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a b s t r a c t

Due to the important effect of the higher order moments to portfolio returns, the aim
of this paper is to make use of the third and fourth moments for fuzzy multi-objective
portfolio selection model. Firstly, in order to overcome the low diversity of the obtained
solution set and lead to corner solutions for the conventional higher moment portfolio
selection models, a new entropy function based on Minkowski measure is proposed as
a new objective function and a novel fuzzy multi-objective weighted possibilistic higher
order moment portfolio model is presented. Secondly, to solve the proposed model
efficiently, a new multi-objective evolutionary algorithm is designed. Thirdly, several
portfolio performance evaluation techniques are used to evaluate the performance of the
portfolio models. Finally, some experiments are conducted by using the data of Shanghai
Stock Exchange and the results indicate the efficiency and effectiveness of the proposed
model and algorithm.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Traditional portfolio selection theory is derived from the mean–variance probabilistic model by Markowitz [1], which
assumes an underlying normal/quadratic utility distribution for asset’s returns. However, a plethora of empirical studies
show that the distributions of asset returns usually tend to be of asymmetric leptokurtic and heavy-tailed features, and are
not normally distributed [2–4]. This implies that the higher order moments cannot be neglected. Thus the investors should
consider higher order moments in their investment decision. Some researchers have tried to study portfolio problems in a
three-moment or four-moment framework. For example, Campbell et al. [5] used themean–variance–skewness framework
with the skew normal distribution, and suggested that it is important to incorporate higher order moments in portfolio
selection. Adcock [6] studied the mean–variance–skewness portfolio model under the multivariate extended skew-Student
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distribution, and used the quadratic programming to solve the model. Maringer et al. [7] proposed an extension of the
classicalMarkowitzmodel by taking into consideration the higher ordermoments and used stochastic algorithms to find the
optimal portfolio. Doana et al. [8] studied the systematic skewness and systematic kurtosis of Australian stock returns in the
spirit of the higher-moment asset pricing model, and presented the empirical results of examining the roles of systematic
skewness and kurtosis. However, these higher order moments portfolio models come with some serious issues, and the
major issues are: (a) the error in the estimation of corner solutions, and (b) the low diversity in the portfolio. The low
diversity of the portfolio may result in loss while some of the invested assets experience unexpected gains [9,10]. In the last
few years, Jana et al. [11] and Usta et al. [12] used the Shannon’s entropy tomeasure the diversification, and generate a well-
diversified portfolio. Additionally, Huang [13] used the Shannon’s entropy as a constraint condition in the mean–variance
framework, and avoided the concentrative portfolio allocation. Recently, Yu et al. [14] discussed the diversified portfolios
with different entropy measures, and concluded that the models with Yager’s entropy yield the higher economic value of
diversification than the portfolio model with Shannon’s entropy.

Besides the higher order moments, uncertainty is another important factor in portfolio model because investors may
face uncertain, imprecise and vague data. Over the decades, the vast majority of the existing portfolio selection models are
based on probability theory under some random states. However, if there is not enough historical data, it is more difficult
to use statistical variable to describe model. It is more reasonable to use fuzzy variables [15]. So, in portfolio selection
literature,many researchers extended the probabilistic portfoliomodel to fuzzy environment in differentways. For example,
Li et al. [16] developed a fuzzy portfolio selection model with background risk, based on the definitions of the possibilistic
theory and used a genetic algorithm to solve the proposed model. Sadatia et al. [17] dealt with a portfolio optimization
model involving fuzzy random variables by using the possibility and necessity-basedmodel, and proposed a two-level linear
programmingmodel to find the optimum solution. Kocadagli et al. [18] introduced a novel fuzzy portfolio selectionmodel by
means of the fuzzy goal programming techniques and presented some numerical examples of a portfolio selection problem
to illustrate the effectiveness of the proposed model. More recently, Mashayekhi et al. [19] incorporated the DEA cross-
efficiency into Markowitz mean–variance model and proposed a novel fuzzy portfolio model and used NSGA-II algorithm
to solve the proposed model.

Also, the transaction cost and the liquidity are very important factor for investors, ignoring transaction costs and the
liquidity would result in inefficient portfolios. Some researchers took into account the transaction cost or the liquidity
in the portfolio selection model. For instance, Najafi et al. [20] considered the transaction costs, developed a dynamic
portfolio selection model and proposed an efficient heuristic method to tackle this problem. Liu et al. [21] discussed the
asset allocation in the presence of small proportional transaction costs, which objective is to keep the asset portfolio close
to a target portfolio and at the same time to reduce the trading cost in doing so. Oriakhi et al. [22] considered the problem of
rebalancing an existing financial portfolio,where transaction costs (fixed and/or changed in nature) have to be paidwhen the
amount of any asset changes. Yu et al. [23] proposed a rebalancingmultiple criteria portfoliomodel by comparing risk, return,
skewness, kurtosis, and transaction cost. But they did not consider the portfolio diversification, the liquidity of portfolio and
fuzzy return of assets in their model.

It can be seen from above discussion that in order to construct a reasonable portfolio selection model, it is desirable to
consider the effect of the following factors: the higher order moments, uncertainty, lower diversity of portfolio, transaction
cost and liquidity. However, the existing research works only considered a part of these factors, and few works considered
the liquidity of portfolio.

In order to achieve the better portfolio selection and set up a reasonable portfolio selection model, in this paper, in
addition to consider the first two order moments (mean and variance) for portfolio selection, we also use the third and
fourth order moments (skewness and kurtosis) to design the portfolio selectionmodel. To improve the diversity of portfolio
selection and avoid the portfolio concentrating on a few assets, we present a new entropy function based on Minkowski
measure, which is defined by the sum of Minkowski distance between weights of the invested assets for the portfolio
selection. By using the entropy function, we can directly acquire a well-diversified portfolio. To handle the uncertainty
and consider the case with not enough historical data, we introduce the fuzzy variable in the designed model. Furthermore,
the transaction cost and liquidity are also considered in our model. Based on these and by making full use of the advantages
of three entropies, i.e., the two most commonly used entropies (the Shannon’s and Yager’s entropies) and our proposed
entropy, we construct three different mean–variance–skewness–kurtosis–entropy portfolio models. Moreover, in order to
evaluate the performance of these portfolio selectionmodels, we develop a new performancemetric based on the Euclidean
norms to evaluate the reliability of the solutions. Finally, considering these models are fuzzy multi-objective with liquidity
constraints, they become more complicated. Although evolutionary algorithms are an effective way to tackle the multi-
objective optimization models and there have been some such algorithms proposed for these problems (e.g. Refs. [24–26]),
it is almost impossible to efficiently solve such problems by non-specific-designed algorithms. We design a new efficient
multi-objective evolutionary algorithm for these models.

The rest of this paper is organized as follows. Section 2 introduces basic definitions and preliminary results related
to fuzzy variables, and give the formulation of the multi-objective optimization problem. In Section 3, we develop a
new entropy function based on Minkowski measure to generate a well-diversified portfolio, and present three fuzzy
mean–variance–skewness–kurtosis–entropy portfolio models with different entropy functions in the multi-objective
framework. Section 4 presents a detailed description of our designed multi-objective evolution algorithm. In Section 5,
several portfolio performance evaluation techniques are used to evaluate the performance of these portfolio models, and
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give the comparison analysis among these models through some numerical examples based on the data of the Shanghai
Stock Exchange Market. Finally, conclusion is drawn in Section 6.

2. Preliminaries

Some basic definitions and preliminary results will be introduced in this section.

2.1. Fuzzy numbers and notations

In this section, the basic concepts and notations are given as follows [27,28]:

Definition 1. A fuzzy number Ã is described as any fuzzy subset of the real line R, whose membership function µÃ : R →

[0, 1] satisfies the following conditions:

(i) Ã is normal, i.e., there exists an x ∈ R such that µÃ (x) = 1;
(ii) µÃ(x) is quasi-concave, i.e., µÃ(λx + (1 − λ)y) ≤ min{µÃ (x) , µÃ(y)}, for all λ ∈ [0, 1];
(iii) µÃ(x) is upper semi-continuous, i.e.,


x ∈ R|µÃ(x) ≤ ε


is a closed set, for all ε ∈ [0, 1];

(iv) The closure of the set

x ∈ R|µÃ(x) > 0


is a compact set.

Definition 2. A γ -level set of Ã is defined by an ordinary set Ãγ =

x ∈ R|µÃ(x) ≥ γ


for γ ∈ (0, 1], and Ãγ =

cl

x ∈ R|µÃ(x) ≥ 0


(the closure of the support of Ã) if γ = 0. As well known, if Ã is a fuzzy number, then Ãγ =

x ∈ R|µÃ ≥ γ


= [a(γ ), a(γ )] is a compact subset of R for all γ ∈ [0, 1].

Definition 3. A fuzzy number Ã is called a trapezoidal fuzzy numberwith core [c, d], left width δ > 0 and rightwidth θ > 0,
if its membership function has the following form:

µÃ (x) =


1 −

c − x
δ

, if c − δ ≤ x ≤ c
1, if c ≤ x ≤ d

1 −
x − d

θ
, if d ≤ x ≤ d + θ

0, if otherwise

(1)

and it can be denoted by Ã = (c, d, δ, θ).

Definition 4. Let Ã be a fuzzy number with Ãγ =

a (γ ) , a (γ )


, γ ∈ [0, 1]. Then the weighted possibilistic mean (WPM)

and the weighted possibilistic variance (WPV) of fuzzy number Ã are defined as follows, respectively.

(i) Mf


Ã


=
 1
0 f (γ )

a(γ )+a(γ )

2 dγ ,

(ii) Var f

Ã


=
1
2

 1
0 f (γ )


a (γ ) − Mf (Ã)

2
+


a (γ ) − Mf (Ã)

2
dγ .

where, f (γ ) = (n + 1)γ n is a weighted function such that
 1
0 f (γ )dγ = 1.

Definition 5. Let Ã and B̃ be two fuzzy numbers with weighted possibilistic mean Mf (Ã) and Mf (B̃), respectively. Then the
weighted possibilistic covariance between Ã and B̃ is defined as

Covf

Ã, B̃


=

1
2

 1

0
f (γ )


a (γ ) − Mf (Ã)

 
b (γ ) − Mf (B̃)


+


a (γ ) − Mf (Ã)

 
b (γ ) − Mf (B̃)


dγ ,

where f (γ ) = (n + 1)γ n is a weighted function such that
 1
0 f (γ )dγ = 1.

Theorem 1 ([28]). Let Ã and B̃ be two fuzzy numbers, and let λ and µ be nonnegative numbers. Then the following conclusions
can be obtained:

(i) Mf


λÃ ± µB̃


= λMf


Ã


± µMf


B̃

;

(ii) Var f

λÃ ± µB̃


= λ2Var f


Ã


+ µ2Var f

B̃


± 2λµCovf

Ã, B̃


.

From Theorem 1, we can easily deduce the following conclusion.



W. Yue, Y. Wang / Physica A 465 (2017) 124–140 127

Theorem 2. Let Ã1, Ã2, . . . , Ãn be n fuzzy numbers, and let λ1, λ2, . . . , λn be n nonnegative real number. Then

(i) Mf

n
i=1 λiÃi


=
n

i=1 λiMf


Ãi


(ii) Var f

n
i=1 λiÃi


=
n

i=1 λ2
i Var f


Ãi


± 2

n
i=1
n

j=1 λiλjCovf (Ãi, Ãj).

According to the above definitions of weighted possibilistic moments, Theorems 1 and 2, we can get the following proposition.

Proposition 1. Let r̃ (x) =
n

i=1 xi r̃i =
n

i=1 xici,
n

i=1 xidi,
n

i=1 xiδi,
n

i=1 xiθi

be the portfolio return. The weighted

possibilistic variance of r̃ (x) is

Var f

r̃(x)


=


n

i=1
xi (θi + δi)

2
+


n

i=1
xi(θi − δi)

2
72

+


n

i=1

xi


di − ci

2
+

θi + δi

6

2

. (2)

2.2. Higher order moments of fuzzy variables

In the following subsection, we will introduce the weighted possibilistic higher order moments for the fuzzy variable.

Definition 6 ([29]). Let Ã be a fuzzy number with weighted possibilistic mean Mf


Ã

. For any positive integer r , the

f -weighted possibilistic moments (f -WPM) of order r about the weighted possibilistic mean value of Ã is defined as

Er

Ã


=
1
2

 1
0 f (r)


a (γ ) − Mf (Ã)

r
+


a (γ ) − Mf (Ã)

r
dγ .

Definition 7 ([29]). Let Ã be a fuzzy number, f (r) be a weighted function, and Er(Ã) with r = 1, 2, . . . , n be weighted
possibilistic moments of Ã. Then the weighted possibilistic skewness (WPS) of fuzzy number Ã is defined as follows:

Skewnessf

Ã


= WPS

Ã


=
E3(Ã)
E2(Ã)

3 . (3)

The weighted possibilistic skewness of a fuzzy number Ã shows the weight of fuzzy number at the left or right side. A
positiveweighted possibilistic skewness specifies that fuzzy number Ã is skewed to the right, that is, the tail on the right side
is longer than the one on the left side. A negative weighted possibilistic skewness specifies that fuzzy number Ã is skewed
to the left, that is, the tail on the left side is longer than the one on the right side. A zero value indicates that fuzzy number
Ãwith the symmetric membership function, that is, its right tail and left tail are equal.

In order to facilitate the calculation and reduce the computation complexity, we will use the third possibilistic moments
as the weighted possibilistic skewness of fuzzy number Ã. Denote it as Skewness(Ã) = E3(Ã). As well known, these two
definitions of the possibilistic skewness about fuzzy number do not affect the way we study the problem.

Theorem 3 ([29]). Let r̃ (x) =
n

i=1 xi r̃i =
n

i=1 xici,
n

i=1 xidi,
n

i=1 xiδi,
n

i=1 xiθi

be the portfolio return. The weighted

possibilistic skewness of r̃(x) is

Skef

r̃(x)


=

19
1080

 n
i=1

xiθi

3

−


n

i=1

xiδi

3
+

1
24


n

i=1

xi(di − ci)

 n
i=1

xiθi

2

−


n

i=1

xiδi

2


+
1
72

 n
i=1

xiδi


n

i=1

xiθi

2

−


n

i=1

xiθi


n

i=1

xiδi

2
 . (4)

Definition 8. Let Ã be a fuzzy number with weighted possibilistic meanMf


Ã

. Then the weighted possibilistic kurtosis is

defined as follows:

Kurf (Ã) =
E4(Ã)

(E2(Ã))2
=

 1
0 f (γ )


(a (γ ) − Mf (Ã))4 + (a (γ ) − Mf (Ã))4


dγ 1

0 f (γ )


a (γ ) − Mf (Ã)

2
+


a (γ ) − Mf (Ã)

2
dγ

. (5)
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In the same way as above-discussed, we will use the fourth possibilistic moments as the weighted possibilistic kurtosis
of fuzzy number Ã. Denote it as Kurtosis(Ã) = E4(Ã).

Theorem 4 ([30]). Let Ã = (c, d, δ, θ) be a trapezoidal fuzzy number with weighted possibilistic mean M

Ã


=
c+d
2 +

θ−δ
6 .

The weighted possibilistic kurtosis of Ã can be computed as:

E4

Ã


=
5

432


δ4

+ θ4
+

1
16


c4 + d4


+

3
8
c2d2 +

1
72

θ2δ2
−

1
6
cd

θ2

+δ2
+θδ


−

1
4
cd

c2 + d2 − (d − c) (θ + δ)


−

1
18

θδ (c − d) (θ + δ) −
2
45

(c − d)

θ3

+ δ3
+

2
135

θδ

θ2

+δ2
+

1
12


d3 − c3


(θ + δ) +

1
12

(d2 + c2)(δ2
+ θ

2
+θδ). (6)

Lemma 1 ([30,31]). Let r̃ (x) =
n

i=1 xi r̃i =
n

i=1 xici,
n

i=1 xidi,
n

i=1 xiδi,
n

i=1 xiθi

be the portfolio return. The weighted

possibilistic kurtosis of r̃ (x) is

Kurf

r̃ (x)


=

5
432

 n
i=1

xiθi

4

+


n

i=1

xiδi

4
+

1
16

 n
i=1

xici

4

+


n

i=1

xidi

4
+

3
8


n

i=1

xidici

2

+
1
72


n

i=1

xiθiδi

2

−
1
6


n

i=1

xicidi

 n
i=1

xiθi

2

+


n

i=1

xiδi

2

+

n
i=1

xiθiδi


−

1
4


n

i=1

xicidi

 n
i=1

xici

2

+


n

i=1

xidi

2

+

n
i=1

xi (di − ci) (θi + δi)


−

1
18


n

i=1

xiθiδi


n

i=1

xi (ci −di) (θi + δi)


−

2
45


n

i=1

xi (ci − di)



×

 n
i=1

xiθi

3

+


n

i=1

xiδi

3
+

2
135


n

i=1

xiθiδi

 n
i=1

xiθi

2

+


n

i=1

xiδi

2


+
1
12

 n
i=1

xidi

3

−


n

i=1

xici

3
 n

i=1

xi (θi + δi)



+
1
12

 n
i=1

xidi

2

+


n

i=1

xici

2
 n

i=1

xiδi

2

+


n

i=1

xiθi

2

+


n

i=1

xiθiδi

 . (7)

2.3. Multi-objective optimization problems (MOPs)

In this paper, the proposed portfolio selection problems will be modeled as multi-objective optimization problems
(MOPs). Typically, a multi-objective optimization problem can be formulated as follows [32]:min y = F (x) = [f1 (x) , f2 (x) , . . . , fk(x)]

s.t gj (x) ≥ 0, j = 1, 2, . . . , q
hj (x) = 0, j = q + 1, . . . ,m.

(8)

The feasible region F is defined as follows:

F =

x|gj (x) ≥ 0, j = 1, 2, . . . , q; hj (x) = 0, j = q + 1, . . . ,m


⊆ S ⊆ Rn. (9)
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Definition 9 (Pareto-Dominance). A solution x∗
= (x∗

1, x
∗

2, . . . , x
∗
n) is said to dominate (Pareto-optimal) another solution

x = (x1, x2, . . . , xn) (denoted by x∗
≻ x), if both the conditions mentioned below are satisfied:

(i) ∀j ∈ {1, 2, . . . , k} : fj(x∗) ≤ fj(x)

(ii) ∃j ∈ {1, 2, . . . , k} : fj(x∗) < fj(x). (10)

Definition 10 (Pareto-Optimal). A solution x∗
∈ F is said to be non-dominated (Pareto-optimal)

Iff : ¬∃x such that x ≻ x∗.

Definition 11 (Pareto-Optimal Set). The set of all Pareto optimal solutions is defined as:

PS =

x∗

|¬∃x ∈ F : x ≻ x∗

. (11)

Definition 12 (Pareto-Optimal Front). The set of all Pareto solutions in objective space is defined as

Pareto front and denoted by : PF = {[f1 (x) , f2 (x) , . . . , fk(x)] |x ∈ PS} . (12)

3. Weighted possibilistic higher order moment portfolio selection models

In this section, we first introduce the problem descriptions and notations used in the following sections. Second, we
present a novel entropy function based on Minkowski metric for diversifying the allocation on various assets. Then, based
on the new entropy function, we set up three fuzzy mean–variance–skewness–kurtosis–entropy portfolio models in multi-
objective framework.

Let us consider a multi-objective fuzzy portfolio selection problem with n risk assets. The return rates and turnover
rates of the risk assets are denoted as trapezoidal fuzzy numbers. For the notation convenience, we introduce the following
notations.

xi: Proportion of the total investment devoted to the risk asset i, i = 1, . . . , n;
ki: Rate of transaction cost on the risk asset i, i = 1, . . . , n;
r̃i: Fuzzy rate of return on the risk asset i, i = 1, . . . , n;
l̃i: Fuzzy turnover rate of the risk asset i, i = 1, 2, . . . , n.

In this paper, the transaction cost is assumed to be a V -shape function, which measures the difference between a new
portfolio x = (x1, x2, . . . , xn) and a given portfolio x0 = (x01, x

0
2, . . . , x

0
n). The total transaction cost of the portfolio is defined

by
n

i=1 ki
xi − x0i

.
For any risk asset, liquidity may be measured by using the turnover rate which is defined by the ratio of the average

trading volume of the assets trade in the market and the trading volume of the tradable asset (i.e., shares held by the
public) corresponding to the asset. It is well known that the future turnover rates of assets cannot be accurately predicted
in the uncertain financial market. Therefore, the fuzzy set theory provides an effective tool to deal with this imprecision.
Without loss of generality, the turnover rate of the ith asset is regarded as a trapezoidal fuzzy number l̃i = (ci, di, δi, θi),
i = 1, 2, . . . , n, in this paper. Note that the turnover rate of the portfolio x = (x1, x2, . . . , xn) is l̃ (x) =

n
i=1 l̃ixi. In the

model, the portfolio liquidity is always greater or equal to a given tolerate level of fuzzy turnover rate l̃0 by the investor,
that is, l̃ (x) =

n
i=1 l̃ixi ≥ l̃0. According to the method for ranking fuzzy number reported in Ref. [33], the fuzzy inequalityn

i=1 l̃ixi ≥ l̃0 can be transformed into the crisp inequalityM
n

i=1 l̃ixi


≥ M(l̃0).

3.1. Our proposed entropy function based on Minkowski metric and its properties

Although some researchers have tried to optimize portfolios in a three-moment or four-moment framework, however,
such techniques also come with serious issue and result in corner solutions and low diversity in the portfolio. In order to
satisfy the requisition of decentralized investment, we develop a new entropy function based on Minkowski metric, which
denotes the sum of Minkowski distances between weights of the invested asset for the portfolio selection. The following is
the definition of our proposed entropy function:

Pn (x) = −


n−1
i=1

|xi − xi+1|
z

 1
z

(13)



130 W. Yue, Y. Wang / Physica A 465 (2017) 124–140

where xi is proportion of the total investment devoted to the risk asset i, i = 1, . . . , n − 1, z is a constant and z ≥ 1.
Eq. (13) denotes the sum of Minkowski distance between weights of the invested asset. From Eq. (13), it can be seen that,
the more equally the budget allocates on assets, the larger entropy function is. It is worth noticed that the entropy function
can be transferred into a linear type when z = 1. The following is a linear type proportion entropy when z = 1.

PE (x) = −

n−1
i=1

|xi − xi+1| . (14)

In order to simplify the process of computation, we will use the entropy function when z = 1. The linearization of
the proportion entropy can directly obtain a diversified portfolio because of the linear feature of the proportion entropy.
By using our proposed linear proportion entropy as an objective function to be maximized, we construct a new fuzzy
mean–variance–skewness–kurtosis–entropy portfolio model. In essence, we can construct a well-diversified portfolio
model, which meets the requirement of investors.

3.2. Shannon’s entropy and Yager’s entropy

Some researchers, for instance Jana et al. [11], Usta et al. [12] and Huang [13], used the Shannon’s entropy in portfolio
selection to diversify the allocation on various assets, whilemeeting the requirement of investors. The following is Shannon’s
entropy:

SE (x) = −

n
i=1

xi ln xi (15)

where xi is the weight of risk asset i, i = 1, . . . , n; n is the number of invested assets. SE (x) has the maximum value, when
xi =

1
n ; the larger the SE (x), the more equally the budget allocates on assets. The other extreme case occurs when xi = 1

for one i, and xi = 0 for the rest, then SE (x) = 0.
Yager’s entropy is defined by [34]

YE (x) = −

n
i=1

xi − 1
n

 (16)

where xi is the weight of risk asset i, i = 1, . . . , n; n is the number of invested assets. It aimed to minimize the distance
between the weight of invested asset and 1

n in terms of the portfolio selection. If the xi =
1
n , the Yager’s entropy has the

maximum value. Therefore, the budget allocates on assets more equally when Yager’s entropy is larger.

3.3. Fuzzy mean–variance–skewness–kurtosis–entropy portfolio models

In order to set up a model tackling all above mentioned issues, we maximize weighted possibilistic expected return and
skewness, while minimize weighted possibilistic variance and kurtosis, simultaneously. We then can set up the following
fuzzy multi-objective portfolio selection model:

max f1 (x) = Mf


n

i=1

r̃ixi


−

n
i=1

ki
xi − x0i


min f2 (x) = Vf


n

i=1

r̃ixi



max f3 (x) = Skef


n

i=1

r̃ixi



min f4 (x) = Kurf


n

i=1

r̃ixi



s.t M


n

i=1

l̃ixi


≥ M


l̃0


n
i=1

xi = 1, xi ≥ 0, i = 1, 2, . . . , n

(17)
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where the first constraint means the liquidity is greater than or equal to a given value l̃0 by the investor, and the second
constraint implies that all the capital will be invested to n assets and short-selling is not allowed. To further improve the
diversity of portfolio and compare the effect of different entropies to the diversity of portfolio, we add our proportion
entropy, Shannon’s entropy, and Yager’s entropy respectively to the fuzzy mean–variance–skewness–kurtosis framework
and obtain the following three models.

Mode I (MVSK-PE): the fuzzy multi-objective mean–variance–skewness–kurtosis–proportion–entropy portfolio selec-
tion model.



max f1 (x) = M f


n

i=1

r̃ixi


−

n
i=1

ki
xi − x0i


min f2 (x) = Vf


n

i=1

r̃ixi



max f3 (x) = Skef


n

i=1

r̃ixi



min f4 (x) = Kurf


n

i=1

r̃ixi



max f5 (x) = −

n−1
i=1

|xi − xi+1|

s.t M


n

i=1

l̃ixi


≥ M


l̃0


n
i=1

xi = 1, xi ≥ 0, i = 1, 2, . . . , n.

(18)

Model II (MVSK-SE): the fuzzymulti-objectivemean–variance–skewness–kurtosis–Shannon-entropy portfolio selection
model.



max f1 (x) = Mf


n

i=1

r̃ixi


−

n
i=1

ki
xi − x0i


min f2 (x) = Vf


n

i=1

r̃ixi



max f3 (x) = Skef


n

i=1

r̃ixi



min f4 (x) = Kurf


n

i=1

r̃ixi



max f5 (x) = −

n
i=1

xi ln xi

s.t M


n

i=1

l̃ixi


≥ M


l̃0


n
i=1

xi = 1, xi ≥ 0, i = 1, 2, . . . , n.

(19)
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Model III (MVSK-YE): the fuzzy multi-objective mean–variance–skewness–kurtosis–Yager-entropy portfolio selection
model.

max f1 (x) = Mf


n

i=1

r̃ixi


−

n
i=1

ki
xi − x0i


min f2 (x) = Vf


n

i=1

r̃ixi



max f3 (x) = Skef


n

i=1

r̃ixi



min f4 (x) = Kurf


n

i=1

r̃ixi



max f5 (x) = −

n
i=1

xi − 1
n


s.t M


n

i=1

l̃ixi


≥ M


l̃0


n
i=1

xi = 1, xi ≥ 0, i = 1, 2, . . . , n.

(20)

4. A newmulti-objective evolutionary algorithm for the models

It is well known that the convergence and the diversity are two main goals for many-objective optimization problems.
However, achieving these two goals simultaneously is a difficult and challenging work for multi-objective evolutionary
algorithms. In order to achieve simultaneously the two goals, a new multi-objective evolutionary algorithm based on
population decomposition is proposed. The proposed algorithm is specifically designed and included the four parts,
i.e. population decomposition, crossover operations, selection strategy and update strategy. Population decomposition, and
update strategy are used for keeping the diversity of the obtained solutions. The crossover operations are used to search the
decision space. The selection strategy has a great impact on the performance of local search and global search, which can
make the obtained solutions converge to the PF.

4.1. Population decomposition and update

We use a set of uniformly distributed weight vectors to decompose the population P into M sub-populations
P1, P2, . . . , PM [35]. For a given set of uniformly distributed weight vectors (λ1, λ2, . . . , λM), and the set P of current
obtained solutions, each sub-population can be defined by the following formula:

P i
=


x|x ∈ P, △


F (x) , λi

= min
1≤j≤N

{△(F (x) , λj)}


(21)

where△

F (x) , λi


is the angle between λi and F (x)−Y and Y = (Y1, . . . , Ym) is a reference point with Yi = min{fi(x)|x ∈

Θ}.
In this way, some P i(1 ≤ i ≤ M) may contain more solutions than another P j, and some P i may be empty. To get an

approximate uniformly distributed and well diversified solution set, it is necessary to make the following update strategy:

(a) To avoid empty sub-population. If a sub-population P i is empty, a solution is randomly selected from its second nearest
non-empty neighbor sub-population P j (i.e., the non-empty sub-population defined by λj whose angle and λi is the
second smallest among the angles between λi and all other weight vectors) and is put into P i. In this way, all sub-
populations are non-empty.

(b) To avoid crowded solutions in a sub-population. If solutions in a sub-population P i are densely distributed and crowded,
we keep only two solutions in it. One is the current best solution of P i (i.e., the non-dominated solution of P i which has
the smallest angle with λi), and another is randomly chosen from P i.
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We could make the following comments on the decomposition method:

(i) This method uses the principle that the PFs of all these sub-populations make up the whole PF.
(ii) Even if the whole PF has a nonlinear geometric shape, the PF of each sub-population could be approached linearly,

because it is just a small part of the whole PF. Thus, formula (21) makes the MOPs be simpler than before, at least in
accordance with PF shapes.

(iii) This decomposition method does not need any aggregation methods. A user only needs to select a set of direction
vectors.

4.2. Crossover operations and mutation operator

In our multi-objective algorithm, we design two crossover operators.
Crossover operator 1. Choose three solutions x1, x2, x3, one of its offspring xnew can be generated as follows:

xnewi =


x1i + θ


x2i − x3i


, if fi


x2


< fi

x3


x1i + θ

x3i − x2i


, otherwise

(22)

where θ ∈ [0, 1] is a randomly generated scaling factor which controls the length of the exploration, xji represents the ith
component of xj for i = 1, 2, . . . , n and j = 1, 2, 3.

Crossover operator 2. For the chosen three solutions x1, x2, x3, if fi

x1


> f i

x2


< fi

x3

, then the second offspring

xnew =

xnew1 , . . . , xnewn


is generated by the following way:

xnewi = 0.5


x1i + x2i


+


fi

x1

− fi(x2)

 
x2i − x3i

 
x3i − x1i


fi

x1
 

x2i − x3i

+ fi


x2
 

x3i − x1i

+ fi


x3
 

x1i − x2i
 . (23)

Mutation Operator. For an offspring xnew of crossover operator and a randomly chosen individual x from P , let δ > 0 be
a small number and εi be a vector whose ith element is 1 and others are all zeros. Compute

ϕi =
fi

xnew + δεi


− fi(x)

δ
(24)

and the offspring O = (O1,O2, . . . ,On) of xnew is defined by

Oi = −
ϕi

2[fi (xnew) − fi (x) − ϕi]
for i = 1, 2, . . . , n. (25)

4.3. Selection strategy

The selection strategy is very important for the performance of local search and global search, thus an appropriate
selection strategy can improve the performance of an algorithm. In this paper, a selection strategy based on the
decomposition and sub-population strategy is designed to achieve the goal. Firstly, classify all offspring of crossover and
mutation intoM sub-populations P1, P2, . . . , PM by using themethod in Section 4.1. Then, find the set Q i of non-dominated
solutions of each sub-population P i, i.e.,

Q i
= {x ∈ P i

|x is a nondominated solution of P i
}

and choose the required number K of individuals in Q i whose angles with λi are the first K smallest ones

P i
= {x ∈ Q i

| angle between x and λi is among the first K smallest ones}

where the population size N = M ∗ K .

4.4. Steps of the proposed algorithm

According to the above discussion, a new multi-objective evolutionary algorithm is proposed and the steps of the
algorithm are as follows.

Algorithm 1 (The Proposed Algorithm).

Step 1. Initialization:
Step 1.1. Give the crossover and mutation probabilities pc > 0 and pm > 0. Randomly generate M weight vectors

λ1, λ2, . . . , λM and an initial population x1, x2, . . . , xM∗K (where K is the size of the sub-population).
Step 1.2. Initialize reference point Y = (Y1, . . . , Ym).
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Table 1
Sample statistics for the weekly returns on the assets (2012–2015) from historical data.

Returns 5th percentile 40th percentile 60th percentile 95th percentile

Asset 1 −0.0627 −0.0065 0.0188 0.0869
Asset 2 −0.0626 −0.0094 0.0077 0.1111
Asset 3 −0.0798 −0.0062 0.0219 0.0913
Asset 4 −0.0709 −0.0076 0.0154 0.0951
Asset 5 −0.0609 −0.0047 0.0144 0.0804
Asset 6 −0.0804 −0.0093 0.0189 0.1143
Asset 7 −0.0867 −0.0053 0.0180 0.0975
Asset 8 −0.0861 −0.0044 0.0228 0.0992
Asset 9 −0.0859 −0.0029 0.0271 0.1177
Asset 10 −0.0868 −0.0124 0.0199 0.1457
Asset 11 −0.0700 0.0063 0.0139 0.1215
Asset 12 −0.0571 −0.0060 0.01930 0.0939

Step 1.3. The initial population is firstly grouped into N sub-populations P1, P2, . . . , PM by the formula (21), and
there are K solutions in each sub-population.

Step 2. Crossover: Randomly choose [K ∗ pc] individuals from each P i to undergo crossover. For each chosen one, randomly
choose one individual from each of two nearest neighbor subpopulations of P i. In this way, three individuals denoted
by x1, x2, x3 will be chosen. Then use crossover operator in Section 4.2 to generate offspring.

Step 3. Mutation: Randomly choose [K ∗ pm] individuals from each P i to undergo crossover. For each chosen one, use the
mutation operator to generate an offspring.

Step 4. Selection: Use selection strategy in Section 4.3 to generate the sub-populations of the next generation.
Step 5. Update: Update each subpopulation by update strategy in Section 4.1.
Step 6. Termination: If stopping criteria is met, then stop; otherwise, go to Step 2.

5. Numerical examples and analysis

In this section, to demonstrate the idea of our model and the effectiveness of the designed algorithm, we conduct the
experiments by using our proposedmulti-objective algorithm to solve themulti-objective portfolio selectionmodels whose
data are taken from the historical data of the Shanghai Stock Exchange Market.

5.1. Data processing

In the experiments, we choose 12 assets from Shanghai Stock Exchange for the candidate assets. The exchange codes
of the 12 assets are 601098, 601880, 600563, 600038, 601888, 601377, 600721, 600681, 600571, 600419,600570, 600201,
respectively. For convenience of description, we denote the 12 assets successively as Assets 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
in the experiments. We collect original data from the weekly closing pricing and turnover rate of these assets in three years
from January 2012 to January 2015 as the sample data. Using the simple estimation method in Vercher et al. [36], we get
the statistics of the historical data of 12 rates. Table 1 provides the summary statistics of the data.

For the fuzzy return rates of the models, we use the sample percentiles to approximate the core and spreads of the
trapezoidal fuzzy returns on the assets. In fact, we have decided to set the core [ai, bi] of the fuzzy return r̃i as the interval
[40th, 60th] and the quantities 40th− 5th and 95th− 60th as the left αi and right βi spreads, respectively, where kth is the
kth percentile of the sample. Then, the corresponding membership function is given by Definition 1.

µr̃i (x) =


1 −

ai − x
αi

, if ai − αi ≤ x ≤ ai
1, if ai ≤ x ≤ bi

1 −
x − d

βi
, if bi ≤ x ≤ bi + βi

0, if otherwise.

(26)

In the same way, we deal with the fuzzy turnover rates of ith asset by using the historical data. Then, the parameters of
the fuzzy return rate r̃i = (ai, bi , αi, βi) and the turnover rates l̃i = (ci, di, δi, θi) of the ith asset are shown respectively in
Tables 2 and 3.

In our experiments, we assume that the transaction costs of assets are identical, i.e., ki = 0.003 for all i = 1, 2, . . . , 12,
and the fuzzy turnover rate confidence level given by the investor is l̃0 = (0.0227, 0.0322, 0.0658, 0.2324).
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Table 2
Fuzzy returns of 12 assets.
Asset i 1 2 3 4

Return
rate

(−0.0065, 0.0188 0.0562 0.0681) (−0.0094, 0.0077 0.0532 0.1034) (−0.0062, 0.0219 0.0736 0.0694) (−0.0076, 0.0154 0.0633 0.0797)

Asset i 5 6 7 8
Return
rate

(−0.0047, 0.0144, 0.0562, 0.0660) (−0.0093, 0.0189, 0.0711, 0.0954) (−0.0053, 0.0180, 0.0814, 0.0795) (−0.0044, 0.0228, 0.0817, 0.0764)

Asset i 9 10 11 12
Return
rate

(−0.0029, 0.0271, 0.0830, 0.0906) (−0.0124, 0.0199, 0.0744, 0.1258) (0.0063, 0.0139, 0.0637, 0.1076) (−0.0060, 0.0193, 0.0511, 0.0746)

Table 3
Fuzzy turnover rates of 12 assets.
Asset i 1 2 3 4

Turnover
rate

(0.0416, 0.0662, 0.0224, 0.01315) (0.0434, 0.0639, 0.0352, 0.2148) (0.0526, 0.0657, 0.0290, 0.0599) (0.0508, 0.0723, 0.0338, 0.0994)

Asset i 5 6 7 8
Turnover
rate

(0.0220, 0.0278, 0.0124, 0.0571) (0.0449, 0.0699, 0.0239, 0.1900) (0.0723, 0.0990, 0.0481, 0.1264) (0.0708, 0.0954, 0.0426, 0.1297)

Asset i 9 10 11 12
Turnover
rate

(0.0499, 0.0820, 0.0315, 0.0965) (0.0705, 0.0970, 0.0515, 0.2344) (0.0299, 0.0503, 0.0194, 0.0875) (0.0290, 0.0379, 0.0164, 0.0590)

(a) Portfolio distribution of MVSK-SE in case
(I).

(b) Portfolio distribution of MVSK-SE in case
(II).

(c) Portfolio distribution of MVSK-PE in case
(III).

Fig. 1. Portfolio distribution of MVSK-SE model in three cases. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

5.2. Parameter settings

The models are executed on a Genuine Intel CPU W35052.53 GHz and a 4.0 GB RAM personal computer with MATLAB
software. The individuals are all coded as the real vectors. The parameter settings in this paper are as follows.

(1) Mutation probability is 0.05 and Crossover probability is 0.1.
(2) The population size is N = 200, the algorithm is run 30 times independently for each model. The algorithms stop

after1000 generations.
(3) K = 5 and M = 40 (N = K ∗ M).

5.3. Comparisons of models MVSK-SE, MVSK-YE and MVSK-PE in decision space

In this subsection, the comparisons of the MVSK-SE, MVSK-YE and MVSK-PE portfolio models will be made through
experiments based on the data of the Shanghai Stock Exchange Market.

Furthermore, in order to show the usefulness of our proposedmodel more clearly, we consider the following three cases:
(I) returns of all assets remain unchanged, (II) returns of all assets decreasemore than the sample returns up to 10% in Table 2,
(III) returns of all assets increase more than the sample returns up to 10% in Table 2.

To visually compare the performance of these portfolio models, Figs. 1–3 show the box plots of average portfolio
allocations that correspond to the MVSK-SE, MVSK-YE and MVSK-PE models, respectively, where xi is the percentage of
the sharing fund corresponding to the ith asset. In these Figs, the symbol ‘△’ represents the mean of xi, the box in the plot
contains 50% of the data points from the 25th to 75th percentile, and the red line drawn across the box is the median of xi.
The whiskers are lines extending above and below each box.

Fig. 1 shows the box plots of average portfolio allocations for the MVSK-SE model in three cases. It can be seen from
Fig. 1 that the MVSK-SE model prefers to a part of the portfolios. In fact, the vast majority of portfolios weights extremely
concentrate on the 1th asset (x1), 2th asset (x2) and 9th asset (x9), while the portfolio weights of other assets are very small,
even negligible, which means the MVSK-SE model generates the low diversity of the portfolios. It may result in loss while
some of the invested assets may experience unexpected gains. This is because that the Shannon’s entropy measure is non-
linear in portfolio selection which can result in very small positive weights for some assets in the portfolio.
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(a) Portfolio distribution of MVSK-YE in case
(I).

(b) Portfolio distribution of MVSK-YE in case
(II).

(c) Portfolio distribution of MVSK-YE in case
(III).

Fig. 2. Portfolio distribution of MVSK-YE model in three cases. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

(a) Portfolio distribution of MVSK-PE in case
(I).

(b) Portfolio distribution of MVSK-PE in case
(II).

(c) Portfolio distribution of MVSK-PE in case
(III).

Fig. 3. Portfolio distribution of MVSK-PE model in three cases. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 2 shows the box plots of average portfolio allocations for the MVSK-YE model in three cases. It can be seen from
Fig. 2 that the MVSK-YE model allocates almost equal the portfolio weights in each asset, except for the portfolio weights
for the second (x2) and ninth (x9) assets which increase slightly. In essence, the MVSK-YE model allocates the budget onto
assets almost equally. This is because that when x1 = x2 = · · · = xn =

1
n , the Yager’s-entropy will uniquely take

its maximum value. Thus, maximizing the Yager’s-entropy will result in an equally-weighted portfolio. However, in the
practical investment management, an investor often may not hope to distribute equally his/her wealth among all assets.
Because such extreme equality of investment weights usually cannot provide good asset returns.

Fig. 3 shows the box plots of average portfolio allocations for theMVSK-PEmodel in three cases. Obviously, theMVSK-PE
model generates awell-diversified portfolios, and not only avoids the lowdiversity of the portfolio but also avoids to allocate
almost equal the portfolioweights to assets. This is because the linear feature of our proposed proportion entropy. The figure
clearly shows that the MVSK-PE model is able to find a good set of diversified portfolios. The following subsections will give
the quantitative comparison analysis of the three models.

5.4. Portfolio performance evaluation by using the hyper-volume indicator (HV) and generational distance (GD)

Because the diversity and convergence of solutions are very important for evaluating the performance of the algorithms,
in order to compare the performance between themodelsMVSK-SE,MVSK-YE andMVSK-PE quantitatively, the generational
distance (GD) [37] and hyper-volume indicator (HV) [38] are used as the performance metrics of the both diversity and
convergence, where GDmeasures the distance of elements of the non-dominated vectors found from the ideal Pareto front,
and is mathematically expressed as:GD (A, P) =


vϵA

(d(v, P))2

|A|

d (v, P) = min{∥v − z∥ |zϵP}

(27)

where |A| is the number of non-dominated solutions in the set A. If GD is equal to 0, all points of the known PF belong to the
ideal PF. The smaller the value of GD is, the closer the solution is to the ideal PF, and the better the convergence and diversity
of the set A is. The hyper-volume indicator has been widely used to evaluate the performance of the convergence, diversity
and uniformity of the obtained solutions. It computes the volume of the dominated portion of the objective space relative to
a reference point. Higher values of this performance indicator imply more diversity and better convergence of the obtained
solutions.
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Table 4
The statistical index of HV metric between MVSK-SE, MVSK-YE and MVSK-PE model.

HV-metric Mean SD Max Min

Case (I)
MVSK-SE model 0.2228 0.0084 0.2330 0.2060
MVSK-YE model 0.2237 0.0175 0.2425 0.2137
MVSK-PE model 0.2758 0.0055 0.3092 0.2386

Case (II)
MVSK-SE model 0.2276 0.0115 0.2399 0.1912
MVSK-YE model 0.2326 0.0221 0.2483 0.2222
MVSK-PE model 0.2863 0.0046 0.3293 0.2403

Case (III)
MVSK-SE model 0.2144 0.0060 0.2200 0.2058
MVSK-YE model 0.2248 0.0129 0.2347 0.2097
MVSK-PE model 0.2637 0.0022 0.2922 0.2432

Table 5
The statistical index of GD metric between MVSK-SE, MVSK-YE and MVSK-PE model.

GD-metric Mean SD Max Min

Case (I)
MVSK-SE model 0.3360 0.0047 0.3407 0.3306
MVSK-YE model 0.2501 0.0055 0.2591 0.2414
MVSK-PE model 0.2354 0.0030 0.2485 0.2243

Case (II)
MVSK-SE model 0.3382 0.0066 0.3425 0.3325
MVSK-YE model 0.2537 0.0101 0.2892 0.2374
MVSK-PE model 0.2287 0.0027 0.2412 0.2132

Case (III)
MVSK-SE model 0.3353 0.0043 0.3375 0.3220
MVSK-YE model 0.2479 0.0044 0.2624 0.2412
MVSK-PE model 0.2419 0.0014 0.2519 0.2333

Table 4 presents the index values of the HV metric of the MVSK-SE, MVSK-YE and MVSK-PE portfolio models by our
algorithm. MVSK-PE model gets larger value of HV than the MVSK-SE andMVSK-YE models in three cases, which illustrates
that the MVSK-PE model can provide more diversity solutions than the MVSK-SE and MVSK-YE models. Obviously, in both
the aspects of convergence and diversity of solutions, theMVSK-PEmodel gives a better performance than theMVSK-SE and
MVSK-YE models. This means that the MVSK-PE model can provide more diversified investment strategies for the investors
comparing with the MVSK-SE and MVSK-YE models.

Table 5 presents the statistical index of GD metric value between MVSK-PE and one of MVSK-SE, MVSK-YE and MVSK-
PE. It clearly shows that the index values of GD obtained by MVSK-PE model are smaller than those obtained by MVSK-SE
and MVSK-YE models in three cases, which implies that the solutions obtained by MVSK-PE model can provide the better
convergence and higher diversity of solutions than the MVSK-SE and MVSK-YE models in the PF.

5.5. Portfolio performance evaluation by using a specific performance metric

In real investment environment, the investors are most concerned about the risks and benefits. For the investors, the
purpose of the establishment of the portfolio model is to reduce the risk and to improve the return. So, in order to accurately
assess the benefits and risks, we use a specific metric based on the Euclidean norms [39] to measure the reliability of the
solutions and to evaluate the performance of these portfolio models. The norm is calculated separately for both return and
risk objectives. The aim is tomeasure the distance between the forecast risk/return for every portfolio in the efficient frontier
V

xp

,M(xp)


and the actual risk/return for the same portfolio be computed with the real parameters


V ′

xp

,M ′(xp)


,

that is, the norm between the estimates for tn based on data from t1 to tn−1, and the actual values at tn. The norm metric in
terms of return and risk is formally defined for each efficient frontier in the following equations:

ENM(x) =
M 

xp

− M ′(xp)

2 /N and ENV (x) =
V xp− V ′


xp
2 /N (28)

whereN is the number of portfolio in the PF. According to the abovemathematical expression, it can be seen that the smaller
the value of ENM(x) and ENV (x) is, the closer the forecast risk/return will be to the actual risk/return for the portfolio, and the
better the performance of the portfolio model will be.

TheMean,MaximumandMinimumvalues and Standard deviations of the normmetric values forMVSK-SE,MVSK-YE and
MVSK-PE are recorded in three cases. In terms of the index values of the ENM(x) and ENV (x), MVSK-PE gets the smaller values
than MVSK-SE and MVSK-YE in three cases, which illustrates that, the distances obtained by MVSK-PE from the forecasted
risk and return to the actual ones are shorter than those obtained by MVSK-SE and MVSK-YE. That is, the portfolio obtained
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Table 6
The metrics values for Euclidean distance between MVSK-SE, MVSK-YE and MVSK-PE model.

Evaluation-metric ENM(x) ENV (x)

Mean SD Max Min Mean SD Max Min

Case (I)
MVSK-SE model 0.0095 7.8751e−004 0.0096 0.0093 9.3389e−004 3.5319e−006 9.3779e−004 9.2728e−004
MVSK-YE model 0.0074 4.7159e−005 0.0075 0.0073 5.4625e−004 4.5061e−006 5.5327e−004 5.4014e−004
MVSK-PE model 0.0066 7.9868e−004 0.0067 0.0064 5.2197e−004 4.6813e−006 5.3083e−004 5.1390e−004

Case (II)
MVSK-SE model 0.0096 8.8681e−005 0.0097 0.0094 9.3898e−004 4.8118e−006 9.4758e−004 9.3246e−004
MVSK-YE model 0.0075 5.6557e−005 0.0076 0.0074 5.4812e−004 5.7471e−006 5.5861e−004 5.3969e−004
MVSK-PE model 0.0068 602403e−005 0.0069 0.0067 5.2951e−004 6.3610e−006 5.4061e−004 5.2064e−004

Case (III)
MVSK-SE model 0.0083 8.0740e−005 0.0085 0.0082 7.8901e−004 2.8067e−006 7.9237e−004 7.8603e−004
MVSK-YE model 0.0072 5.5862e−005 0.0073 0.0071 5.2888e−004 3.1863e−006 5.3415e−004 5.2222e−004
MVSK-PE model 0.0065 5.4135e−005 0.0066 0.0064 5.0445e−004 2.0830e−006 5.0922e−004 5.0194e−004

Table 7
Summary statistics of ASR for MVSK-SE, MVSK-YE and MVSK-PE model.

ASR Mean Max Min SD

Case (I)
MVSK-SE model 0.1140 0.1142 0.1138 1.3329e−004
MVSK-YE model 0.1305 0.1309 0.1297 1.9296e−004
MVSK-PE model 0.1403 0.1404 0.1401 4.9994e−004

Case (II)
MVSK-SE model 0.1056 0.1057 0.1054 1.5465e−004
MVSK-YE model 0.1230 0.1237 0.1222 8.4012e−005
MVSK-PE model 0.1355 0.1358 0.1352 3.9787e−004

Case (III)
MVSK-SE model 0.1211 0.1213 0.1208 1.6114e−004
MVSK-YE model 0.1362 0.1367 0.1357 5.4279e−005
MVSK-PE model 0.1445 0.1446 0.1444 3.0790e−004

by MVSK-PE is closer to the actual risk/return for the portfolio. Thus, the performance of the portfolio model MVSK-PE is
better.

5.6. Portfolio performance evaluation by using the adjusted sharpe ratio

As a traditional performance measure, the Sharpe ratio (SR) is a commonly used measure of portfolio performance and
its formula is given by the following general form:

SR =
E [r(x)]

√
V (r(x))

(29)

where r(x) is the return of portfolio. However, since the SR is based on the mean–variance theory, it is valid only for either
normally distributed returns or quadratic preferences. Particularly, the SR can lead to misleading conclusions when the
return distributions are skewed or kurtosis [40]. In order to overcome the drawbacks of the SR, Pezier et al. [41] proposed
an Adjusted Sharpe Ratio (ASR), which can measure portfolio performance in the mean–variance–skewness–kurtosis
framework of portfolio model. The ASR takes into accounts not only the mean and variance but also the skewness and
kurtosis of portfolio, which is defined as follows:

ASR = SR

1 + (S/6) SR − (K/24)SR2 (30)

where S and K are the skewness and kurtosis of portfolio respectively. The value of ASR can reflect the level of maximum
expected utility. The larger value of ASR is, the better the investment portfolio and performance of the model will be.

Table 6 presents the statistical results of ASR for each model in the three cases, including min, max, mean and standard
deviation of the ASR. We can see that the various statistical indicators of ASR of MVSK-PE are larger than the corresponding
MVSK-SE’s and MVSK-YE’s. That is, the MVSK-PE model outperforms the MVSK-SE and MVSK-YE models in terms of ASR
performance measure.

5.7. The comparison of the total return among the models MVSK-PE, MVSK-SE and MVSK-YE

In the real investment circumstances, investors paymore attention to the profitability of executing these asset strategies.
Furthermore, we discuss their economic benefits in portfoliomanagement. Table 8 shows the comparison of realization total



W. Yue, Y. Wang / Physica A 465 (2017) 124–140 139

Table 8
Summary statistics of total return among the models MVSK-PE, MVSK-SE and MVSK-YE in
three cases.

Total return Mean Max Min SD

Case (I)
MVSK-SE model 0.0048 0.0075 0.0034 0.0009
MVSK-YE model 0.0055 0.0077 0.0035 0.0010
MVSK-PE model 0.0060 0.0078 0.0035 0.0012

Case (II)
MVSK-SE model 0.0040 0.0065 0.0027 0.0008
MVSK-YE model 0.0047 0.0066 0.0031 0.0009
MVSK-PE model 0.0053 0.0070 0.0033 0.0011

Case (III)
MVSK-SE model 0.0056 0.0085 0.0040 0.0010
MVSK-YE model 0.0063 0.0086 0.0043 0.0012
MVSK-PE model 0.0067 0.0088 0.0045 0.0013

return among the models MVSK-PE, MVSK-SE and MVSK-YE in three cases respectively, including minimum, maximum,
mean, and standard deviation.

From Table 7, the total return of the model MVSK-PE outperforms the models MVSK-SE and MVSK-YE in three cases.
Furthermore, in the case of comparing the model MVSK-PE with models MVSK-SE and MVSK-YE, each statistical indicator
of the total return is much larger than that of the models MVSK-SE and MVSK-YE. Taken together, the model MVSK-PE
demonstrates more effectively than the models MVSK-SE and MVSK-YE. The results of numerical examples suggest that
the model MVSK-PE can provide well-diversified Pareto optimal solutions than the models MVSK-SE and MVSK-YE in the
decision space, and the model MVSK-PE can make asset allocation more feasible than the models MVSK-SE and MVSK-YE.

6. Conclusions

Portfolio optimization inherently involves conflicting criteria. In this sense, this work focuses on the study of the
fuzzy higher moment portfolio selection that explicitly involves skewness and kurtosis in the multi-objective framework,
furthermore, a new entropy function based on Minkowski metric is presented as an objective function to obtain better
diversification portfolios. Next, two variations of mean–variance–skewness–kurtosis–entropy multi-objective portfolio
models with Shannon’s entropy and the Yager’s entropy were also discussed. To solve the proposed higher moment multi-
objective portfolio models, a new multi-objective evolutionary algorithm based on decomposition is designed. In addition,
we use several portfolio performance evaluation techniques to evaluate the performance of these higher-moment multi-
objective portfolio models. Finally, some numerical examples are presented to illustrate the practicality and effectiveness
of the proposed model and the corresponding algorithm based on the data from Shanghai Stock Exchange.

For the future research, the multi-objective fuzzy portfolio selection problem and MOEAs will be applied to other
asset allocation problems, mutual fund portfolio selection problems, combinational optimization models and multi-period
problems. Asset returns can be considered as random fuzzy variables. Also the proposedmodel can be applied for other case
studies. Moreover, the new proposed models of portfolio selection problems and their efficient solution methods will help
us to solve more complicated problems in real situations under more imprecise and ambiguous conditions.
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