimization problem.

Case Null hypothesis (H0) Alternative hypothesis (Ha)

1 �AS ≤ �ASRank+ConvCont �AS > �ASRank+ConvCont
ig. 21. Behavior of the average lambda branching factor during the execution of
he developed approach to control the convergence of the ACO algorithm without
euristic information.

. Simulation in membership functions optimization
roblem

The model of the mobile robot and the path used in the simu-
ations performed by the ACO algorithm are defined in [23]. The
pproach described in the previous section is able to maintain
iversity at the required level (Fig. 21) unlike the convergence con-
roller that was tested in Section 5.
In this case 30 experiments were performed with the pro-
osed approach (Table 15) to compare the performance of classical
pproaches with the developed proposal. The parameters used in
he experiments are presented in Table 14.
2 �EAS ≤ �ASRank+ConvCont �EAS > �ASRank+ConvCont

3 �ASRank ≤ �ASRank+ConvCont �ASRank > �ASRank+ConvCont

With the exception of ASRank, the average simulation results
obtained are very similar. The proposal obtained the lowest aver-
age, but despite this it was EAS which generated the lowest MSE
controller (Fig. 23) and therefore the more accurate trajectory
(Fig. 22).

It is difficult to determine whether the proposal improved over
the classical approaches with the above analysis, so a Z test for two
samples means is performed to achieve a conclusion (Table 16).

No statistical evidence was  found with a significance level of
5% that the average of AS or EAS is greater than the average of

ASRank + CONVCONT (Fig. 24a and b).

With a significance level of 5%, there is statistical evidence that
the average of the results of simulations of ASRank is greater than
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Fig. 23. Membership functions of the best generated controller.

Fig. 24. Results of the statistical hypothesis testing performed for (a) AS vs.
ASRank + ConvCont, (b) EAS vs. ASRank + ConvCont, (c) ASRank vs. ASRank + ConvCont for
membership functions optimization problem.

Table 17
Performance obtained by ASRank + CONVCONT and S-ACO in the membership func-
tion optimization problem.

ACO Best Average

ASRank + CONVCONT 0.00029 0.0131
S-ACO 0.0982 0.1199

Fig. 25. Trajectories generated by the controller obtained by the best o
Fig. 26. Results of the statistical hypothesis testing performed for (a) S-ACO vs.
ASRank + ConvCont.

ASRank + CONVCONT (Fig. 24c), that is, the proposal was only able
to outperform the ASRank variant.

10. ASRank + ConvCont vs. S-ACO

The results obtained with the developed proposed approach are
compared with the ones obtained by [5], where the same member-
ship function optimization problem was considered for the same
fuzzy trajectory controller and unicycle mobile robot model, the
difference lies in S-ACO as strategy used to solve the problem and
the directed graph of 12 nodes chosen to represent it.

At first glance it can be observed that the best result of
ASRank + CONVCONT is significantly lower than S-ACO as well as
the average of the results obtained in the experiments (Table 17),
this is reflected in the path generated by each controller (Fig. 25),
therefore we  conclude that its performance is higher.

To support the above a t-test for means of two samples is
performed, for which we considered a random sample of 10 exper-
iments per technique to compare their performance.

The null hypothesis claims that the average of S-ACO is less than
or equal to ASRank + CONVCONT.

H0: �S-ACO ≤ �ASRank+ConvCont
Ha: �S-ACO > �ASRank+ConvCont

 ̨ = 0.05
Since t is located at the rejection zone with a significance level of
5% and 9 degrees of freedom there is sufficient statistical evidence
to prove that the average of S-ACO is greater than ASRank + ConvCont

f experiments performed with: (a) ASRank + ConvCont, (b) S-ACO.
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Fig. 26), that is, the developed approach outperforms the method
sed by [5] and therefore likewise AS and EAS by the analysis of
ection 9.

1. Conclusions

Maintaining diversity is important for good performance in the
CO algorithm. An adaptive control strategy of the parameter alpha

or this purpose is proposed, which is embodied in a diversity fuzzy
ontroller, which allows avoiding, or delaying the total convergence
nd thereby controlling the exploration and exploitation capabili-
ies of the algorithm.

The proposed strategy is compared with 3 variants of the ACO
lgorithm on several instances of the TSP taken from TSPLIB.
n improvement is observed by dynamically changing the alpha
arameter value, as is noted in the statistical analysis performed,
here the proposed approach outperforms the classical strate-

ies.
It was found that the alpha parameter is not the most appro-

riate when there is no heuristic information to guide the search
s is the case with the optimization of membership functions,
ince it is not possible to balance between the previous knowl-
dge of the problem and by the generated by the algorithm itself
uring its execution and thus control the convergence of the algo-
ithm. So it was decided to continue with the same strategy for
his kind of problem, but varying the evaporation rate and the
eight, which is given to the amount of pheromone which each ant
eposited, and this allowed controlling the convergence of the algo-
ithm without heuristic information. This modification improved
he performance of ASRank, however since this variant scored the
owest performance, is probably not the most appropriate in these
ases.

The formulated strategy is outperformed by AS and EAS in the

embership functions optimization problem, but managed to out-

erform the method developed in [5], so it was concluded that the
mprovement could not come from the convergence control made
nd is attributed to the way in which the problem is encoded.

[

[

puting 28 (2015) 150–159 159

As future work, we intend to apply convergence control to other
variants of ACO algorithm. Modify the reference, and thus diversity
in an intelligent way, depending of the search progress or some
other performance measure. Look for heuristic information rele-
vant to the membership functions optimization problem that drives
the search process in early iterations of the algorithm, making it
possible to use the strategy of dynamic variation of the parameter
alpha and an analysis in presence of noise of the generated con-
troller by ACO algorithm. Finally, the proposed approach could also
be extended as a multi-objective optimization method to improve
results [41].
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