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1 Introduction

One of the major reasons for economic crises is the irrational distribution of resources.
The problem of project selection deals with exactly this kind of problems. Project selection
is one of the most common and oldest problems in operations research (OR). Financial
organizations often face the problem of selection within a set of projects to fund. Several
OR techniques are involved in this kind of problems like e.g. multiple criteria decision
analysis (MCDA), mathematical programming (MP). These techniques are widely exploited
in relevant decision problems, such as portfolio selection, choice among alternative projects or
investment opportunities, student selection, military applications, capacity expansion (see e.g.
Golabi et al. 1981; Mavrotas and Rozakis 2009; Salo et al. 2011; Martínez-Costa et al. 2014).

Project portfolio selection problem is defined as the problem of selecting a subset of
projects usually based on one or more criteria that have to fulfill specific constraints. In
the presence of the imposed constraints (e.g. policy, segmentation) a simple MCDA method
does not suffice. Combinatorial character of the problem implies the use of optimization
methods aiming at the portfolio of projects that satisfy constraints and achieves the “best”
performance. A combination of projects is defined as project portfolio. Usually the “best”
performance is expressed emphasizing on economic and financial criteria. Criteria related
with the promotion of sustainable practices, fostering green growth, were not taken into
consideration in traditional models (Hobbs and Meier 2000).

However, current financial and economic crisis, as well as growing socio-economic and
environmental pressures, including climate change, put seriously under question traditional
development patterns. The need to develop alternative models able to address current eco-
nomic situation through the exploitation of sustainable patterns is of crucial importance
(Hobbs and Meier 2000; Doukas et al. 2012). Companies are at the heart of the Europe 2020
Strategy, taking into consideration their vital role towards national prosperity and sustainable
development (SD). Enterprises have to integrate social and environmental concerns in their
business operations and in their interaction with stakeholders on a voluntary basis, within the
framework of the corporate social responsibility (CSR) concept.

Companies, more than other stakeholders, have to address the problem in a long term plan,
and become a driving force for adoption of relative initiatives towards “green” development
and promotion of energy efficiency and environmentally friendly practices, within the CSR
framework (Doukas et al. 2013). CSR has been incorporated recently in decision models
using Data Envelopment Analysis (Lee and Farzipoor Saen 2012), inventory policy (Barcos
et al. 2013) and supply chain (Hsueh 2014) among others. The penetration of energy and
environmental policies, as an aspect of CSR is definitely small and CSR does not appear to be
a systematic activity in new conditions of European market, a conclusion further confirmed by
Apostolakou and Jackson (2009) and Gjølberg (2009a, b) studies. However, relevant works
in various fields have been detected recently like e.g. in supplier selection (Hashemi et al.
2014). In this context, new tools and methods are required to foster green entrepreneurship
and green energy growth.

The innovation of the current study is the incorporation of energy and environmental
corporate responsibility (EECR) in decision making, supporting particularly the development
of a new model for investment evaluation. This model can assist financial institutions (green
loans) and governmental bodies funding energy—environmental friendly investments. The
EECR performance of a firm is considered as an evaluation criterion of the submitted project.
Therefore, in our study the drivers of optimization are two objective functions: (1) The net
present value (NPV) that represents the economic dimension and characterizes each project
and (2) the EECR index that represents the CSR and characterizes each firm that submits the
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project. In this way, firms with increased EECR are rewarded without ignoring the economic
performance of relevant projects.

The resulting multi-objective model (specifically bi-objective) does not provide an opti-
mal portfolio but a set of Pareto optimal portfolios among which the most preferred one
is selected by the decision maker (DM). In general, multi-objective optimization increases
degrees of freedom within decision making process providing not an optimal solution (as in
single objective optimization) but a set of candidate solutions among which the DR chooses.
Therefore, the set of Pareto optimal solutions (Pareto set) is essential information in an inte-
grated decision making approach. It must be noted that we deal with multi-objective integer
programming (MOIP) models and we can produce the exact Pareto set (i.e. all the Pareto opti-
mal solutions). It is also important to note that, especially the last years, the multi-objective
character of project portfolio selection is addressed with multi-objective metaheuristic meth-
ods that produce an approximation of the Pareto set (see e.g. Yu et al. 2012; Tavana et al.
2013; Hassanzadeh et al. 2014a).

This work is going one step further, considering also the uncertainty characterizing basic
parameters of the model, which are the coefficients of objective functions, namely the NPV of
each project and the EECR score of each firm. Given that these values are actually estimations,
we follow a systematic approach to deal with the inherent uncertainty. The latter is considered
to be of stochastic nature, i.e. we have a probability distribution instead of a crisp number
for the values of objective functions’ coefficients. It must be noted that a similar approach
for project selection problems with multiple criteria that deals with stochastic uncertainty in
projects’ evaluation is stochastic multiobjective acceptability analysis (SMAA) introduced
by Lahdelma et al. (1998). However, SMAA cannot handle the case of multiple constraints
that are imposed to the constraints but is used only with independent alternatives in a MCDM
context.

The current paper introduces an innovative approach that deals with parameters’ uncer-
tainty in a MOIP model and eventually converges to the final Pareto set. It uses the main
idea of the iterative trichotomic approach (ITA) (Mavrotas and Pechak 2013a, b). ITA was
originally designed for single objective problems of project portfolio selection. It gives infor-
mation about the degree of certainty for the inclusion or rejection of a specific project in the
final portfolio. The version of ITA described in the current paper deals with multi-objective
problems of project portfolio selection and provides information about the degree of certainty
for inclusion of a specific portfolio in the final Pareto set, expanding thus its application area
from project level to portfolio level. This kind of information is essential for the DR to be
more confident to select project portfolios that have high degree of certainty regarding their
Pareto optimality. In this respect, the DR has a sufficient tool to measure the robustness of the
final Pareto set as well as the robustness of specific portfolios that appear in the final Pareto
set. Robustness in project portfolio selection has also been addressed in a different way in
the works of (Liesiö et al. 2008; Hassanzadeh et al. 2014a, b).

The remainder of the paper is structured as follows: In Sect. 2 the methods, concepts and
terminology that will be used in the proposed model are briefly presented, with the focus
on adaptation of ITA for the multi-objective case. In Sect. 3 the development of the MOIP
model is being elaborated, along with the way the EECR scores are calculated and the relevant
constraints. In Sect. 4 the application of the proposed model is presented and the results of
multi-objective ITA are discussed, giving emphasis to the kind of additional information that
is available to the DR. Finally, in Sect. 5 the main concluding remarks are summarized.
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Fig. 1 The adopted procedure

2 Methods, concepts and terminology

The overall procedure that was adopted for the addressed multi-objective project portfolio
selection problem is graphically illustrated in Fig. 1.

In the following sections, a more detailed description of the methods deployed will be
presented.

2.1 Iterative trichotomic approach (ITA) to multi-objective project portfolio selection
problems

The basic idea of current work is to extend the applicability of ITA to the case of multi-
objective optimization. ITA was originally designed for project portfolio selection under
the framework of MP and more specifically integer programming (IP). It was used with a
single objective function reflecting the optimization criterion. The uncertainty associated
with objective function coefficients has a stochastic nature (probability distributions instead
of crisp numbers).

The term “trichotomy” refers to the separation of a set into three parts. In this context,
the proposed decision making process ITA is based on the fact that projects are assigned to
one of three groups based on their performance and current level of uncertainty. The latter is
incorporated using probability distributions for coefficients of the objective function, which
usually express projects’ performance. Individual projects’ performances are summed up
in the objective function, which is the driver of optimization. Monte Carlo simulation is
performed using sampling from these distributions. Subsequently with the sampled objective
function’s coefficients the IP model is solved leading to an optimal portfolio. This pair of
sampling and optimization is the core of calculations. The number of Monte Carlo simulations
is set to a large number T (e.g. T = 1000) which means that the sampling and optimization
cycle is performed T times. The output of this process is 1000 optimal portfolios based on
the sampling of model’s parameters (in this case—projects’ performance). Eventually, the set
of projects is divided into three subsets (classes): green projects that are present in the final
portfolio under all circumstances (i.e. in all Monte Carlo simulations), red projects that are
absent from the final portfolio under all circumstances, and grey projects that are included
in part of final portfolios. The classification in three subsets is not new in the literature.
Liesiö et al. (2007, 2008) used a similar approach in the framework of robust programming.
However, the way projects are assigned to each set is different. In addition, Mavrotas and
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Rozakis (2009) applied similar concepts in a student selection problem for a post graduate
program.

The term “iterative” indicates that the proposed process is developed in a series of compu-
tation rounds (or cycles). A predetermined number of computation rounds is defined from the
beginning and every round feeds its subsequent until a convergence to the final portfolio is
attained. From round to round the uncertainty is reduced for grey projects, and some of them
are forced to become either green or red. The uncertainty reduction can be performed either
by inclusion of more information or by an automatic uniform narrowing of grey projects’
probability distributions.

The concept behind the trichotomic approach is that a DM can focus on projects at stake.
The “sure” projects (either in or out of the portfolio) are determined and the DM can shift his
attention to “ambiguous” projects (e.g. the grey set). The method provides quantitative and
qualitative information that cannot be acquired using e.g. the expected values of distributions.
In the latter case, the DM is provided with a unique optimal portfolio or, in other words, which
are “go” and “no go” projects, without any discrimination about the degree of certainty for
each one of them. On the contrary, in trichotomic approach, DM is provided with fruitful
information about certainty degree of each project in the portfolio.

Project portfolio selection is by definition a multi-objective problem. Different points
of view should be taken into account. One approach is to aggregate these points of view
to a single metric through multicriteria analysis and subsequently optimize the resulting
single objective problem where coefficients of objective function are multicriteria scores
(Mavrotas et al. 2008). Alternatively, one can use a goal programming approach aggregating
the objective functions based on their distance from individual goals (see e.g. Zanakis et al.
1995; Santhanam and Kyparisis 1996).

In the above mentioned approaches, the DR has to assign weights to criteria or goals in
order to aggregate them to a single objective function (scalarization). Another approach is
to keep individual criteria as separate objective functions and proceed to a multi-objective
optimization generating the Pareto set of the problem (or the Pareto front in criteria space).
The Pareto set comprises Pareto optimal solutions (or Pareto portfolios in our case). The DR
then examines the Pareto front before reaching his final choice. These methods are called “a
posteriori” or “generation” methods in the popular Hwang and Masud (1979) terminology
for multi-objective optimization methods (first generate Pareto front, examine it, and then
select the most preferred Pareto portfolio). Their aim is not just to provide the most preferred
solution but also to generate the Pareto set (either exactly or its approximation).

In the current work, we adapt ITA to the multi-objective case. While in original ITA
we provide the certainty degree of a specific project to be member of the optimal portfolio
given underlying uncertainty, in multi-objective ITA we provide the degree of certainty of a
specific portfolio of projects to be member of the Pareto set. A schematic representation of
the multi-objective ITA is shown in Fig. 2.

Unlike original ITA, in multi-objective ITA the first iteration has no red set as we don’t
have any portfolios to be excluded. In the first iteration we have the maximum number
of generated portfolios as candidate final Pareto optimal portfolios (POPs). In subsequent
iterations some of these portfolios are not present anymore in any Pareto set so they join the
red set. As we move from round to round, the uncertainty of parameters (objective functions’
coefficients) is reduced (e.g. reduce the standard deviation of a normal probability distribution
or shrink the interval of a uniform probability distribution). As we reduce the uncertainty,
more portfolios from grey set move to green (appear in all Pareto sets). The red set is implied
indirectly by the initially generated portfolios that are not present in any current Pareto
set.
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Fig. 2 Graphical representation of multi-objective ITA

In order to describe our model we first present the relevant concepts and terminology, then
the mathematical definitions of the robustness measures and then the algorithm that can be
used to compute these measures in the framework of ITA.

2.2 Concepts and terminology

We will start with some terminology. The POPs of projects are actually the Pareto optimal
solutions of the multi-objective integer problem with binary variables:

max Z1 =
N∑

i=1

ci1 Xi

. . .

max Z K =
N∑

i=1

ci K Xi

st

X ∈ S

Xi ∈ {0, 1} (1)

where N is the number of candidate projects, cik is the objective function coefficient of
i-th project in k-th objective function, Xi is a binary decision variable indicating if the i-th
project from initial set is selected (Xi = 1) or not (Xi = 0), and S represents the feasible
region formulated by all the imposed constraints. Apart from the usual budget constraints,
segmentation and policy constraints, interactions and interdependencies among projects can
be also taken into account in the formulation of decision space S (Mavrotas et al. 2003; Liesiö
et al. 2007). Eventually, a POP is represented by a vector of “0” and “1” of size N . According
to the multi-objective version of ITA method each one of the initial POPs is eventually
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characterized as red or green as we gradually decrease the uncertainty in model’s parameters.
The reduction of uncertainty in the model’s parameters is performed in computation rounds.

In each computation round we solve a great number (t = 1, . . . , T with e.g. T = 1000) of
problems like model (1), with different model’s parameters, specifically different objective
function coefficients using a Monte Carlo simulation approach (see e.g. Vose 1996).

max Z (t)
1 =

N∑

i=1

c(t)
i1 Xi

. . .

max Z (t)
K =

N∑

i=1

c(t)
i K Xi

st

X ∈ S

Xi ∈ {0, 1} (2)

where c(t)
ik is the objective function coefficient of i-th project in k-th objective function

during t-th Monte Carlo iteration. The values of c(t)
ik are sampled from the selected probability

distributions (uniform, normal, triangular etc). Therefore, in each computation round T Pareto
sets (PSt , t = 1, . . . , T ) are produced. The generation of each one of the T Pareto sets is
performed using the AUGMECON2 method (Mavrotas and Florios 2013). AUGMECON2 is
an improved version of the well known ε-constraint method, especially appropriate for MOIP
problems like model (1). It must be noted that AUGMECON2 is capable of generating the
exact Pareto set in MOIP problems which means that no Pareto optimal solution is left
undiscovered.

Like in original ITA, in each computation round we have three sets where all the POPs
p are allocated: The green set (G), the red set (R) and the grey set (Y ). The membership
relation for each portfolio p in G, R and Y are shown below.

p ∈ G : ∀t ∈ {1, . . . , T } , p ∈ PSt

p ∈ R : ∀t ∈ {1, . . . , T } , p /∈ PSt

p ∈ Y : ∃t ∈ {1, . . . , T } , p ∈ PSt (3)

In other words the green set includes the portfolios p that are present in all Pareto sets
(PS1, . . . , PST ) of the computation round, the red set includes the portfolios that were pro-
duced in the initial computational round but are not present in any of T Pareto sets in current
computational round and the grey set includes portfolios that are present in some of T Pareto
sets. In order to be more specific about the round r that a green, red and grey set refers to we
use the notation Gr , Rr and Yr . To facilitate the decision process, we can define membership
thresholds for the green set by relaxing membership requirements. For example, we may set
a “green” threshold of 95 % which means that a portfolio is considered to be a member of
green set if it is present in the Pareto set for at least 95 % of iterations.

2.3 Robustness measures

Robustness of the POPs in multi-objective ITA is associated with how sure we are about the
membership of a specific portfolio in the final (definitive) Pareto set, which is obtained in
the last computation round. As uncertainty is reduced going from one computation round to
the next, the sooner a POP enters the green set, the more sure we are about its participation
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Fig. 3 Example of Robustness Chart with R = 6

in the final portfolio. Therefore, for the POPs, the measure of robustness can be quantified
with the Robustness Degree for each POP (RDp) which is defined as follows:

RDp = R − rp

R
(4)

where rp is the computation round that p-th portfolio enters the green set (i.e. becomes
member of the final Pareto set) and R the total number of computation rounds. As it is
obvious from Eq. (4) Robustness Degree of p-th portfolio varies in [0, (R − 1)/R] and the
closer it is to 1 the more robust is the specific portfolio.

We have also developed a measure of robustness for the final Pareto set according to
how early in the decision process the final POPs are entering the green set. The more green
portfolios we have from early rounds (i.e. when we have greater uncertainty), the more robust
is the final Pareto set. On the contrary, if the majority of green portfolios is identified in last
rounds, it means that the final Pareto set is not so stable.

For the robustness of the final Pareto set we introduce the Robustness Index (RI). In order
to calculate the RI we need to draw the so called Robustness Chart where the percentages
of green portfolios that are available on r -th round (denoted as ar ) are plotted as a function
of the computation round. The resulting curve is called Robustness Curve. In Fig. 3 we can
see an example of a Robustness Chart with the corresponding Robustness Curve. We can
observe that from round 2 to round 3 there are no new portfolios added in the green set. This
may happen especially when the maximum number of rounds (R) is relatively high.

The RI of the final Pareto set is calculated as the area below the robustness curve, divided
by the rectangle area denoted by the dashed rectangular in Fig. 2. The dashed rectangular
actually expresses the maximum robustness (RI = 1) that occurs when already from the
first computation round (i.e. when we have the maximum uncertainty), only one Pareto set is
produced from all Monte Carlo iterations. The minimum robustness occurs when all green
portfolios are added in the final Pareto set on the last round (RI = 0). RI takes values between
0 and 1 and it is calculated using the trapezoid rule for piecewise linear functions according
to the following equations:
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RI =
(

a1 + a2

2
+ a2 + a3

2
+ · · · + aR−1 + aR

2

) /
(R − 1)

RI =
[

a1

2
+

R−1∑

r=2

ar + aR

2

]
/
(R − 1)

RI =
[

a1

2
+

R−1∑

r=2

ar + 1

2

]
/
(R − 1) (5)

For example, from Fig. 2 we can calculate the corresponding RI as:

RI =
[

0.04

2
+ 0.11 + 0.34 + 0.34 + 0.83 + 1

2

]/
5 = 42.8 %

2.4 The algorithm

As it was mentioned, ITA proceeds with computation rounds (or cycles). The DR initially
determines the number R of computation rounds. In the first round, the Monte Carlo sampling
is performed using appropriate probability distributions for the uncertain parameters. The
results define the green and grey set denoted as G1 and Y1. On second round the variance
of Y1 projects’ parameters is reduced proportionally to the number of total rounds R. This
reduction depends on the form of distribution. For example, for a normal distribution we
reduce the standard deviation by 1/(R−1), or, for a uniform distribution, we cut 1/(2(R−1))

from both edges of the range.
The variance reduction follows a uniform pattern across rounds. For example, in case

of normal distribution, we reduce the standard deviation sd by 1/(R − 1) after each round.
This means that after round r , the reduction of standard deviation is sd × (r − 1)/(R − 1).
Thus, in the final round projects’ parameters (objective function coefficients) are considered
as deterministic (have no variance at all). Therefore the final round produces only one Pareto
set which is the final Pareto set that comprises the final Pareto portfolios. The flowchart of
the decision making process is depicted in Fig. 4.

After the end of the multi-objective—ITA algorithm we have all the information for
computing the Robustness Degree of each one of the POPs, for creating the Robustness Chart
and computing the RI of the Pareto set. In addition we can provide the DR with informative
charts that illustrate the Pareto front with additional information about the robustness of each
POP. The latter is explicitly shown in the application in the next section.

3 Model building

This idea of incorporating energy and environmental issues in CSR is rather recent (Doukas
and Psarras 2010; Doukas et al. 2012, 2014). In the present application a multi-criteria
project portfolio selection problem is addressed taking into account both economic and
environmental criteria. Given the uncertainty in quantifying the economic as well as the
environmental performance of projects, multi-objective ITA method is an appropriate choice
to extract results about the robustness of obtained project portfolios.

As it was mentioned before, the MP model that represents the optimization problem is a
MOIP problem with the following characteristics:

123



Ann Oper Res

Start 

Sampling from distribu�ons for 
obj. func�on coefficients

Solve MOIP model

Save the Pareto set PSt

t=T ?

Iden�fy Gr, Rr and Yr

por�olios

t = t + 1
YESNO

Total rounds=R, first round r=1, 
Ini�al distribu�ons

Reduce variance in obj. func�on 
coefficients’ distribu�ons by (r-1)/(R-1)

r = R ? FINISHYES

NO

t=1
r=r+1

Fig. 4 Illustration of the multi-objective—ITA algorithm

3.1 Decision variables

In the specific case, firms’ applications are expressed with 0–1 decision variables, with Xi

denoting the i-th firm or application.
More specifically:

• If Xi = 1, then the corresponding application is approved.
• Otherwise, if Xi = 0, the corresponding application is rejected.

3.2 Objective functions

In the specific model we have two objective functions, namely the NPV of a portfolio and the
EECR index of a portfolio. They are both additive functions of individual projects’ relevant
values.

portfolio′s EECR: max Z1 =
N∑

i=1

eecri Xi
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portfolio′s NPV : max Z2 =
N∑

i=1

npvi Xi (6)

The parameters npvi and eecri are the NPV of the specific project application and the
EECR score of the specific applied company.

3.3 EECR calculation

The adopted procedure used for calculation of the EECR scoring was based upon the ordered
weighted average (OWA) operator. According to the literature, OWA operators were intro-
duced by Yager (1988). An aggregation operator is a function F : I n → J where I and J are
real intervals. I denotes the set of values to be aggregated and J denotes the corresponding
result of aggregation. The set of aggregation operators is denoted as An(I, J ).

An OWA operator is an aggregation operator from An(I, J ) with an associated vector of
weights w ∈ [0, 1]n , such that:

Fw(x) =
n∑

i−1

wi × bi , where :
n∑

i−1

wi = 1 (7)

and bi denoting the performance of the alternative in the criteria x1, . . . , xn .
The criteria to be selected have to be operational, exhaustive in terms of containing all

points of view, monotonic and non-redundant since each criterion should be countered only
once, as pointed out by Bouyssou (1990). With respect to this, the research focuses on the
provision of a small but clearly understood set of evaluation criteria, which can form a
sound basis for the comparison of the examined firms in terms of their systematic energy
and environmental policy integration as a part of CSR and SD. Concisely, all six criteria
are presented in Table 1. The data from these firms were mainly collected from the global
reporting initiative disclosure database (GRI 2013).

3.4 Constraints

The model includes constraints, imposed by each banking institution’s specific credit policy.
First of all, a budget constraint is used in order to secure that the cumulative cost of approved
applications does not exceed the overall budget.

N∑

i=1

cos ti Xi ≤ avb (8)

where avb is the total available budget and costi the cost of i-th project application. In the
specific application the available budget is 3 Me while the total cost of all 40 projects is
9.4 Me.

Specific bounds are imposed to control the distribution of projects according to their
category, across various sectors. In particular, we don’t want a specific project category to
dominate in portfolio which is expressed as “no sector or region is allowed to have more
than half of the total approved applications”. This condition is expressed with the following
constraints:
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Table 1 The criteria

Criteria Description

C1: Management
commitment

The degree to which Management of a firm prioritizes actions related to the energy
and environmental corporate policy, sets specific targets and corresponding time
schedule for their accomplishment

C2: Monitoring
progress and related
impact

The degree to which a firm adopts procedures and protocols for monitoring the set
of targets, specific progress made in each related activity and the corresponding
impact in companies operation and activation in the market

C3: Participation in
dissemination
activities

Reflects firms’ participation in dissemination activities in broader community,
including among others, educational and information activities regarding
environmental practices, organization of workshops, conferences and other
events, and sponsorships

C4: Promotion of
renewable energy

Refers to the firms’ involvement for investment in projects and initiatives related to
renewable energy sources—wind power, solar power (thermal, photovoltaic and
concentrated), hydro-electric power, tidal power, geothermal energy and biomass

C5: Promotion of
energy efficiency

The extent to which a firm incorporates initiatives to provide energy-efficient
products and services, to reduce direct and indirect energy consumption and
other energy conservation practices and technological improvements

C6: Waste and water
management

This criterion demonstrates the effort of firms in reducing total water use or
discharge and the adoption of waste management activities

∑

i∈S

Xi ≤ 0.5 ×
N∑

i=1

Xi for S = Sector 1, 2, 3, 4 (9)

∑

i∈R

Xi ≤ 0.5 ×
N∑

i=1

Xi for R = Region 1, 2, 3, 4 (10)

In order to assure that all sectors and regions will be present in final portfolios we also
add the following condition: “all sectors and areas will be funded with at least 10 % of the
total cost”. This condition is expressed with the following constraints:

∑

i∈S

cos ti Xi ≥ 0.1 ×
N∑

i=1

cos ti Xi for S = Sector 1, 2, 3, 4 (11)

∑

i∈R

cos ti Xi ≥ 0.1 ×
N∑

i=1

cos ti Xi for R = Region 1, 2, 3, 4 (12)

In the framework of ITA, the uncertainty characterizing the estimation of projects’ NPV
as well as the calculation of firm’s EECR score is expressed with normal distributions for
relevant projects’ values. Specifically we take as mean value for the normal distributions the
estimated value presented in Table 4 of the appendix and as standard deviation of the initial
round the 5 % of the mean. This is done for the NPV as well as the EECR values. From round
to round we reduce the standard deviation of corresponding normal distributions to 4, 3, 2, 1
and 0 % in the final round. The whole process (model building, random sampling, Pareto set
generation) is implemented within GAMS platform (GAMS 2010).
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4 Application and results discussion

For the application we have 40 projects from 40 different firms, with a geographical, sectoral
distribution as follows in Table 2:

The parameters’ values of the model as well as the membership of projects in various sets
(sectoral and geographical) are shown in Table 4 of the Appendix. It must be noted that more
types of constraints may be considered in the MP framework like e.g. the specific number
(or range) of accepted applications (projects to be finally funded), or constraints for mutually
exclusive projects etc.

We performed 1000 Monte Carlo iterations in each computation round and the computation
time varied between 7181 and 9150 s from round to round in a core i-5 running at 2.5 GHz.
It must be noted that in the specific application, we set a 99 % acceptance threshold for the
green set (if a portfolio is present in 99 % of Pareto sets i.e. in 990 out of 1000).

The results of multi-objective ITA are shown in Table 3. There are in total 398 POPs
that participate in 1000 Pareto sets of the initial round. Among them only four were present
in all Pareto sets. At subsequent iterations we reduce the standard deviation of sampling
distributions as shown in the first column of Table 3. Eventually, on the last round we obtain
the final Pareto set that comprises 31 POPs of projects. These portfolios contain from 18 to
28 projects.

The additional information that we have from ITA is that we are aware which of these
31 portfolios can be considered more certain than others. The degree of certainty for each
portfolio is directly related to the corresponding round that it enters the green set. In Fig. 5
we can see this picture very clear. The darker the portfolio’s background the more certain we
are about its Pareto optimality. From Fig. 4 we have at a glance which portfolios are more
robust given the uncertainty in the model’s parameters. The DR can exploit this information
in his final selection.

A challenging task is to incorporate the robustness information in the Pareto front. As it is
well known, Pareto front of a multi-objective problem is a graph of the Pareto set in criteria
space. When we have 2 or 3 objective functions the Pareto front can be easily visualized. The

Table 2 Characteristics of the 40
projects

Geographical regions Sectors

11 southern European enterprises 11 energy enterprises

10 northern European enterprises 9 industrial enterprises

13 central European enterprises 7 electrical equipment enterprises

6 Greek enterprises 13 enterprises from other sectors

Table 3 The results of multi-objective ITA from round to round

Computation time (sec) Green Red Grey

σ = 5 % Round 1 9178 4 0 394

σ = 4 % Round 2 8247 4 109 285

σ = 3 % Round 3 8592 5 215 178

σ = 2 % Round 4 7811 9 275 114

σ = 1 % Round 5 8685 16 324 54

σ = 0 % Round 6 7.3* 31 367 0

* For just one iteration as there is no uncertainty quantified by standard deviation
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Fig. 5 Coloring code for the 31
portfolios 1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 
25 26 27 28 29 30 31   

robustness of each portfolio can be expressed with a bubble chart, where the size of bubble
being the portfolio’s Robustness Degree (see Sect. 2).

The upper chart in Fig. 5 is the conventional Pareto front with 31 Pareto optimal solutions
(different portfolios). The lower chart embodies also robustness information. The robustness
information is visualized with the size of the bubble. The greater the Robustness Degree of
a POP (i.e. the earlier it enters the green set), the greater the size of the bubble. This kind
of information is essential for the DR as he can recognize regions of the Pareto front with
higher or lower robustness.
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Fig. 6 Visualizing robustness with bubble charts
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Fig. 7 The Robustness Chart

From this chart the DR can draw conclusions about criteria values of each solution (and
therefore assess the trade-off) as well as about the robustness of solutions.

In the specific case, it seems that the robust Pareto optimal solutions are in the region of
high EECR (horizontal axis). This also means that the values of EECR have less uncertainty,
and this is true, into consideration the detailed and precise way of their calculations.

Promising solutions are on the knee of the Pareto curve where the slope changes sharply
meaning that with a little sacrifice in one objective function we can achieve large improvement
in the other. A promising solution (portfolio) in our case is the one pointed with an arrow. This
means that a small compromise from the maximum EECR value leads to a great improvement
in NPV. Besides, as it is evident from the size of the bubble, the specific solution is among the
most robust. Conclusively, the robustness of the Pareto optimal solutions which is visualized
in Fig. 6 can be regarded as an additional characteristic that helps the DR to evaluate the
attractiveness of the obtained POPs.

The overall robustness of the final Pareto set can be measured using the RI. The Robustness
Chart and the RI of specific case can be depicted in Fig. 7. Applying Eq. (2) we calculate the
RI as the area underneath the Robustness Curve which is RI = 0.33.

Regarding all 40 projects, we can measure their presence in the Pareto front by counting
how many times each one of them appears in 398 initial Pareto portfolios and how many in
times in 31 final Pareto portfolios as shown in Fig. 8.

The initial Pareto portfolios correspond to maximum uncertainty. From Fig. 7 we can
extract information about the robustness of the individual projects. The closer they are the
two frequency rates (in the initial and in the final Pareto portfolios) for one project, the more
robust are the conclusions for the participation frequency of the specific project. From Fig. 7
we can observe that there are projects included in more than 90 % of Pareto portfolios (even
when maximum uncertainty is considered, i.e. in the initial round) like projects 7, 11, 13, 20,
21, 24, 35, 38, 39, 40) and other projects that never appear in Pareto portfolios (19, 23, 26,
29, 36, 37).

Moreover, based on the results, it can be noted that companies requesting for larger loans,
while having a low EECR index, tend to be rejected. On the other hand, companies asking
for smaller loans and having a high NPV index, tend to be approved.
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Fig. 8 Frequency of projects in the initial and final Pareto portfolios

5 Conclusions

Project portfolio selection is a challenging problem that sometimes involves multiple objec-
tives and multiple constraints (budget, policy, allocation etc.) that should be satisfied. The
combinatorial character of the problem implies the use of discrete optimization meth-
ods.

With the proposed methodology, banks and financial institutions do not take into consider-
ation only usual and traditional economic performance in order to finance a project, but also
additional ones, such as energy and environmental. The concept of this model can support
fruitful decision making towards sustainable transition towards green growth, fostering green
corporate responsibility. This is also in accordance with European Commission’s objectives
to foster firms to report related data in a transparent and explicit way. The proposed decision
support model can also enhance the appropriate absorption of Structural and Cohesion Funds,
assuring the energy and environmental responsibility of related firms.

In particular, in the presented case, two objective functions represent economic (NPV)
and energy and environmental (EECR) dimensions of the submitted projects. A MOIP model
is developed with these two objective functions and the exact Pareto set of project portfo-
lios is generated. Moreover, we consider the underlying uncertainty of objective function
coefficients (NPV of projects and EECR score of firms). For this reason, a multi-objective
version of ITA is introduced so that it can convey useful information to the DR regarding the
robustness of eventually obtained Pareto set.

The combination of Monte Carlo simulation and multi-objective programming via the
systematic framework of ITA provides us with fruitful insights regarding the robustness of
Pareto optimal solutions. The iterative approach gradually converges to the final Pareto set.
Useful information emerged from this process is not just the Pareto optimality of project port-
folios, but also their robustness in relation to perturbations in objective function coefficients
(degree of robustness). Specific measures are developed in order to assess the robustness of
the Pareto set as a whole as well as for each Pareto portfolio individually. We also obtain
information regarding the specific projects and their frequency in POPs. The hybrid combina-
tion of two methodological tools (Monte Carlo simulation and multi-objective optimization)
can effectively handle the specific green credit granting problem, where in addition to the
consideration of multiple criteria, alternatives must obey to particular policy constraints.
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Several issues can be considered for future research. Different probability distributions
can be tested for the objective function coefficients. In addition, the underlying uncertainty
may be extended to other model parameters beyond the objective function (i.e. to parameters
associated with constraints). Moreover, the combination of Monte Carlo simulation and multi-
objective optimization is a promising approach that may be used to address the robustness in
multi-objective programming problems outside the ITA framework. For future research we
can test the method in larger problems and with different probability distributions.
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Appendix

See Table 4.

Table 4 Projects’ data

EECR NPV (e) C ost (e) Sector Region

1 12.97 2500 5930 S1 R3

2 14.66 49,800 50,830 S1 R3

3 9.76 8300 5000 S1 R2

4 6.23 63,600 33,860 S1 R3

5 6.99 244,600 191,870 S2 R1

6 14.64 36,700 37,500 S2 R1

7 7.10 14,100 6070 S2 R1

8 11.92 22,500 23,030 S2 R4

9 11.81 261,300 190,000 S2 R1

10 21.59 455,000 422,670 S3 R2

11 13.64 696,800 415,000 S3 R1

12 13.59 53,900 39,330 S3 R1

13 3.86 238,900 95,330 S1 R4

14 9.62 3400 5630 S4 R1

15 40.00 600 7370 S4 R1

16 2.95 74,600 37,670 S4 R2

17 25.87 4900 30,100 S1 R4

18 5.25 12,500 5700 S4 R2

19 11.39 389,900 909,310 S4 R3

20 11.67 378,100 160,300 S4 R4

21 15.39 53,100 26,190 S4 R2

22 17.13 51,400 161,010 S4 R3

23 5.76 460,100 353,420 S3 R1

24 8.93 422,800 184,410 S1 R3

25 16.12 146,900 87,910 S4 R2
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Table 4 continued

EECR NPV (e) C ost (e) Sector Region

26 12.38 477,100 614,620 S1 R2

27 7.19 431,600 277,040 S1 R3

28 21.95 208,500 158,790 S3 R3

29 4.70 324,400 1,410,180 S2 R1

30 18.07 324,100 533,640 S3 R1

31 7.75 603,200 529,130 S4 R2

32 4.54 648,800 396,670 S2 R4

33 19.18 179,600 123,640 S1 R3

34 15.85 220,000 149,770 S1 R1

35 22.01 204,300 93,050 S4 R2

36 4.04 352,100 311,780 S4 R3

37 19.39 223,000 772,970 S3 R2

38 17.81 228,800 117,580 S2 R3

39 12.86 428,500 190,870 S4 R4

40 5.85 516,100 262,030 S2 R1
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