
Computer Networks 91 (2015) 453–470

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Modeling of the resource allocation in cloud computing centers

Shahin Vakilinia∗, Mustafa Mehmet Ali, Dongyu Qiu

Department of Electrical and Computer Engineering, Concordia University, 7141 Rue Sherbrooke West, QC H3G 1M8, Canada

a r t i c l e i n f o

Article history:

Received 25 September 2014

Revised 12 July 2015

Accepted 21 August 2015

Available online 8 September 2015

Keywords:

Cloud computing

Queuing systems

Resource allocation

Markov process

a b s t r a c t

Cloud computing offers on-demand network access to the computing resources through vir-

tualization. This paradigm shifts the computer resources to the cloud, which results in cost

savings as the users leasing instead of owning these resources. Clouds will also provide power

constrained mobile users accessibility to the computing resources. In this paper, we develop

performance models of these systems. We assume that jobs arrive to the system according to

a Poisson process and they may have quite general service time distributions. Each job may

consist of multiple numbers of tasks with each task requiring a virtual machine (VM) for its

execution. The size of a job is determined by the number of its tasks, which may be a constant

or a variable. The jobs with variable sizes may generate new tasks during their service times.

In the case of constant job size, we allow different classes of jobs, with each class being de-

termined through their arrival and service rates and number of tasks in a job. In the variable

case a job generates randomly new tasks during its service time. The latter requires dynamic

assignment of VMs to a job, which will be needed in providing service to mobile users. We

model the systems with both constant and variable size jobs using birth–death processes. In

the case of constant job size, we determined joint probability distribution of the number of

jobs from each class in the system, job blocking probabilities and distribution of the utilization

of resources for systems with both homogeneous and heterogeneous types of VMs. We have

also analyzed tradeoffs for turning idle servers off for power saving. In the case of variable

job sizes, we have determined distribution of the number of jobs in the system and average

service time of a job for systems with both infinite and finite amount of resources. We have

presented numerical results and any approximations are verified by simulation. The results of

the paper may be used in the dimensioning of cloud computing centers.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reduced costs of processing and storage technologies

brought about rapid growth of computing resources in-

dustry. Recently, a new computing paradigm called cloud

computing emerged which provides on-demand network

access to the computing resources through virtualization.

This paradigm offers cost savings because users lease the

computing resources from a service provider when needed
∗ Corresponding author. Tel.: +15148365580.

E-mail addresses: s_vakili@ece.concordia.ca, shahin.vakilinia@gmail.com

(S. Vakilinia), Mustafa@ece.concordia.ca (M.M. Ali), dongyu@ece.

concordia.ca (D. Qiu).

http://dx.doi.org/10.1016/j.comnet.2015.08.030

1389-1286/© 2015 Elsevier B.V. All rights reserved.
instead of owning them. Further, clouds will provide mobile

users access to computing resources, which is referred to as

mobile cloud computing [1]. This is very important as mo-

bile devices are becoming primary computing platform to

many users and they have limited processing power and bat-

tery life. Cloud computing enables dynamic sharing of the

computing resources among the users. A service level agree-

ment (SLA) specifies the quality of service (QoS) to be pro-

vided to the user in terms of various performance parameters

such as throughput, reliability, blocking probability and re-

sponse time. Cloud computing services may be classified into

three types as Infrastructure-as-a-service (IaaS), Platform-

as-a-Service (PaaS) and Software-as-a-Service (SaaS). IaaS

refers to providing hardware equipment such as CPU,

http://dx.doi.org/10.1016/j.comnet.2015.08.030
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.08.030&domain=pdf
mailto:s_vakili@ece.concordia.ca
mailto:shahin.vakilinia@gmail.com
mailto:Mustafa@ece.concordia.ca
mailto:dongyu@ece.concordia.ca
http://dx.doi.org/10.1016/j.comnet.2015.08.030

454 S. Vakilinia et al. / Computer Networks 91 (2015) 453–470
memory and storage as a service, PaaS refers to providing

platforms such as software development frameworks, oper-

ating systems or multi-tenant application supports as a ser-

vice and SaaS providing software and applications as a ser-

vice. In this paper, we only consider cloud computing centers

that provide the IaaS service through leasing of virtual ma-

chines (VMs) to the users [2].

In general, the topology of a cloud computing center is

hierarchical with racks containing a fixed number of blade

servers. A blade server contains a number of processors each

one consisting of several processing cores. The processing

cores, memory and storage space are configured into VMs.

VMs may be homogeneous or heterogeneous. In the first

case, VMs have the same number of CPUs, memory and stor-

age sizes, while in the second case, there may be different VM

types which may differ from each other in number of CPUs,

memory and storage sizes [1].

Jobs entering the system may demand different types of

services. However most of them require parallel data analy-

sis [3]. This is the main reason for the recent development

of MapReduce Programming model [4]. This model relies on

parallel processing with a sequential functional approach.

Job fragments are executed in parallel to speed up process-

ing of the jobs. MapReduce has usually three phases as fan

out, map and reduce. Applications such as Apache Hadoop

[5] and platforms such as Pig [5] implement the MapReduce

programming model.

This model also applies to bag-of-tasks (BoTs) where a job

consists of parallel and sequential tasks. Number of tasks ex-

ecuting in mapping phase will be larger than fan out and re-

duce phases, thus dynamic resource allocation will benefit

this programming model.

Mobile devices such as smartphones and tablet PC are

increasingly becoming part of everyday life. These devices

provide many capabilities such as GPS, WiFi and cameras.

As a result, developers are building more and more com-

plex mobile applications such as gaming, navigation, video

editing, etc. for these devices. Though hardware of these de-

vices is becoming more powerful, they are not able to keep

up with the computational, storage and energy demands of

more complex applications and they have short battery life

[6]. Mobile cloud computing (MCC) is a derivative of cloud

computing and its goal is to serve mobile users [7]. The

MCC is expected to provide on-demand processing power

and storage for mobile users in the cloud. This will enable

mobile devices to offload their work to the cloud at a finer

granularity [8]. Khan et al. [9] provides a survey of the pro-

posed application models for mobile cloud computing. The

various application models differ from each other in terms

of design and objectives. Depending on the workload of the

mobile device, number of VMs assigned to it will be dy-

namically changing. In [10], a method level offloading to the

cloud has been proposed in order to take advantage of the

parallelism in the application. In the experiments reported

in [10], the average time to resume a VM from the pause

state is around 300 ms while from the powered-off state is

32 s.

In this paper, we will consider various cloud computing

models that may be used in the dimensioning of these sys-

tems. We will consider systems with both homogenous and

heterogeneous types of VMs.
We assume that the job arrivals will be according to a

Poisson process. A job may consist of multiple numbers of

tasks and execution of each task requires a VM. The size of

a job in number of tasks may be a constant or may vary dy-

namically during its service time. In the case of constant job

size, the size is chosen from a discrete probability distribu-

tion. For this case, we consider two service types, which are

simultaneous and individual completion of the tasks. In the

simultaneous subcase a job is assigned a service time at the

end of which all its tasks terminate. In the second subcase,

tasks of a job receive independent and identically distributed

service times, which results in individual task service

completions.

In the case of variable job size, the size of a job varies dur-

ing the time that it is in the system. A job initially has a single

task, however, it generates new tasks according to a Poisson

process during its service time. The service times of the tasks

are independent and identically distributed and each one re-

quires a VM for its execution. Thus the number of tasks be-

longing to a job during its service time will be a random vari-

able. A job is completed when all the tasks belonging to that

job complete their service times. A job with variable size may

be appropriate for modeling of service demands of mobile

devices.

In the following sections of the paper we present perfor-

mance analysis of the cloud computing models described in

the above. Main contributions of this paper are as follows:

• We have considered systems with multiple classes of

jobs with constant job sizes in number of tasks with

homogeneous VMs. Assuming Poisson arrival of jobs

with arbitrary service distributions, we have determined

job blocking probabilities of each class and distribution of

the utilization of resources under single server, multiple-

server and multiple-server pool cases. In multiple-server

case, we have determined fragmentation probability of

a job’s service among multiple servers. We have shown

applicability of our results to study a power management

algorithm that reduces the power consumption while

maintaining a plausible job blocking probability under

time-varying traffic load.

• We also derived job blocking probabilities and distribu-

tion of the utilization of resources with multiple classes

of jobs with heterogeneous VMs.

• We determined probability distribution of the service

time and average number of jobs for a system with con-

stant job sizes and independent task completion times.

• We considered a system with jobs arriving to the system

according to a Poisson process with variable job size in

number of tasks. It is assumed that a job will generate

new tasks randomly during its service time in the system.

We have derived service time distribution of a job, distri-

bution of the number of jobs and total number of tasks in

the system.

The remainder of this paper is organized as follows. Re-

lated work is discussed in Section 2. In Section 3, we study

systems with homogeneous VMs with constant job sizes and

simultaneous task release times. Sections 4 and 5 extend the

analysis of Section 3 to systems with heterogeneous VMs

and jobs with independent task release times respectively.

In Section 6, we present modeling of a system with variable

S. Vakilinia et al. / Computer Networks 91 (2015) 453–470 455
job size. In Section 7, we give a comparison of our results

with the closest previous work that has been referred to in

Section 2 and Section 8 contains the conclusions.

2. Related work

A number of papers have been published on performance

modeling of the cloud computing [11–16,24–26]. In [11], a

cloud computing center has been modeled as a M/G/m/m + r

queue where r is the size of the buffer that stores the waiting

jobs. A new arriving job to a full buffer is lost and the jobs in

the buffer are served on FCFS basis. The steady-state distribu-

tion of the queue length is determined by writing down the

transition probability matrix of the embedded Markov chain

at the arrival points and solving the equilibrium equations

numerically. The analysis makes the approximation that at

most three jobs may be served during an inter-arrival time

and the queue length distribution does not have a closed

form. In [24], this analysis has been extended to the jobs

where each job contains random number of tasks. In [25],

performance of cloud computing systems has been studied

using stochastic reward networks (SRNs) which are an ex-

tension of generalized stochastic Petri Nets (GSPNs). In [26],

performance of cloud computing systems with fault recovery

has been considered.

In [12], cloud computing capacity has been studied under

time-varying traffic load using historical traces with the as-

sumption that idle capacity is turned off through simulation.

The time-axis has been divided into slots of 5 min duration

and various moving average and autoregressive models have

been used to predict the job demand for the next slot using

the demands for the present and past slots. Then the needed

server capacity for the predicted load was determined using

Erlang loss formula, as a result extra capacity may be added

or subtracted to/from presently active capacity respectively.

It is assumed that it takes one slot to turn on the extra ca-

pacity. The unneeded capacity is turned off after one slot to

prevent unnecessary on–off turning of the servers. It is as-

sumed that an arriving job will be blocked and lost if there is

no available active capacity to serve it. Under this scheduling

algorithm, the paper determined job blocking probabilities

and unutilized server capacity for prediction models as well

as for a model that maintains a fixed reserved capacity using

simulation. It has been determined that fixed reserve capac-

ity provides better performance than the prediction models.

In [13], throughput optimal load balancing models has

been considered in systems with cluster of servers. The work

assumes heterogeneous type of VM configurations. The time-

axis is slotted and in each slot a number of job requests arrive

to the system. Each job may request a single VM for a num-

ber of slots. When the system is busy the arriving jobs are

stored in a central queue for each type of jobs. It is shown

that server-by-server maxweight job scheduling with pre-

emption and server reconfiguration in each slot is through-

put optimal. A non-preemptive algorithm, which is nearly

optimal, has also been given. To reduce the communication

overhead a more distributed system is also considered where

each server maintains its own queues. It has been shown that

new arrivals joining to the server with shortest queue and

servers using maxweight job scheduling is throughput opti-

mal. The paper also presents simulation results, which show
that mean delay performance of centralized and distributed

queuing systems are not very different. The paper does not

take into consideration QoS requirements of different type of

jobs which may not be met in this process.

Stolyar and co-workers [14,15] consider optimization

of a cloud computing center w.r.t. communication band-

width demands. The sum of the bandwidth requirements

of VMs on a server may exceed the capacity of a server’s

network interface. Since bandwidth demands of the VMs are

stochastic, statistical multiplexing may be used to place VMs

on minimum number of servers such that VMs bandwidth

guarantees may be met probabilistically. This problem may

be modeled as a Stochastic Bin Packing (SBP) problem. Under

the assumption that a VM’s bandwidth consumption is

normally distributed, the paper presents approximate online

and offline algorithms for the optimal assignment of VMs to

the servers.

Recently, Amazon introduced a new cloud computing

service that sells the idle instances of resources called Spot

Instance (SI) through competitive bidding. The price of SI

depends on the demand but in general it is lower because

no reliability is provided for the services. In [16], a statistical

modeling of the SI prices and inter-price durations has been

provided through curve-fitting to the experimental data

available from Amazon.

The modeling in our paper is closest to the work in [11].

The differences with [11] arise from the structure of job re-

quests and service discipline. We allow more complicated job

requests than in [11]. We consider systems where jobs may

generate new tasks during their service. They allow limited

queuing of the job requests while as in [13], we assume block-

ing when resources are not available. Finally, we also con-

sider systems with heterogeneous VMs and in general our re-

sults have closed forms. We study the performance tradeoffs

using an analytical model under time-varying traffic load.

3. Modeling of a system with homogeneous VMs,

constant job sizes and simultaneous release times

In this section, we assume multiple classes of jobs. Each

class of jobs arrives at the system according to a Poisson pro-

cess with a different parameter and each class has a differ-

ent service rate and job size. The size of a job is determined

by the number of tasks that it has and the job size remains

constant during its service time. Each task requires a VM for

its execution. Distribution of the service times of jobs may

have rational Laplace transforms with a different mean ser-

vice times for each class. Service time of a job begins with its

arrival to the system and at the end of that service time all its

tasks terminate simultaneously. In other words, processing

units related to an arriving job are provisioned and released

together. The notation has been introduced in Table 1.

We will consider single and multiple servers and multi-

ple server pools cases. We assume finite resources, thus a job

will be blocked if there are no enough number of idle VMs

to serve it. The objective of the following analysis will be to

determine joint distribution of the number of jobs from each

class, job blocking probabilities and distribution of the uti-

lization of resources. We will also show applicability of our

results into power management in a cloud computing center.

456 S. Vakilinia et al. / Computer Networks 91 (2015) 453–470

Table 1

Parameter definitions.

R number of classes of jobs

λr arrival rate of class r jobs

λT total job arrival rate

μr service rate of class r jobs

kT total number of busy VMs

br number of VMs required by a class r job

nr number of class r jobs in the system
Let us define state of the system as number of jobs from

each class in the system, �n = (n1,n2, . . . , nr, . . . nR), and p(�n)
as the distribution of �n.

3.1. Single server model

First, we consider a system with finite resources of S VMs

all located at a single server. In this case, an arriving job will

be lost if there are not enough number of idle VMs to serve it.

This model is same as blocking in shared resources environ-

ment studied in [17]. From there, the joint probability distri-

bution of the number of jobs in the system is given by,

p(�n) = 1

G

R∏
r=1

ρnr
r

nr!
(1)

where G is the normalization constant, which may be de-

termined through a recursion [17] and ρr = λr
μr

. Let j de-

note number of the busy VMs at the computing center,

then, j = �n.�BT where �B = [b1, . . . br, . . . bR]. Defining probabil-

ity distribution of the number of busy VMs in the computing

center as,

q(j) = Pr(j = �n.�BT)

from [17], q(j) is given by the following recursion,

jq(j) =
R∑

r=1

brρrq(j–br) (2)

Then average number of busy VMs in the system is given

by,

E[kT] =
S∑

j=1

jq(j) (3)

Let q̃(�) denote probability distribution of the number of

idle VMs, then, q̃(�) = q(S–�). Defining PBr as the probability

that a class r job will be blocked, then from [17],

PBr =
br–1∑
�=1

q̃(�) = 1–
G(S–br, R)

G(S, R)
(4)

where G(S–br, R) may be calculated recursively [17].

The overall job blocking probability is given by,

Pb = 1

λT

R∑
i=1

λiPBi

where λT = ∑R
i=1 λi.

As may be seen from (1), the joint distribution of the num-

ber of jobs in the system depends on the service time only

through its mean.
3.2. Multiple servers model

Next, we consider a system with M servers where each

server has S VMs.

As before, an arriving job will be blocked if the total

number of idle VMs in the computing center is less than the

number of VMs needed to serve the arriving job. Thus as

far as job blocking probabilities are concerned the system

may be considered as a single server with a total of MS VMs.

However, in this case, it is possible that no server may have

enough number of idle VMs to serve an accepted job to

the system and the job may need to be assigned VMs from

multiple servers which will be referred to as fragmented

service. As a result, these jobs will experience additional per-

formance penalty due to the need for communication among

the servers. Henceforth, we determine the probability that

assigned VMs to an accepted job will be fragmented among

servers. Let us introduce the following additional notation,

V total number of VMs at the computing center.

j total number of busy VMs in the computing center.

�ε (ε1,ε2, . . . , εm, . . . εM) where corresponds to the

number of idle VMs at an arbitrary time in the mth

server.

The total number of VMs in the datacenter is given by:

V = MS (5)

Let � denote the total number of idle VMs in the comput-

ing center,

� =
M∑

m=1

εm = V – j (6)

Since br denote the number of VMs required to provide

service to a class r job, depending on the value of the �, the

following possibilities exist for a class r job:{
job will be blocked, if � < br

job may receive fragmented service, br ≤ � < Mbr

job will receive service from a single server, Mbr ≤ �

Assuming a load balancer is operating in the system, then

probability distribution of the number of idle VMs in each

server will be identical. Given that total number of idle VMs

is equal to �, let P(�, M, br) denote the conditional probability

that none of the M servers have br or more idle VMs:

P(�, M, br) = Pr(ε1 < br, . . . , εm < br, ldots, εM < br) (7)

Distribution of the number of idle VMs in servers is anal-

ogous to the traditional balls urn model, where each ball is

placed into one of the urns with equal probability. Then, dis-

tribution of the number of idle VMs in each server will be

the same as distribution of the balls in the urns model [18].

P(�, M, br) does not have a closed form solution but it could

be obtained recursively [18],

P(� + 1, m, br) = P(�, m, br)

−
(

�

br

)
P(�–br, m– 1, br)

(m–1)
�–br

m�
(8)

with the following initial condition,

P(�, m, br) = 1 for {1 ≤ � ≤ br, 1 ≤ m ≤ M}

S. Vakilinia et al. / Computer Networks 91 (2015) 453–470 457

Fig. 1. Numerical and simulation results for blocking probabilities of different classes of jobs as a function of total job arrival rate.

Fig. 2. Numerical and simulation results for the average number of idle in-

stances of resources per server as a function of total job arrival rate.

The following result may be used to simplify the above

recursion,(
�

br

)
(m–1)

n–br

mn
=

(
m–1

m

)(
�

�–br

){(
�–1
br

)
(m–1)

�–1–br

m�–1

}
(9)

Note that P(�, M, br) gives the probability of a class r job

receiving fragmented service when br ≤ � < Mbr . If Mbr ≤
S then � ≤ S, then all assignment combinations of idle in-

stances of V resources into servers are feasible. But if S < Mbr

it is possible that � > S, then some assignment of idle VMs

to the servers will not be admissible because it will result

in allocation of more idle VMs to a server than the capacity

of that server. The non-admissible assignments of idle VMs

have to be excluded through normalization. Let P̃(�, M, br)
denote the probability that a class r job receives fragmented

service, thus:

P̃(�, M, br) =
{

P(�, M, br), if � ≤ S
P(�,M,br)

1–σ , � > S
(10)

where σ = ∑�
k=S P(�, M, k) and P(�, M, k) is obtained from

(8). Next, unconditioning the above result w.r.t. the distribu-

tion of the number of idle VMs leads to the probability that a

class r job will receive fragmented service. Defining,

PFr = Pr (an accepted class r job receives fragmented ser-

vice)

Then, it is given by,

PFr =
∑Mbr–1

�=br
P̃(�, M, br)q̃(�)

1–PBr
(11)

In the above, denominator normalizes the fragmentation

probability with the probability of accepting a job.

Next, we present numerical and simulation results for

a computing center with multiple servers. Discrete event-

based simulation has been developed to determine accuracy

of the assumption in the analysis that the number of idle

VMs is uniformly distributed over multiple servers. Simula-

tion implements a practical load balancer to be described be-

low to achieve fair distribution of the load among the servers.

In simulation also it has been assumed that jobs arrive into

the system according to a Poisson process and job service

times are exponentially distributed.

We consider a system with M = 5 servers with S = 50 VMs

per server. We assume 4 classes of jobs with the following
VM requirements and job arrival rates,

�B = [b1 b2 b3 b4] = [1 2 3 4] (12)

λ = [λ1 λ2 λ3 λ4] = [0.4 0.3 .2 0.1]λT (13)

It may be seen that jobs with smaller VMs requirements

have been assigned higher arrival rates. Fig. 1 presents block-

ing probabilities of different classes of jobs as a function of

the total job arrival rate. As may be seen, blocking probabili-

ties increases with the number of VMs required by a job class.

As expected, there is total agreement between numerical and

simulation results as the analysis for calculation of job block-

ing probabilities is exact.

Next we present the results concerning service fragmen-

tation. In simulation, using a load balancer, it is assumed that

a server selection algorithm attempts to achieve fair distribu-

tion of the load among the servers. An accepted job if possible

will be given service without fragmentation otherwise with

fragmentation. If a job receives service without fragmenta-

tion, then it is assigned to the server with highest number of

idle VMs. On the other hand, if a job receives service with

fragmentation the scheduling algorithm aims to minimize

the number of fragments depending on the distribution of

the number of idle VMs in the servers. In Figs. 2 and 3, we

present average number of idle VMs in a server and job frag-

mentation probabilities for each class as a function of the to-

tal job arrival rate. The jobs with higher VM requirements

experience higher fragmentation probabilities at any total ar-

rival rate. From Fig. 3, the fragmentation probability of class

4 jobs reaches to 30% at the total job arrival rate of 30. Job

458 S. Vakilinia et al. / Computer Networks 91 (2015) 453–470

Fig. 3. Numerical and simulation results for fragmented service probabili-

ties of different classes of jobs as a function of total job arrival rate.
fragmentation will increase the communication latency be-

tween the VMs, which will increase job service times. As may

be seen, there is a close agreement between numerical and

simulation results in both figures, which validates the as-

sumption in the analysis that the number of idle VMs is uni-

formly distributed across the multiple servers.

3.3. Multiple server pools model

In this subsection, we extend our model to cloud com-

puting centers with pools of servers. Pool management tech-

niques attempt to reduce power consumption of the sys-

tem, which represents a significant component of the op-

erating cost of a cloud computing center. Topology of the

cloud computing center under consideration is shown in Fig.

4. These techniques turn off a server pool to save power if

its servers are not currently serving any job. Let us assume

that there are N server pools in the system, which are num-

bered as, n = 1…N. We assume that scheduling algorithm al-

ways assigns a job to the server pool with the smallest index
Fig. 4. Topology of the cloud
number that has enough idle resources. It is assumed that

a job will not be assigned resources from multiple server

pools to keep communication overhead low. Thus a job will

be served by the pool n + 1 with enough idle resources if

pool n does not have enough idle resources. As before the

total job arrival process at the system will be according to

a Poisson process. The first pool of servers will see the total

job arrival process while any other pool of servers will see

the overflow traffic from the preceding pool. We assume that

the overflow processes are Poisson which is an approxima-

tion to be verified by simulation. Within a pool, if possible,

a job will be placed in a single server otherwise it will be

fragmented. Thus VMs of each pool may be considered as a

completely shared resource without the need to make a dis-

tribution among its servers. Let us define,

λrn arrival rate of class r jobs to the nth server pool.

λTn total arrival rate of the jobs to the nth server pool.

PBrn probability that a class r job will be blocked by the

nth server pool.

PBn overall job blocking probability at the nth server

pool.

g number of active server pools.

gn Pr(g = n)

Then, we have the following,

λrn = λr(n−1)PBr(n−1) = λr1

∏
n−1
i = 1

PBri, n ≥ 2.

λTn =
R∑

r =1

λrn

where λT1 = λT , λr1 = λr

PBn = 1

λTn

R∑
r=1

λrnPBrn (14)

Assuming that each pool server has M servers with S VMs

per server, then, qn(j) will be determined by (2) with finite

computing center.

S. Vakilinia et al. / Computer Networks 91 (2015) 453–470 459

Fig. 5. Numerical and simulation results for the average number of idle VMs of different server pools as a function of total job arrival rate.

Fig. 6. Numerical and simulation results for probability distributions of number of active server pools as a function of total job arrival rate.

Fig. 7. Job blocking probabilities of server pools as a function of total job arrival rate.

resources of MS and overflow traffic from the pool (n – 1) as

job arrival process. Then,

gn =
N∏

i =n +1

qi(0) (15)

�g = [g0, . . . , gn, . . . , gN]

We have tested the accuracy of the Poisson approxima-

tion of the overflow processes in the analysis through dis-

crete event based simulation. In simulation also arrival of the

jobs is according to a Poisson process and job service times

are exponentially distributed. We assumed four job classes

defined in (12,13) with N = 5 server pools, M = 5 servers/pool

and S = 50 VMs/server. In Figs. 5 and 6, we have plotted nu-

merical and simulation results for the average number of idle

VMs and the probability distribution of the number of active

server pools in the system as a function of the total job ar-

rival rate respectively. As may be seen, there is a close agree-

ment between numerical and simulation results, which jus-

tifies Poisson assumption of overflow processes. From Fig. 6,

it is seen that at any arrival rate with probability one there
will be only single number of active server pools except in

the narrow transition regions. This plot shows that system

operation does not result in frequent on–off switching of the

server pools if the job arrival rate is not time-varying. Fig. 7

presents overall job blocking probabilities of the server pools

as a function of the total job arrival rate. As may be seen, job

blocking probabilities of server pools drop with the increas-

ing index value with PB5 giving the overall job blocking prob-

ability of the system. The results in this figure may be used

to determine number of needed active server pools to sup-

port a given traffic load at an acceptable level of job blocking

probability.

Next, we will assume that the total job arrival rate to the

system is time-varying. It will be assumed that job arrival

rate will be changing according to a discrete-time Markov

chain. The time-axis will be slotted with slot durations equal-

ing to server set-up time. We will let number of active servers

to denote state of the system with the state of the system

changing at the discrete-times. There will be set-up times for

turning an off machine to on, while turning an on machine

off will be instantaneous. As may be seen from the previous

460 S. Vakilinia et al. / Computer Networks 91 (2015) 453–470
results, the domain of the total arrival rate may be divided

into intervals during which number of active server pools has

a non-zero probability only for a single value during an inter-

val. Let λ′
Tn

denote the total arrival rate at the midpoint of the

interval for gn = 1. In calculation of job blocking probabilities

during the transition from state i to state j, where j > i,we

will assume that the total job arrival rate is given by λ′
T j

.

Letting pi j denote the transition probability from state i to

state j and P the corresponding transition probability matrix,

then the steady-state probability distribution of the number

of active server pools is determined by,

�g = �gP (16)

Defining ḡ as average utilization of the server pools in the

system,

ḡ = 1

N

N∑
i=0

igi (17)

Given the rising cost of energy, with the growing scale of

cloud computing datacenters, the expenditure on enterprise

power usage and server cooling prevents facility owners to

keep all server pools active. On the other hand, switching a

server pool on requires setup time, which can adversely af-

fect system performance in terms of job blocking rate. Hence,

we consider a dynamic power management approach similar

to that in [11] aiming to reduce power wastage while keep-

ing job blocking probabilities and consequently loss of rev-

enue at an acceptable level. In the following we consider four

schemes, which will be referred to as always-on, reactive,

proactive and optimal prediction and compare their perfor-

mances. In the always-on case, there is no power manage-

ment and all the idle server pools remain on. In the reactive

case, idle server pools are turned off and they are turned on

according to the demand. This scheme includes set-up times

during which job losses occur. Reactive scheme responds to

load increases with the time lag of one slot. In proactive case,

an additional pool is kept in idle state to meet any load in-

creases. The optimal prediction scheme predicts the job ar-

rival rate for the next slot and turns on enough number of off

servers to meet the demand.

Let kp denote the cost of per unit power consumption

(standard fee per watt) and kr denote per hour rental rate

of a VM. Also, pon and pidle denote the average power usage

of a VM in active and idle states respectively. Next, we de-

termine the net cost of transition (NC) to a higher state per

slot for each of the four schemes, which is the difference be-

tween revenue and cost of power consumption. In the fol-

lowing equations, earned and lost revenue has negative and

positive signs respectively.

NCalways−on = ζ̄
N−1∑
i=0

gi

{
kp(N − i)MSpidle

−
N∑

j=i+1

pi j

R∑
r=1

(
krrλ′

r jPBri

1

μr

)}
(18)

NCreactive = ζ̄
N−1∑
i=0

gi

{
N∑

j=i+1

pi j

[
kp(j − i)MSpon
+
R∑

r=1

(
krrλ′

r jPBri

1

μr

)]}
(19)

NCproactive = ζ
N−1∑
i=0

gi

{
kpMSpon

+
N∑

j= i +1

pi j

R∑
r=1

(
krrλ′

r jPBr(i+1)
1

μr

)

−
N∑

j= i+1

pi j

R∑
r =1

[
krrλ′

r j(PBri − PBr(i+1))
1

μr

]}

(20)

NCOptimal prediction = ζ̄
N−1∑
i=0

gi

{
N∑

j=i+1

pi j

[
kp(j − i)MSpon

−
R∑

r=1

(
krrλ′

r jPBri

1

μr

)]}
(21)

In the above, the terms with kp and kr correspond to cost

and revenue items respectively. Clearly, the scheme with the

most negative net cost value will be performing better than

the others. We need to know transition probabilities of the

imbedded Markov chain for calculation of the net cost of

the transitions. In practice, these values will be determined

from the measurements, however, next we illustrate the uti-

lization of our results through an example. We assumed the

same job classes that have been defined in (12) with the ad-

ditional parameter values given below,

kp 0.055 $
kWh

(HydroQuebec rate)

kr 0.085 $
h
(Microsof Azure Small VM)

N 5, M = 5, S = 50, R = 4

pon 405w, pidle = 225w, (Intel Atom Centerton 1.6

GHz CPU)

ζ̄ 300 s

where pon is the required power to turn a CPU on. Next we

assume that the transition probabilities for the discrete-time

Markov chain are given by,

pi j =
{

γi
i − j, 0 ≤ j < i ≤ N

αi, j = i

βi
j−i

, 0 ≤ i < j ≤ N

(22)

where αi, βi and γi are state dependent parameters. As may

be seen the transition probability between states i and j is

given by a power of βi or γi where the power is determined

by the distance between the two states. Thus probability of

transition between two states decreases with the increasing

distance between them. Next, we will relate state dependent

parameters αi, βi to each other. It has been found that av-

erage utilization of a cloud computing center is presently

about 30%, ḡ = 0.3 [19]. As a result, the system will spend

more time in state 1 than the other states. We will des-

ignate state 1 as the base state and express all the αi, βi

as a function of α1, β1 respectively. Next we assumed that

βi = τ |1−i|β1, αi = σ |1−i|α1 where σ, τ are proportionality

constants, 0 ≤ σ, τ ≤ 1. We note that γi is determined from

the normalization condition of the transition probabilities of

each state. High value of α (low values of β ,γ) indicates

1 1 1

S. Vakilinia et al. / Computer Networks 91 (2015) 453–470 461

Fig. 8. (a) Net cost of a transition for always-on, reactive, proactive and optimal prediction schemes as a function of β1 for α1 = 0.88, σ = τ = 0.1. (b) Net cost

of a transition for always-on, reactive, proactive and optimal prediction schemes as a function of α1 for β1 = 0.05, σ = τ = 0.1. (c) Utilization as a function

of α1.

C

�

C

a system with slowly varying job arrival rate, on the other

hand low value of α1 (higher values of β1, γ1) indicates a sys-

tem with fast varying job arrival rate, the latter being a more

dynamic system.

In Figs. 8a and 8b, we present plots of NC for the four

schemes as a function of β1 and α1 respectively. As expected,

in both cases, optimal prediction gives the best performance

as its net cost has the most negative value. In Fig. 8a, reactive

scheme always performs better than always-on and most of

the time better than proactive scheme because the system

spends a lot of time in state 1 due to high value of α1. In Fig. 8

b, the system is more dynamic for low values of α1 compared

to its high values. Since reactive scheme’s response has a lag

time, it gives the worst performance for α1 < 0.65. It may be

seen that the performance of various schemes depend on de-

gree of time-variation of the traffic load. Fig. 8c shows the uti-

lization of the system as a function of parameter α1 with the

other parameters fixed. As may be seen, utilization increases

with increasing value of α1.

Findings in this section may give insight to the selection

of appropriate system operation policy, i.e. proactive to reac-

tive or vice versa. For example, in a static scenario (large val-

ues of α1) reactive approach is good enough while for more

dynamic systems the proactive approach gives better perfor-
mance.
4. Modeling of a system with heterogeneous VMs,

constant job size and simultaneous release times

In this section, we extend the results of the previous sec-

tion to a single server with heterogeneous types of VMs.

The VM types may differ from each other in the amount

of resources allocated to a VM, such as in number of CPUs,

memory and storage sizes. We assume that there are L

types of VMs and a job may request up to J VMs of a sin-

gle type. The type and number of VMs requested will de-

fine class of a job. Thus a class j� job will request j VMs of

type �, j = 1 . . . J, � = 1 . . . L. Let us introduce the following

notation,

F number of resource types.

f number of units of resource f, f = 1 . . . F.

b� f number of units of resource f required by a type �

VM, � = 1 . . . L, f = 1 . . . F.

λ j� arrival rate of class j� jobs that require j number of

type � VMs, j = 1 . . . J, � = 1 . . . L.

μ j� service rate of class j� jobs.

n j� number of class j� jobs in the system.

b� (b�1, . . . b� f , . . . , b�F)
� (C1, . . .Cf , . . . ,CF)
�n (n11, . . . , n j1 . . . , nJ1, . . . , n1�, . . . , n j�, . . . nJ�, . . . ,

. . . n1L, . . . , n jL, . . . , nJL)

462 S. Vakilinia et al. / Computer Networks 91 (2015) 453–470

Table 2

Representative VMs specifications.

VM type Memory CPU cores Storage

Standard 2(GB) 2 100 (GB)

High memory extra large 16(GB) 6 400 (GB)

High CPU extra large 8(GB) 10 200 (GB)

Fig. 9. Cumulative distribution of memory utilization with λT as a

parameter.

−→
n −

j�
(n11, . . . , n j1 . . . , nJ1, . . . , n1� − 1, . . . nJ�, . . .

n1L, . . . , n jL, . . . , nJL)

Total arrival rate of the jobs is given by,

λT =
J∑

j=1

L∑
�=1

λ j�

Defining B as the resource matrix of VM types,

B =

⎡
⎣ b11 · · · b1 f · · · b1F

... b� f

. . .
...

bL1 · · · bL f · · · bLF

⎤
⎦

Next defining N and � as matrices of the number of each

class of jobs and their arrival rates respectively,

N =

⎡
⎣ n11 · · · n1� · · · n1L

... nj�

. . .
...

nJ1 · · · nJ� · · · nJL

⎤
⎦ (23)

� =

⎡
⎣ λ11 · · · λ1� · · · λ1L

... λ j�

. . .
...

λJ1 · · · λJ� · · · λJL

⎤
⎦

As before, we assume that the distribution of the service

time of each class of jobs has a rational Laplace transform.

We note that this model is an extension of blocking in

shared resources environment studied in [17] to a system

with multiple types of resources. Following the analysis in

[17], we will determine joint probability distribution of the

number of jobs in the system and derive a multi-dimensional

recursion for the distribution of the utilization of resources.

First, we will write the local balance equation (LBE) of this

system. An LBE equates the flow due to a departure of a job

from a network state to the flow due to an arrival of a job to a

network that will return the system to the same state, thus,

nj�μ j� p(�n) = λ j� p
(−→

n −
j�

)
(24)

Let us assume the following joint probability distribution

of the number of different classes of the jobs in the system,

p(�n) = 1

G

J∏
j=1

L∏
�=1

ρ j�
nj�

nj�!
(25)

where G is the normalization constant and ρ j� = λ j�

μ j�
.

It may be shown by substitution that (25) satisfies (24).

Since p(�n) satisfies the LBE, it also satisfies the global bal-

ance equations (GBEs), and therefore (25) is the correct dis-

tribution.

Again, it may be seen that joint distribution of the number

of jobs depends on service time of a job through its mean. Let

us define,

u f number of units of resource f that is busy.

�u =
(
u1, . . . , u f , . . . , uF

)
(26)

Let q(�u) denote joint probability distribution of the uti-

lization (number of busy units) of different type of resources.

In the appendix, we derive the following multi-dimensional
recursion for determining this distribution,

u f q(�u) =
L∑

l=1

J∑
j=1

jb� f ρ j�q
(
�u − j�b�

)
(27)

Then, the average utilization vector is given by,

E(�u) =
∑

�u| (∀ f ∈ F, u f ≤Cf)

�uq(�u) (28)

The probability that demand for a type � VM will be

blocked is given by,

PB� =
∑

�u| (∀ f ∈ F, ur+bl f >Cf)

q(�u) (29)

Next we will give an example based on a system with

three VM types given in Table 2 with the following resource

vector,

�C = (160 GB, 200 Core, 10000 GB) (30)

From Table 2., resource matrix of VM types is given by,

B =
[

2 2 100
16 6 400
8 8 200

]
(31)

Assuming the following arrival rate matrix for classes of

jobs with (J = 4),

� =

⎡
⎢⎣

0.2 0.1 0.1
0.15 0.075 0.075
0.1 0.05 0.05

0.05 0.025 0.025

⎤
⎥⎦λT (32)

It should be noted that in the above job classes with

higher resource requirements have lower arrival rates. Figs. 9,

10 and 11 show the cumulative probability distributions of

memory, CPU and storage utilizations respectively with the

total job arrival rate as a parameter. These results may be

used to determine bottleneck resources and redundancy in

the system. It may be seen that at the total job arrival rate

S. Vakilinia et al. / Computer Networks 91 (2015) 453–470 463

Fig. 10. Cumulative distribution of CPU utilizatilization with λT as a

parameter.

Fig. 12. Blocking probabilities of different types of VMs as a function of job

arrival rate λT .

of 10, the values of memory, CPU and storage corresponding

to cumulative probabilities of unity are 160 GB, 130 cores and

4500 GB respectively. Since at this arrival rate all the available

memory may be busy, the system cannot support a higher

traffic load. As a result, the number of cores beyond 130 and

storage beyond 4500 GB will not be utilized and they will be

redundant.

Fig. 12 shows the blocking probabilities of the requests for

different types of VMs as a function of the total job arrival

rate. As may be seen, VMs differ in their blocking probabili-

ties pertaining to their resource requirements.

5. Modeling of the system with constant job size,

homogeneous VMs and independent release times

In this section, as in Section 3, we assume constant job

sizes with multiple classes as defined in Table 1. This model

differs from the model of that section in the service given to

the tasks. It is assumed that service times of the tasks of a

job are i.i.d with exponential distribution with parameter μ,

which results in the independent as opposed to simultane-

ous task completion times. We assume finite resources with

S VMs and model the system with birth–death processes.

Let p j denote probability that there will be j tasks in the

system, then GBE of the system may be written as,⎧⎪⎨
⎪⎩

(∑R
r=1 λr + jμ + jμ

)
pj = (j + 1)μpj+1

∑R
r=1 pj−br

λr,

0 < j < S∑R
r=1 λr p0 = μp1, j = 0

Sμp = ∑R
r=1r ps−br

λr, j = S

(33)
Fig. 11. Cumulative distribution of storage
The above equations cannot be solved through the trans-

form analysis, but the distribution of the number of busy VMs

may be determined from the above recursive equations to-

gether with the normalization condition. Then average of the

total number of the busy VMs is given by,

E[kT] =
S∑

j=0

jp j

Let PBr
denote the blocking probability of class r jobs, then

it is given by,

PBr
=

S∑
j=S−r+1

pj

Next we will determine pdf of the service time of a class

r job. Let Tr and fTr
(t) be this service time and its pdf respec-

tively. Then,

Tr = max
(
t1, t2, . . . , t j, . . . , tr

)
where t j is the service time of the jth task. Since service times

of the tasks are i.i.d. with exponential distribution,

Pr(Tr < t) =
r∏

j=1

P
(
t j < t

)
From the above, the pdf of Tr is given by,

fTr
(t) = rμe−μt

(
1 − e−μt

)r−1

The average service time of a class r job is given by,

Tr = 1

μ

r∑
i=1

(r
i

)
i

(−1)i+1 (34)
utilization with λT as a parameter.

464 S. Vakilinia et al. / Computer Networks 91 (2015) 453–470

Fig. 13. Distribution of busy VMs under low, medium, heavy and very heavy

load (R = 4, S = 100, μ = 1).

Fig. 15. State-transition-rate diagram for the tasks of a job in the system.

Let nr denote number of class r jobs in the system, then

from the Little’s result its average is given by,

E[nr] = λr(1 − PBr)Tr (35)

Fig. 13 presents probability distribution of the number of

busy VMs for a system with four classes of jobs with equal

arrival rates with total arrival rate as a parameter for a fixed

number of VMs in the system. As may be seen, probability

distribution shifts to the right with increasing total arrival

rate. Further, the distribution has the largest spread at the

medium job arrival rate. Fig. 14 presents the average number

of jobs from each class in the system as a function of the total

arrival rate. It may be observed that average of the number

of class 4 jobs in the system decreases faster than the other

classes with increasing total arrival rate.

6. Modeling of the system with dynamic service demand

In this section, we propose a performance model for sys-

tems with dynamic service demand where job size in num-

ber of tasks varies during service. As explained in the intro-

duction, this model will be more appropriate to mobile cloud

computing systems. We assume that the size of a job in num-

ber of tasks varies randomly during the time that job is in

the system. The arrival of the jobs to the system will be ac-

cording to a Poisson process with parameter λ jobs/sec. We

assume that a new arriving job to the system initially de-

mands service for a single task. A job generates random num-

ber of tasks according to a Poisson process with parameter

α α task/job/sec during its service time in the system. We

assume that each task requires a VM for its execution and

task execution times are exponentially distributed with pa-

rameter μ. Service time of a job begins with its arrival to the
Fig. 14. Average number of jobs from each class as a functio
system and it is completed when there are no more tasks be-

longing to that job left in the system. Clearly, a job will have

a general service type distribution. In this section, a birth–

death process is proposed to model this type of cloud com-

puting systems. Fig. 15 indicates the state transition diagram

for the tasks of a job in the system. The objective of this anal-

ysis is to determine distribution of the number of jobs in the

system, service time distribution of a job and average of the

total number of tasks. We will consider systems with both

infinite and finite number of VMs.

6.1. Infinite resource model

First, we consider infinite resource model where there is

always an idle VM available for the execution of each newly

generated task to begin immediately. In this case the number

of jobs in the system can be modeled as an M/G/∞ queuing

system. Next, we will determine main performance measures

of this system.

6.1.1. Distribution of the number of jobs in the system

Let pn denote the steady state probability of having n jobs

in the system and N(z) its probability generating function

(PGF). From the results for the M/G/∞ queuing system [20],

pn = (λx̄)
n

n!
eλx̄ (36)

N(z) = e−λx̄(1−z) (37)

where x̄ denotes the average service time of a job which is

determined below.
n of the total job arrival rate (R = 4, S = 100, μ = 1).

S. Vakilinia et al. / Computer Networks 91 (2015) 453–470 465

Fig. 16. State-transition diagram for the stages of the system.

1 i

As stated above, each job initially requires service for a

single task; however, it generates new tasks according to a

Poisson process during its service time in the system. Since

we have assumed infinite resource model, each newly gener-

ated task immediately begins to receive service. Since task

execution times are also exponentially distributed, service

time of a job corresponds to the busy period of an M/M/∞
queue, where the number of customers served during the

busy period corresponds to the total number of tasks gen-

erated by the job. Fig. 16 shows the state-transition-rate dia-

gram for the tasks of a job in the system. From [21], Laplace

transform of the probability distribution of the busy period

of an M/M/∞ queue with arrival and service rates of α and μ
is given by,

B(s) = 1 + α−1(s − (∫e
−st−α ∫t

0
(1−G(ν))dν

)) (38)

where G(ν) denotes the service time distribution of a task in

the system, which has exponential distribution.

Then average service time of a job is given by the mean

busy period of M/M/∞ queue,

x̄ = eα/μ − 1

α
(39)

From the Little’s result the average number of jobs in the

system is given by:

E[n] = λx̄ (40)

6.1.2. Average number of tasks generated by a job during its

lifetime in the system

Next, we determine average of the total number of tasks

generated by a job during its life-time in the system, which

is given by the ratio of average service time of a job to the

service rate seen by its tasks in the system. Thus, first, we

will determine the service rate seen by the tasks of a job.

Let qk denote probability that there will be k customers

in an M/M/∞ queuing system at the steady-state. From [20],

qk has Poisson distribution given by,

qk = (α/μ)
k

k!
e−α/μ, k ≥ 0 (41)

Letting q′
k

denote probability that there will be k cus-

tomers at an arbitrary time during a busy period in an

M/M/∞ queuing system, then:

q′
k = qk

1 − q0

, k ≥ 1 (42)

Let μk denote service rate of the tasks of a job, which has

k tasks in the system at an arbitrary time. Since μk = kμ,
the average service rate of the tasks generated by a job is gi-

ven by

μ̄ = μ
∞∑

k=1

kq′
k = α

1 − e
−α
μ

(43)

Defining r̄ as the average number of tasks generated by a

job during its service time in the system, then it is given by,

r̄ = x̄

μ̄
= e

α
μ

(
1 − e

−α
μ

)2

α2
(44)

6.1.3. Joint distribution of the number of jobs in each stage of

the system

We define a job to be in stage j if it has j tasks in execu-

tion at that time within the system. Let n j denote number

of jobs in stage j at an arbitrary time. Fig. 16 shows the state-

transition rate diagram for stages of the system. Next, we will

determine joint distribution of the number of jobs in each

stage of the system.

Proposition 1. n j has a Poisson distribution.

Proof. Let us define Bernoulli random variable ki j as,

ki j =
{
1 ith job has j tasks in the system

0 otherwise
(45)

Then, PGF of the distribution of ki j is given by,

Ki j(z) = q′
jz + 1 − q′

j (46)

From the above, n j may be expressed as,

nj =
n∑

i=1

ki j (47)

Let Nj(z) denote PGF of the probability distribution of n j ,

then,

Nj(z) = N(z)|z=Ki j(z) = e−λx̄q′
j(1−z) (48)

where we substituted from (37) and (46) in the above. The

inversion of the above PGF gives,

p nj
=

(
λx̄q j

) nj

n j!
e−λx̄q j (49)

which completes the proof.

Now, we will determine the joint distribution of the num-

ber of jobs at each stage of the system. Let state of the system

denoted by the vector �n = (n , . . . , n , . . . n∞). We will show

466 S. Vakilinia et al. / Computer Networks 91 (2015) 453–470

�

�

Fig. 17. Average of the total number of the tasks as a function of α and λ as

a parameter.

Fig. 18. Average service time of a job as a function of task service rate for

dynamic service and independent release time models.

that the joint probability distribution of �n has a Poisson dis-

tribution given by,

p(�n) =
∞∏

j=1

[(
λx̄q′

j

) nj

n j!
e−λx̄q′

j

]
(50)

Let us define the following vectors that differ from �n at

most in two components:

�n+
j

= (n1, . . . , n+
j
, . . . n∞)

−→
n −

j
= (n1, . . . , n−

j
. . . n∞)

�n+−
i j

= (n1, . . . , n+
i
, . . . , n−

j
, . . . n∞) (51)

�n−+
i j

= (n1, . . . , n−
i
, . . . , n+

j
, . . . n∞)

where n+
j

= n j + 1, n−
j

= n j − 1.

Next, we will write the LBEs for the state �n,⎧⎪⎨
⎪⎩

jn jμp(�n) + njαp(�n) = (j + 1)(nj+1 + 1)μ p(�n−+
j, j+1

)

+ (nj−1 + 1)αp(�n+−
j−1, j

), j > 1

n1μp(�n) + n1αp(�n) = 2(n2 + 1)μ p(�n−+
12

) + λp(�n−
1
),

j = 1

(52)

By means of substitution it can be shown that (50)

satisfies the LBEs in (52) and therefore it is the correct

distribution.

6.1.4. Distribution of the total number of tasks in the system

Next, we will determine distribution of the total num-

ber of tasks in the system. Let us introduce the following

notation,

r j = jn j

r = (r1, . . . , r j, . . . , r∞)

z = (z1, . . . , z j, . . . , z∞)

�n = (n1, . . . , nj, . . . , n∞)

where, r j corresponds to the total number of tasks that be-

long to the jobs in stage j. Let us define PGF of the distribution

of �r as,

R(�z) = E[�z�r] = E

[
∞∏

j=1

z
rj

j

]
= E

[
∞∏

j=1

z
jn j

j

]
= E

[
∞∏
j=1

(
z j

j

)nj

]

R(�z) = E

[
∞∏
j=1

(
z j

j

)nj

]
(53)

R(�z) =
∞∑

n1=0

. . . .

∞∑
nj=0

. . . .

∞∑
n∞=0

[
∞∏

j=1

(
z j

j

)nj

]
p(�n)

Substituting for p(�n) from (50),

R(�z) =
∞∑

n1=0

. . .

∞∑
nj=0

. . .

∞∑
n∞=0

[
∞∏
j=1

e−λx̄ q′
j

(
λx̄q′

j
z j

j
)nj

n j!

]

Interchanging the order of summations and multiplica-

tions,

R(�z) =
∞∏

j=1

e−λx̄ q′
j eλx̄ q′

j
z j

j =
∞∏

j=1

e−λx̄ q′
j
(1−z j

j
)

R(�z) = e−λx̄
∑∞

j=1 q′
j(1−z j

j) = e−λx̄ (1−∑∞
j=1 q′

j z
j
j
)

(54)

Next let us define kT as the total number of tasks in the

system and KT (z) as the PGF of its distribution, then,

kT =
∞∑

j=1

r j

KT (z) = E[zkT] = R(�z)|zi=z,i=1,...,∞ = e−λx̄ (1−∑∞
j=1 q′

j z
j) (55)

Substituting in the above from (36), (39) gives,

KT (z) = e
−λx̄

[
1− e

−α(1−z)
μ −e

−α
μ

1−e
−α
μ

]
(56)

Finally, from the above average of the total number of

tasks in the system are given by,

E[kT] = λαx̄

μ
(
1 − e

−α
μ

) = λ

μ
e

α
μ (57)

Fig. 17 presents average of the total number of the tasks in

the system as a function of the task arrival rate with job ar-

rival rate as a parameter. Fig. 18 presents the average service

time of a job with dynamic service time and the independent

release time of the previous section from (39) and (34) re-

spectively. We plotted the results for class 3 and 4 jobs for

the independent release times. For fair comparison, average

of the number of tasks generated by a job with dynamic ser-

vice time, (44), has been set equal to the number of tasks in

each class of jobs for the independent release time. Thus for

each value of μ, task generation parameter α has been cho-

sen such that r̄ = r. As may be seen, under these assumptions

the average service times of a job in the two models are close

to each other.

S. Vakilinia et al. / Computer Networks 91 (2015) 453–470 467

Fig. 19. Average number of the VMs as a function of task arrival rate and job

arrival rate as a parameter. (c = 10, N = 40).

6.2. Finite resource model

Next, we consider the finite resource model where the

computing center has finite number of VMs given by S. A new

arriving job will be blocked if all the VMs are occupied. In this

model, we assume that each job is assigned a fixed number

of VMs, c, for its service. When the number of tasks belonging

to a job is more than c, then the excess tasks are queued. Let

us assume that S is an integral multiple of c, then the number

of jobs in the system can be modeled as an M/G/N/N queuing

system where N = S/c.

The service time of a job may be modeled by the busy pe-

riod of an M/M/c queue, where customers are the tasks gen-

erated by the job. The average service time of a job is given

by the mean busy period of the M/M/c queue, which is from

[22],

x̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

μ
(
1 − α

cμ

) for c ≤ 2

1

α

[(
α
μ

)c(
1 − α

cμ

)
c!

+ 1

α

c−1∑
k=1

(
α
μ

)k

k!

]
for c > 2

(58)

Let k denote the number of tasks in the system that be-

longs to a job, then it may be determined from the distribu-

tion of the number of customers in an M/M/c queuing system,

[22],

Pr(k = i) =

⎧⎪⎪⎨
⎪⎪⎩

Pr(k = 0)

1 − Pr(k = 0)

(
α
μ

)i

i!
0 < i ≤ c

Pr(k = 0)

1 − Pr(k = 0)

(
α
μ

)k

c!ck−c
i > c

(59)

where,

Pr(k = 0) =
[

c−1∑
k=0

(
α
μ

)k

k!
+

(
α
μ

)c

c!
(
1 − α

cμ

)
]−1

Let y denote the number of busy VMs from those that as-

signed to a job, then,

Pr(y = i) =
{

Pr(k = i) 0 < i < c∑∞
�=c Pr(k = �) i = c

(60)

From the M/G/N/N queuing results, probability distribu-

tion of the number of jobs in the system is given by, [23],

pn =

⎧⎨
⎩

p0
(Nρ)

n

n!
n < N

p0
(Nρ)

N

N!
n = N

(61)

where p0 = [
∑N−1

j=0
(Nρ) j

j!
+ (Nρ)N

N!]−1 and ρ = Nλx̄.

We note that blocking probability of a job is given by pN .

Let kT denote total number of tasks in the system, then its

average is given by,

E[kT] = E[n]E[k] (62)

The above average needs to be determined numerically

from (59) and (61).

Fig. 19 shows the average number of VMs in the system

as a function of task arrival rate and job arrival rate as a pa-

rameter. We assumed that N = 40 and c = 10. As illustrated,
due to hard limitation on maximum number of tasks of a job,

task arrival rate is dominant in creation of VMs compared to

job arrival rate. With increasing the job arrival rate, job satu-

ration probability shifts to the left.

7. Comparison with the related work

In this section, we give a comparison of our results

with the closest previous work that has been referred to in

Section 2. There is an overlap between our work and that in

[11,24–26], though we studied several more models not con-

sidered in those works.

In [11], a cloud computing center has been modeled as

an M/G/m/m+r queue, where m is the number of VMs in the

system and r is the size of the buffer that stores the wait-

ing jobs. A new arriving job to a full buffer is lost and the

jobs in the buffer are served on FCFS basis. It is assumed that

each job requires a single VM for its execution. The steady-

state distribution of the queue length is determined by writ-

ing down the transition probability matrix of the embedded

Markov chain at the arrival points. The analysis makes the ap-

proximation that at most three jobs may be served during an

inter-arrival time. The equilibrium equations had to be solved

numerically, thus the queue length distribution could not be

obtained in a closed form. This model corresponds to our sin-

gle server model with one class of jobs, when no buffering is

allowed, r = 0. In Fig. 20, we plot average number of busy

VMs for both our and their model under the assumption of

no buffering, r = 0, as a function of the job arrival rate. The

results have been plotted both for exponential and determin-

istic service times. As may be seen, the approximate results of

[11] are very close to our exact results. Further, as our anal-

ysis shows it the results do not depend on the service time

distribution.

In [24], the analysis in [11] has been extended to the jobs

where each job contains random number of tasks and exe-

cution of each task demands a VM. In this model, the tasks

of a waiting job are stored in the buffer with each task occu-

pying one position. All the tasks of a job need to start ex-

ecution simultaneously. If the tasks of a new arriving job

cannot be served immediately and there is no enough stor-

age in the buffer to store all the tasks, then that job is re-

jected. Since jobs are still served on a FCFS basis, this results

in head-of-line (HOL) blocking until enough servers become

available to serve the HOL job. Service times of the tasks are

i.i.d with a general distribution, thus the tasks of a job have

independent release times. Letting number of tasks to de-

note the system state, then the system has been analyzed by

468 S. Vakilinia et al. / Computer Networks 91 (2015) 453–470

Fig. 20. Average number of the jobs in the system as a function of job arrival rate for M/G/m approximation and the exact results for μ = 1.

embedding a Markov chain at the job arrival points. Sim-

ilar to the original model, it is assumed that a VM can-

not serve more than three tasks during a job inter-arrival

time. The transition probabilities are determined assuming

constant number of tasks in a job, which needs to be un-

conditioned numerically afterwards. Further, an important

weakness of the analysis is that the probabilities involving

transitions from a state with number of idle VMs require

knowledge of the distribution of the idle VMs, which is part

of the solution that is being determined. The distribution of

the number of idle VMs had to be determined through simu-

lation. After determination of the transition probability ma-

trix, which is quite tedious, the equilibrium equations have

been solved numerically. This model becomes identical to

our model for a system with multiple classes of jobs and in-

dependent task release times under the assumptions of ex-

ponential task service times and no buffering, r = 0 (Section

5.). For this case, we also determined distribution of the ser-

vice time of a job and average number of jobs from each class

in the system (latter had been plotted in Fig. 14), which are

not available in [24]. We note that our single server models

apply to systems with multiple job classes and simultaneous

task completion times for both homogeneous and hetero-

geneous VMs under no queuing assumption. The joint dis-

tribution of the number of jobs has been presented in Eqs.

(1) and (25) for homogeneous and heterogeneous VMs cases

respectively.

In [25], the performance of cloud computing systems has

been studied using stochastic reward networks (SRNs). It is

assumed that cloud center has N servers that may support

up to M VMs where N ≥ M. The arrival of the jobs is either

according to a homogeneous Poisson process or a Markov

Modulated Poisson Process (MMPP) which allows time vari-

ations in the arrival rate. It is assumed that each job requires

a single VM for its execution and service times are exponen-

tially distributed. However, mean service time is a function

of the number of busy VMs on a server. The system has a fi-

nite queue, which is managed according to the FCFS disci-

pline and a job arriving to a full queue is lost. The models of

[25] and [11] become identical for Poisson arrivals and ex-

ponentially distributed service times with a constant mean

value, when number of servers and number of VMs are equal

to each other, N = M. For this case, the two models have been

compared in [25] and the presented numerical results show

very close agreement. This also means that our results agree
with that of [25] for the case of single task per job scenario

with no buffering, since all the three models become same

for this special case. The main weakness of the model in [25]

is that it is numerical and lacks closed form results.

In [26], performance of cloud computing systems has

been studied considering fault recovery. It is assumed that

arrival of jobs is according to a general stochastic process

and each job has random number of tasks. The system has

a server with S VMs and each task requires a VM for its ex-

ecution. Task service times are i.i.d with exponential distri-

bution, which results in independent task completion times.

The system has a finite queue and each task of a job occu-

pies a position in the queue. A job is lost if not all of its tasks

can be accepted to the system. The system has been mod-

eled as a GIX /M/S/N queue where N corresponds to the max-

imum number of allowed tasks in the system. The steady-

state probability distribution of the number of tasks in the

system is determined by writing down the transition proba-

bility matrix for the embedded Markov chain and solving nu-

merically the equilibrium equations. We note that, the anal-

ysis does not result in the distribution of the number of jobs

in the system. For fault modeling, it is assumed that VMs fail

according to a Poisson process and VM recovery times are ex-

ponentially distributed. Following recovery, the execution of

a task resumes from the point of failure. Under the approx-

imation that all the tasks of a job begin receiving service si-

multaneously, job service times have been determined. How-

ever, probability distribution of the number of tasks in the

system with fault tolerance could not be obtained because

the queuing model only allows exponential service times.

Again, this model under the assumption of Poisson arrival of

jobs with no queuing and simultaneous service completion

of the tasks of a job corresponds to our single server model

with single class of jobs studied in Section 3.1. Simultaneous

service completion means that whenever a VM assigned to

a task fails, all the tasks belonging to the job as the failed

task are also delayed until recovery. Then for fault tolerance

scenario, our model gives the distribution of the number of

jobs in the system from Eq. (1), since the analysis applies for

any service time distribution. Let μ,γ denote parameters of

the exponential distributions for service and recovery times

respectively and α parameter of the Poisson distribution for

failure. Then, mean service time of a job is given by,

b̄ = α + γ

μγ

S. Vakilinia et al. / Computer Networks 91 (2015) 453–470 469

Fig. 21. Average number of the jobs in the system as a function of job arrival rate with α as a parameter for = γ = 1, S = 100 and four tasks per job.

In Fig. 21, we plotted average number of jobs in the system

as a function of the job arrival rate λ with α as a parameter for

constant values of μ,γ and S. It is assumed that number of

tasks per job is four. As may be seen, average number of jobs

in the system increases with increasing value of VM failure

rate at any job arrival rate.

The models in [11,24–26] are more general than ours in

one aspect, that they allow limited queuing of the jobs. How-

ever, the presented analyses have approximations, results are

numerical and they do not have easy to use closed forms. The

closed form results that we have derived show that distribu-

tion of the number of jobs in the system depend on service

time only through its mean. We also note that queuing for

real-time jobs will not be important. We have also studied

a number of models not considered in those works. In the

case of jobs with random number of tasks, we analyzed the

system for both independent and simultaneous task release

times, while the analyses in [24,26] apply only to the inde-

pendent task release times. Further, our analysis allows het-

erogeneous VMs with different resource requirements, while

their models only allow homogeneous VMs. Finally, we have

also studied models that allow a job to generate new tasks

during its service time, which will be appropriate to mobile

cloud computing environment. The models studied in the

work advances state-of-the art in performance modeling of

cloud computing centers.

8. Conclusion

In this paper, we have studied performance modeling

of cloud computing systems. We have derived job block-

ing probabilities and distribution of the utilization of re-

sources as a function of the traffic load under various scenar-

ios for systems with both homogenous and heterogeneous

VMs. We have determined service fragmentation probabil-

ities and have shown application of the derived results in

power management techniques under time-varying traffic

loads. We have obtained results for systems that resource re-

quirements of jobs may vary dynamically during their service

times, which may be appropriate to mobile cloud computing

environment. The derived results of this paper will be useful

in dimensioning of cloud computing systems.

Appendix

Proposition 2. q(�u), probability distribution of the utiliza-

tion of resources may be determined by following multi-

dimensional recursion,

u f q(�u) =
L∑

l=1

J∑
j=1

jb� f ρ j�q(�u − j�b�)
Proof. Let us define,

a� number of type � VMs that is busy.

�a [a1, a2, . . . , a�, . . . aL]
�j (1, 2 . . . , j, . . . J)

From the above definitions, we have,

al =
J∑

(j=1)

jn jl, u f =
L∑

(l=1)

albl f

=
L∑

(l=1)

J∑
(j=1)

jblrn jl (A. 1)

Then,

�a = �jN �u = �aB (A. 2)

q(�u) is given by,

q(�u) = Pr(�aB = �u) =
∑

�n|�aB=�u

p(�n) (A. 3)

Let us rewrite LBE in Eq. (24) as follows,

nj� p(�n) = ρ j� p(
−→
n −

j�
) (A. 4)

Multiplying both sides of (A. 4) by jb� f and summing over

j and �,

p(�n)
L∑

�=1

J∑
j=1

jb� f n j� =
L∑

�=1

J∑
j=1

jb� f ρ j� p(
−→
n −

j�
)

Substituting from (A. 1) on the LHS,

u f p(�n) =
L∑

�=1

J∑
j=1

jb� f ρ j� p(
−→
n −

j�
) (A. 5)

Next let us sum both sides of equation (A. 5) over the

states (�n|�aB = �u),

∑
�n|�aB=�u

u f p(�n) =
∑

�n|�aB=�u

L∑
�=1

J∑
j=1

jb� f ρ j� p(
−→
n −

j�
)

Substituting from (A. 1) on the LHS and interchanging the

order of summations on the RHS,

u f q(�u) =
L∑

�=1

J∑
j=1

jb� f ρ j� p
∑

�n|�aB=�u

p(
−→
n −

j�
) (A. 6)

We note from (A. 1), (�n|�aB = �u) = (�n|�jNB = �u)
Then (�n|�aB = �u) means that,

(
−→
n −

j�
|�j−→n −

j�
B = �u − j

−→
b�) (A. 7)

Substituting (A. 7) in (A. 6) completes the proof.

470 S. Vakilinia et al. / Computer Networks 91 (2015) 453–470

References

[1] Brian J.S. Chee, C. Franklin Jr., Cloud computing: technologies and

strategies of the ubiquitous data center, CRC, New York, 2010.

[2] S. Vakilinia, D. Qiu, M.M. Ali, Optimal multi-dimensional dynamic re-
source allocation in mobile cloud computing, EURASIP Journal on Wire-

less Communications and Networking 1 (1) (2014) 1–14.
[3] T. Cordeiro, D. Damalio, et al., Open source cloud computing platforms,

in: the Proceedings of 9th IEEE International Conference on Grid and
Cooperative Computing (GCC), 2010, pp. 366–371.

[4] D. Jeffrey, S. Ghemawat, MapReduce: simplified data processing on

large clusters, Communications of the ACM 51 (1) (2008) 107–113.
[5] T. White, Hadoop: the definitive guide. O’Reilly, 2012.

[6] H.T. Dinh, C. Lee, D. Niyato and P. Wang, A Survey of mobile cloud com-
puting: architecture, applications and approaches, Wireless Communi-

cations and Mobile Computing, 2011.
[7] K. Kumar, Y.H. Lu, Cloud Computing for mobile users: Can offloading

Computation Save Energy, IEEE Computer Magazine, pp. 51–56, April

2010.
[8] E. Curvo, A. Balasubramanian, D. Chao, A. Wolman, S. Saroiu, R. Chan-

dra, P. Bahl, MAUI: making smartphones last longer with code offload,
in: Proceedings of the 8th international conference on Mobile systems

applications (MobiSys), and services, ACM, Chicago, 2010, pp. 49–62.
[9] A. Khan, M. Othman, S. Madani, S. Khan, A survey of mobile cloud com-

puting application models, IEEE Communication Surveys & Tutorials 16
(1) (2014) 393–413.

[10] S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, ThinkAir: Dynamic re-

source allocation and parallel execution in the cloud for mobile code
offloading, in: the Proceeding of IEEE INFOCOM, 2012.

[11] H. Khazaei, J. Mı̆síc, V.B. Mı̆síc, Performance of cloud centers with high
degree of virtualization under batch task arrivals, IEEE Transactions on

Parallel and Distributed Systems 24 (12) (2013) 2429–2438.
[12] B. Bouterse, H. Perros, Scheduling cloud capacity for time-varying cus-

tomer demand, in: the Proceeding of IEEE cloud Networking (CLOUD-

NET), 2012, pp. 137–142.
[13] S.T. Maguluri, R. Srikant, L. Ying, Stochastic models of load balancing

and scheduling in cloud computing clusters, in: the Proceeding of IEEE
INFOCOM, 2012, pp. 702–710.

[14] A. Stolyar, An infinite server system with general packing constraints,
Operations Research 61 (5) (2013) 1200–1217.

[15] D. Breitgand, A. Epstein, Improving consolidation of virtual machines

with risk-aware bandwidth oversubscription in compute clouds, in: the
Proceeding of IEEE INFOCOM, 2012, pp. 2861–2865.

[16] B. Javadi, R.K. Thulasiram, R. Buyya, Statistical modeling of spot in-
stance prices in public cloud environments, in: the Proceedings of the

IEEE Utility and Cloud Computing (UCC), 2011, pp. 219–228.
[17] J.F. Kaufman, Blocking in a Shared Resource Environment, IEEE Trans.

Communications 29 (1981) 1474–1481.

[18] M.V. Ramakrishna, An exact probability model for finite hash table, in:
the Proceeding of IEEE Fourth International Conference on Data Engi-

neering, 1988, pp. 362–368.
[19] A. Gandhi, M. Harchol-Balter, R. Das, Ch. Lefurgy, Optimal power alloca-

tion in server farms, ACM SIGMETRICS Performance Evaluation Review
37 (1) (2009) 157–168.

[20] L. Kleinrock, Queuing Systems, vol. I, John Wiley & Sons, New York, NY,

USA, 1975.
[21] M.A.M. Ferreira, M. Andrade, The M/G/∞ queue busy period distribu-

tion exponentially, Journal of Appl. Math. 4 (3) (2011) 249–260.
[22] J.R. Artalejo, M.J. Lopez-Herrero, Analysis of the busy period for the
M/M/c queue: An algorithmic approach, Journal of Applied Probability

38 (1) (2001) 209–222.
[23] T. Kimura, A transform-free approximation for the finite capacity M/G/s

queue, Operations Research 44 (6) (1996) 984–988.
[24] H. Khazaei, J. Misic, V.B. Misic, Performance Analysis of Cloud Comput-

ing Centers Using M/G/m/m+r Queuing Systems, IEEE Transactions on

Parallel and Distributed Systems 23 (5) (May 2012) 936–943.
[25] D. Bruneo, A Stochastic Model to Investigate Data Center Performance

and QoS in IaaS Cloud Computing Systems, IEEE Transactions on Paral-
lel and Distributed Systems 25 (3) (March 2014) 560–569.

[26] B. Yang, F. Tan, Y. Dai, Performance Evaluation of Cloud Service Con-
sidering Fault Recovery, Journal of Supercomputing 65 (2013) 426–444

Springer.

Shahin Vakilinia (S’07) received the B.Sc. degree

from University of Tabriz, Tabriz, Iran and the

M.Sc. degree from Sharif University of Technol-
ogy, Tehran, Iran, both in electrical engineering in

2008 and 2010 respectively. He has got his Ph.D.
in the Department of Electrical and Computer En-

gineering at Concordia University, Montreal, QC,
Canada in 2015.

Mustafa Mehmet-Ali (M’88) received the B.Sc.

and M.Sc. degrees in electrical engineering from
Bogazici University, Istanbul, Turkey, in 1977 and

1979, respectively, and the Ph.D. degree in electri-
cal engineering from Carleton University, Ottawa,

ON, Canada, in 1983. Until the end of 1984, he was
a Research Engineer with Telesat Canada. Since

1985, he has been with the Department of Electri-

cal and Computer Engineering, Concordia Univer-
sity, Montreal, QC, Canada, where he is currently

a Professor.

Dongyu Qiu (M’04) received the B.S. and M.S.

degrees from Tsinghua University, Beijing, China,

and the Ph.D. degree from Purdue University, In-
diana, USA, in 2003. He is currently an Asso-

ciate Professor in the Department of Electrical
and Computer Engineering, Concordia University,

Montreal, QC, Canada. His research interests are
in the areas of peer-to-peer networks, TCP/IP net-

works, cloud computing, queuing analysis, net-

work security, and wireless networks.

http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0003
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref009
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref009
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref009
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref009
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref009
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref014
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref014
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0010
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0011
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0014
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0015
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00290-X/sbref0021

	Modeling of the resource allocation in cloud computing centers
	1 Introduction
	2 Related work
	3 Modeling of a system with homogeneous VMs, constant job sizes and simultaneous release times
	3.1 Single server model
	3.2 Multiple servers model
	3.3 Multiple server pools model

	4 Modeling of a system with heterogeneous VMs, constant job size and simultaneous release times
	5 Modeling of the system with constant job size, homogeneous VMs and independent release times
	6 Modeling of the system with dynamic service demand
	6.1 Infinite resource model
	6.1.1 Distribution of the number of jobs in the system
	6.1.2 Average number of tasks generated by a job during its lifetime in the system
	6.1.3 Joint distribution of the number of jobs in each stage of the system
	6.1.4 Distribution of the total number of tasks in the system

	6.2 Finite resource model

	7 Comparison with the related work
	8 Conclusion
	 Appendix
	 References

