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A B S T R A C T

Whereas SDN (Software Defined Networks) provides the opportunity for the flexibility of network configuration,
the introduction of controller systems raises new issues about developing firewall system design, such as
controller attack, rule setup, and communication overhead for control messages. Especially, the delay and
overload for dynamic control of stateful firewall are serious bottlenecks. This paper examines the current
challenges and their origins, and presents a comprehensive solution to the key operational steps: topology-based
selective filtering rules for setup and maintenance stage, three-layer rule structure for in-switch flow tables, and
controller attack protection based on adaptive host connection tracking with multiple hashing queues named
FlowTracker algorithm. The experiment results using multiple OVS switches and virtual hosts in GENI testbed
demonstrate FlowTracker succeeds in monitoring all network connections and completely profiling host normal
routine with acceptable latency increment (170 ms). Moreover, by utilizing multiple request queues, the
proposed DoS attack detection algorithm reduce the response time to DoS 5 to 20 times less than using a single
queue.

1. Introduction

Software Defined Networking (SDN) [1] introduces the possibilities
of faster evolution, hardware independence and centralized-control
network. These objectives are realized by decoupling network control
functions from packet forwarding. This decoupling feature of SDN
impacts firewall system design, and enables the firewall logic and
policies of firewalls to be implemented in the controller side whereas
the switches execute the switching and filtering operation according to
the configured rules. However, the separation of control and data plane
causes an increase in the communication bandwidth and controller
load to set up the firewall rules.

In the case of a ‘stateless’ firewall, the controller can pre-install the
firewall rules in the flow table of each switch, so that the forwarding
switch can perform stateless packet filtering without interfering the
controller on runtime. On the other hand, a ‘stateful’ firewall requires
far more interaction between the control plane and data plane for
managing connections. OpenFlow SDN switches utilize the ‘flow’
concept [27]. The OpenFlow-compatible switches compare the packet
header with the matching fields defined in the flow to perform the
associated action with the flow. For the stateful firewall function, the
controllers have to track connections at the switches and transfer the
flow table configuration to the switches. As a result, communication

interaction between the switches results in controller communication
overhead and the increment of connection latency. Moreover, this
connection setup latency and controller overhead can be exploited by
malicious users, i.e., hackers, introducing a new type of DoS attack
toward the controller [11].

In this paper, we consider the increased communication and load in
the perspective of designing stateful firewall system in SDN. Recently
IETF proposed SDN based security architecture including firewall
function [31]. Our system firewall architecture complies with one
proposed therein. In both our solution and solution [31], switches
report to the firewall logic in controller about the unknown flows, but
beside examining the packet header and content as in [31], we also use
the connection tracking function of FlowTracker to verify whether the
packet belong to a valid and ongoing connection or not. Regarding the
DoS/DDoS detection, SDN security architecture [31] use flows’ inter-
arrival pattern while our solution use host connection routines to detect
possible attack. We believe our solution and [31] are compatible and
can run alongside to offer additional security measures. Through our
literature reviews, SDN Stateful firewalls were studied in only few
works [6,7,23,24,32]. The overall designs of stateful firewall are
proposed but in only simplified network scenario are considered.
Especially, the challenges in reducing controller load for tracking and
potential risks of controller attack are largely unexplored. To the best of
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our knowledge, there are no researches addressing these problems and
proposing countermeasures to improve the performance and resilience
of SDN stateful firewall.

The delay and overload for dynamic control of stateful firewall are
inherent and can be serious bottlenecks for stateful firewall design. It is
not likable that a single mechanism can solve this problem easily, and a
comprehensive set of solutions is proposed. For firewall setup and
maintaining stages, we use topology data for selectively and efficiently
installing and updating firewall rules in appropriate switches. To
differentiate between approved traffics, unidentified traffics and for-
warding traffics, we introduce three-layer structure for in-switch flow
table. To deal with the potential of DoS attack toward controller, we
exploit the connection statistics collected by stateful firewall for early
detecting of suspicious host behaviors. Finally, we deal with the DoS
mitigation issues by utilizing multiple queues with different priorities
for controller incoming requests to rapidly discard the whole group of
harmful packets and ensure the requests from trusted hosts are
processed with preference.

The future trends for network security suggest the next generation
firewalls to be more dynamic in policy enforcement and have the ability
to protect the network from the inside [22,33,35]. SDN technologies
are anticipated to provide new securities capabilities for the ordinary
network devices like switches. With the centralized firewall logic and
distributed firewall operation, the firewall policies could be implemen-
ted throughout the network at every ingress switch ports and on every
network links [34]. The potential for an SDN based next generation
firewall are huge, however an practical model and de facto standard is
not yet introduced. Also from [34] we can acknowledge that even
among the big players in networking industry and SDN focused
research organization like Cisco's Application Centric Infrastructure,
Open Virtual Switch, Floodlight and VMware NSX have yet to
introduce a SDN stateful firewall solution. We strongly believe that
more research efforts are much needed in the development and fully
realization the potential of SDN stateful firewall.

To ensure the feasibility of a SDN stateful firewall, we look back into
the OpenFlow specification [14], which is the core part of the whole
SDN standardization. The flow entry matching fields defined in the
OpenFlow specifications are tightly involved with packet filtering
process of switches, which in turn has impact on the operation of
SDN firewall. From one of the earliest version of OpenFlow (0.8.0),
only layer-2 packet header fields are defined, enable for merely
stateless layer-2 filtering. Toward version 0.8.9, IP addresses and
layer-4 protocol fields are added enabling the switch to aware of
connection characteristics between end to end hosts. Moreover, with
the proposal of the latest OpenFlow version 1.5.0, the inclusion of TCP
flag matching fields even allow stateful firewall to track the state of TCP
connection by the switch itself. It can be seen that the development of
SDN stateful firewall are in line with the development of SDN standard.
SDN standard evolvement naturally enable more and more possibility-
possibilities for a practical and efficient SDN stateful firewall.

With the acknowledgement for the ever-growing research interest
and industry attention for SDN stateful firewall, this research focused
on the most distinct issues of stateful firewall in SDN environment. A
set of novel solutions are introduced to tackle these issues, moreover
we tried to evaluate our solution in a as closed as possible network
setup. What we want to achieve is a practical SDN stateful firewall
solution that addresses the unresolved issues and take advantages of
the rapidly evolved SDN standard to maximize the potential of SDN
stateful firewall.

The structure of this paper is as follows. Section 2 discusses the new
challenges of stateful SDN firewall design. After that, Section 3 presents
our stateful firewall solution. Section 4 presents the simulation results
of the proposed stateful firewall system using GENI test bed and an
extended discussion on the results. The last section concludes the
results and proposes future works for SDN firewall design.

2. Background: challenges in sdn firewall design

The decoupling feature of packet-switching and control is the key
feature of SDN technology. The decoupling feature impacts operating
firewall function and network operations. The main issues in operating
SDN stateful firewall are discussed as follows:

– Configuration issues: According to Brent S. [19], TCAM is the most
expensive component of the switches. Because switch TCAM table
has finite capacity of flow entries [20], the flow rules need to be
carefully and concisely installed in the switches for firewall opera-
tion to avoid duplicate and redundant flows in multiple switches.
Moreover, the firewall rules should enable switches to differentiate
unidentified flows from approved ones to eliminate multiple reports
for the same connection.

– Connection tracking issues: There are prior works examining SDN
firewall utilizing Access Control List (ACL) [2–4]. However, ACL
only allows for stateless packet filtering. To achieve stateful firewall,
the connection state tracking need to be taken into account. The
protocols in transport layer are various, but can be divided into two
categories: connection-oriented and connectionless. Connection-
oriented protocols such as TCP have their connection states clearly
defined. In contrast, connectionless protocols like UDP has no
procedure of connection establishment or tear-down, which means
the state can only be tracked in pseudo manner. The difference in
characteristics requires adaptive tracking from stateful firewall.
Moreover, the inevitable additional latency for tracking should be
considered. Minimizing this delay is imperative to warrant the
feasibility of stateful firewall solution.

– Security issues: With the current stateful firewall solutions, the
controller is requested to process every single new connection. This
can be a potential security hole that hackers exploit for DoS attack.
The attacker host can rapidly emit a large number of packets with
different footprints so that the stateful firewall forwards all of them
to the controller. Not only the controller processing resource is
drained, but also the control plane-data plane channel can be
compromised. The SDN Controller attack is discussed in SDN
security surveys [10–13]. Scott-Hayward et al. [10] categorized
10/13 SDN securities risks affect control plane. The survey [11]
listed compromised controller attack as one of the new issues that
SDN network is exposed to. Sakir et al. [12] raised concerns about
DoS attack as a potential threat to both the controller and the
individual forwarding devices. In [13] Kreutz listed the controller
attack as the most dangerous attack vector in SDN network because
of the risk of compromising network operation. As a network
security entity, stateful should be equipped to protect the controller
against dangerous DoS attack. The goal of firewall design should be
to timely detect DoS attack symptoms and rapidly mitigate the
negative effects of DoS attack upon the controller.

Several researchers recently studied SDN stateful firewalls. Jake
C. et al. [6] introduced an OpenFlow-based prototype of SDN-
oriented stateful firewalls. They consider a simple scenario and
evaluate the latency caused by Stateful firewall when the number of
firewall rules controller keeps increasing. Similarly, Karamjeet et al.
[24] presented an implementation of stateful firewall and performed
an experiment of TCP and ICMP packets filtering on a simple
topology with two hosts and two switches. Changhoon et al. [7] also
examined the feasibility of stateful firewall in SDN. They proposed
the conceptual design and implementation of SDN stateful firewall
on top of Floodlight [25] controller framework. Their stateful
firewall solution means a complete application layer tracking, with
an additional NIC on the controller side.

Our observations on the limitations of the prior researches
[6,7,24] on SDN firewall design can be summarized as follows.

– While the structure and filter process of SDN stateful firewall are
described in detail, the setup phase including firewall rule placement
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and management in switches is largely unexplored. Only conceptual,
simple scenario with just one or two switches and two hosts are
considered. Network control protocol and algorithm should be
studied considering multiple switches and various numbers of hosts,
because the complexity and performance of network control usually
depends upon the size of networks (scalability issue).

– In the previous works [6] and [24], there is no consideration for
solving the current issues of SDN stateful firewall, especially
controller communication and processing overhead. The study [7]
expresses the concern about impacts of network performance with
the operation of stateful firewall. However, this work presents
neither the detail of the problems or propose any countermeasure.

– The previous study [6] evaluates the scaling behavior of average
latency when the number of firewall rules increases. A single latency
figure of stateful firewall is presented in [7]. Similarly, study [24]
measures the latency of stateful firewall to process the requests.
Whereas the result shows insight into the overall performance, the
controller performance variation factor in the case of different
numbers of simultaneous connections is not discussed.

With the main goal of analyzing and undertaking the challenges of
stateful firewall operating in the new SDN network paradigm, we try to
consider the more realistic network case which helps to address each
problem with the corresponding solution. To resolve the complication
of installing firewall rules for multiple switches and hosts, the topology
based approach our previous work [5] is used for selectively setting up
the firewall rules with the topology data maintained by controller. To
reduce the packet classification load, the switches process separately
the new traffic requests and authorized connection traffics. The novel
three-layer switch flow table structure is proposed to differentiate the
incoming traffic in switches and avoid the duplicate new connection
requests to controller. Additionally, the hybrid of ‘proactive’ and
‘reactive’ flow rules [9] are used to minimize the controller effort in
manipulating switch flow tables while the control flows are efficiently
updated for ongoing connection traffics. Furthermore to take into
account the difference of transport layer characteristics in connection-
oriented protocols (TCP) and connectionless protocols (UDP), ‘double-
action flow rules’ are used for tracking stateful protocols (e.g. TCP) and
predefined timeout flow rules are used for monitoring stateless
protocols (e.g. UDP).

Also in this work, we address the possibility of control plane attack
comes from heavy involvement of controller in the tracking operation.
An algorithm is developed to detect and mitigate the DoS controller
attack. Connection statistics collected by stateful firewall support
individual host connection profiling to detect the suspicious behaviors.
Multiple message queues with MAC address hashing are incorporated
in the request of processing operation of the stateful firewall to rapidly
discard the attacking packets and regain controller processing and
memory resource. To the best of our knowledge, this is one of the first
SDN controller side solutions to deal with DoS attack [28].

3. Flowtracker – a comprehensive sdn stateful firewall
solution

3.1. Connection tracking module

Compared to stateless networking, stateful networking requires far
more interactions between the controller and underlying switches [8].
The key operation of stateful firewall is to monitor all the connections
in the network. This is one of the main challenges of designing an
efficient stateful firewall solution to SDN. Our goal of FlowTracker is to
timely and accurately track the connection status, which means
tracking all connection states in real time with reasonable controller
communication overhead.

FlowTracker tracks the protocols at Transport layer (OSI layer 4) to
be fully compatible with OpenFlow protocol coverage and ready to be
deployed on any SDN system. Two representative Internet transport
protocols, TCP and UDP are considered. Because TCP and UDP behave
very differently in establishing and maintaining their connection,
FlowTracker tracks TCP and UDP in different ways so that this stateful
firewall solution can adaptively track wherever the connection states
are clearly defined (TCP) or vice versa (UDP).

Each flow entry represents one unique connection between two
hosts in the network. The header fields including all representative
information of the connection including source and destination MAC
address, source and destination IP, layer 4 protocol (TCP or UDP). The
‘Action’ field of the entry defines the action that the switch will perform
on the packets that matches this flow entry. The possible actions are
forwarding to specified port, forwarding to all port (flood), reporting to
controller or dropping the packet. The timeout fields can be specified so
that after this period if no traffic coming through the switch match this
flow entry then the entry will be removed. This is a predictive method
to remove redundant flow entries.

Fig. 1 illustrates our three-layer switch flow table setup. The
structure of flow table in each switch is formed by three layers. Each
layer is defined the group of flow entries with a similar properties and
states and purpose and handled differently (in priority) by the switch.
The first layer consists of the flow rules already approved by
FlowTracker controller, and processed with the highest priority. The
middle layer detects a new connection for establishing a flow entry, and
the lowest layer is to switch rules of forwarding the traffics in
intermediate switches. The incoming traffic to the switches will be
compared for matching in order from first to third flow entry layers.

Notably, each switch only maintains the connection forwarding flow
entries and connection detection flow entries related to the directly
connected to the switches itself, while the traffics coming from other
hosts will match with the switching flow entries. This structure works
well in separating between three kinds of flows: identified and
approved flows from directed hosts, new initiating flows, and immedi-
ate traffic flows coming from other hosts. Each switch only reports to
the controller about the connections initiated from the hosts directly
connected while the traffics from other switches will only match the
switching flows and be forwarded without reporting. Naturally, the
network will be divided to groups and each group will be managed and

Connection forwarding flow entries

Connection detection flow entries

Switching flow entries

SWITCH FLOW TABLE HEADER FIELDS ACTIONS TIMEOUT PRIORITY

Src
MAC

Dst
MAC

Src
IP

Dst
IP TCP . . . CONTROLLER

PORT X - 110

Src 
MAC

Dst 
MAC

Src
IP

Dst
IP UDP . . . PORT X 5s 110

Src 
MAC * * * * . . . CONTROLLER - 100

Src 
MAC

Dst 
MAC * * * . . . PORT X - 90

Fig. 1. Three-layer structure for switch flow table.
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monitored by one switch. The divide-and-conquer strategy helps create
a concise flow table by eliminating redundant flows in multiple
switches to handle a single traffic flow.

Connections detection flow entries and switching flow entries are
‘proactive’ flows [9], which means they are preset in the switches by
controller. On the other hands, connection forwarding flow entries are
‘reactive’ flow entries [9]. They are dynamically added to the switch
flow table when a new connection is reported and approved, and are
removed when the termination of connection is detected by the
controller. The hybrid usage of ‘proactive’ flows and ‘reactive’ flow
minimizes unnecessary flow table altering in switches while allowing in
time table update for controlling the new connections.

The tracking function focuses on tracking the two connection states:
initiation and termination. For tracking connection initiation, only the
packet does not match with any existing monitored connection is
forwarded to the controller, FlowTracker makes sure that only first
packet initiating the connection is reported. Therefore, the commu-
nication overhead is kept to minimum for tracking new connection. For
connection termination tracking, different methods are used to deal
with TCP and UDP connections. In case of UDP, timeout parameters
are used to detect expired traffic, so no overhead for tracking UDP
connection ending with the cost of the timeout delay. With TCP
connections, the switch has to send the packets continuously to
controller for examining TCP FIN flag, so the communication overhead
is existing in this case.

We consider a simple connection tracking scenario of two hosts
connected to two switches and a controller in Fig. 2. The details of how
the FlowTracker sets up and populates the three-layer flow table of the
switches will be elaborated in each step.

(0) During the setup phase, FlowTracker controller populates the
flow table of each switch with connection detection flow entries and
switching flow entries. As our previous work [5], FlowTracker uses the
topology data for selectively installing these flow rules. The topology
data is recorded as a data table where each entry will contain the host
MAC address and the switch that the host directly connects to. After
this phase, the flow table of switch 1 is populated as in Table 1.

(1) Host A sends the first packet to request a connection to host B.
(2) This packet matches the connection detection flow entry in switch

1 and is forwarded to the controller.
(3) The stateful firewall module in controller receives ‘Packet_in’

event. The following series of actions will be performed to examine
the packet:

– The packet header is compared with the existing connections
information maintained by FlowTracker.

– If not matched, the packet is classified as a new connection initiating
packet.

– The packet header is matched against the firewall rules
– If not matched with the violation rule, the connection is approved:

1. Connection information including all header fields data of the packet
will be added to ongoing connection list of FlowTracker. Each
connection is saved as an object in a connection list of
FlowTracker. The object will have the attributes corresponding to
the number of header fields from layer 2 to layer 4 of the connection
packet. All the header fields are included to make sure the unique-
ness of connection data.

2. By looking up the topology data table with the sender and receiver
MAC addresses, FlowTracker can find out the two switches imme-
diately next the sender and receiver for connection

3. FlowTracker sends ‘Flow_mod’ OF packet to both switches to add
connection forwarding entries to the flow table. The flow entries will
have matching fields specified from all the packet header fields.
However, to adaptively track connection-oriented protocols (TCP) or
connectionless protocol (UDP), there will be different configura-
tions:

• For TCP, the connection termination can be detected via FIN TCP
flag. So double actions will be specified so that FlowTracker can
continuously track the TCP packets FIN flag, while the packets are
sent to the destination at the same time

• For UDP, there is no definite sign to detect connection tear down. In
the flow entries the timeout will be set. Thus, after a specific time, no
UDP packets are sent then the flow entries will be removed and
connection ended.

(4) After the connection forwarding entry is installed in switch 1, the
packet matches this flow rule and is forwarded to switch 2

(5) In switch 2, the incoming packet will match switching flow entries
and is forwarded to host B.

(6) The replied packet is sent from host B
(7) In switch 2, the replying packet matches the connection forward-

ing flow entries and is sent back to switch 1
(8) The reply packet matches switching flows on switch 1 and is

redirected to host A.
(9) Now data can be exchanged between two hosts. In case of TCP

connections, a copy of sending packet from host A will be sent to
controller for detecting connection tear down.

(10) When the connection is ended:

• For TCP connections, FlowTracker detects the connection ended
when the FIN TCP flag is set as ‘True’. After that, FlowTracker will
send ‘Flow_mod’ OF messages to both switches to remove the
connection forwarding flow entries

• For UDP, after the connection is ended, connection forwarding flow
entries will be removed automatically due to timeout. Controller will
learn this when ‘Flow_removed’ event is sent from switches

• For both case, after detecting connection termination, FlowTracker
will remove the connection information in its on-going connection
list.

Fig. 2. Tracking process of FlowTracker.

Table 1
Illustrated switch flow table after FlowTracker setup phase.

Header fields Actions Timeout Priority

mac A * * … CONTROLLER – 100
mac A mac B * … PORT 1 – 90
mac B mac A * … PORT 2 – 90
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Our proposed FlowTracker utilizes new ideas to improve the
performance of stateful firewall:

• To the best of our knowledge, this is the first time topology data is
used in a SDN firewall to boost the efficiency of the SDN solution.
The topology map is used extensively in order to concise the switch
flow table. By selectively installing the control flow entries in each
switch, the setup phase for firewall is simplified and the number of
flow entries switch for maintenance decreases. Additionally, topol-
ogy data helps FlowTracker to examine the two switches managing
the new connection rapidly.

• The novel three-layer model for the switch flow table are proposed
toward well-categorized incoming traffics to the switches. With
hybrid approach of using reactive flows and proactive flows together,
FlowTracker can deploy essential firewall control flows to the switch
beforehand while the flows continue to deal with ongoing connec-
tions are updated dynamically.

• We explore two methods to continuously tracking the connection
efficiently. After connection detection, FlowTracker can keep track-
ing the connection without any additional delay. For connection-
oriented protocols, the dual-action flows allow tracking and for-
warding at the same time. For connectionless protocols, timeout is a
heuristic solution to minimize controller interaction and well-suit
the continuous characteristic of these protocols.

3.2. FlowTracker DoS attack detection/mitigation module

FlowTracker constantly maintains the connection information.
These connection statistics can be used to estimate the usual behavior
of each host. Thus, in case of significant derivation from that routine,
such as a sudden increase in new connection request in a short time,
the controller can be alerted right away of the potential attack.
Moreover, the originator of the attack can also be
identified.FlowTracker monitors the peak number of on-going connec-
tion for each particular host. From the cumulative peak history in
previous time slots, the baseline peak connection of each host is
estimated. If the number of connection requests from the host exceeds
a certain predefined degree from baseline, then it will be identified as
an attacker. To mitigate the damage of controller DoS, FlowTracker
maintains multiple message queues of different priorities. The incom-
ing requests from the hosts with history of attacker or showing
suspicious behaviors are put into ‘warning queue’ with lower priority
and are processed after all requests in ‘normal queue’ are handled. DoS
detection and mitigation is integrated into existing stateful firewall
function of FlowTracker. The modified structure is described in Fig. 3.

From single stateful firewall thread, FlowTracker is separated into
three independent threads with different tasks:

• Enqueue thread: putting the incoming request from data plane in an
appropriate queue or dropping the requests of the attacker.

• Stateful Firewall thread has three modules:

1. Stateful firewall module: tracking, monitoring and matching con-
nections against firewall policies

2. Statistic updating module: updating peak connection number and
comparing with baseline to detect attacker

3. DoS mitigation module: activating the DoS damage mitigation right
after the attacker is identified

• Statistic processing thread: being run at the end of each timeslot,
updating host reputation, recalculating baseline and updating peak
history

The parameters for the DoS detection and mitigation are defined as
in Table 2.

The details of three threads are discussed in the next subsections.

3.2.1. En-queue thread
The enqueue thread keeps listening to the ‘Packet_in’ event to catch

the incoming packets from data plane. This thread initiates two request
queues: a normal queue and a warning queue. Each queue is actually a
hash list of message queue with host MAC address as hash input.

Each host in the network, identified by its MAC address, is assigned
one from three reputation based on its behavior.

• ‘Attacker’ reputation for hosts that violate in this timeslot.

• ‘Suspicious’ reputation for hosts that violated in the previous time-
slot or reaches ‘warning cap’ in this timeslot.

• ‘Normal’ reputation for non-violating hosts.
Examining the reputation of the host, the enqueue thread can

make the decision to handle:

• Requests from ‘attacker’ will be dropped.

• Requests from ‘suspicious’ will be put into Warning queue.

• Request from ‘normal’ host will be put into Normal queue.

The process of this process is illustrated in Fig. 4.
Two queue lists with host MAC address hashing are used for DoS

mitigation:

• MAC address hashing enables FlowTracker to classify the incoming
traffics from different hosts. This results in a significant benefit that
the controller can discard the whole group of malicious packets from

Enqueue
thread

Statistic
Processing

thread

Stateful firewall module

Statistic recording module

DoS mitigation module

Stateful
Firewall
thread

Controller framework

Fig. 3. Overall FlowTracker system.

Table 2
Algorithm parameters.

Notation Meaning

Nh Max length of host peak history

hij Peak of ongoing connection of host i at j previous timeslot

pi Peak number of ongoing connections in this timeslot for host i

ci Current number of ongoing connections for host i

bi Mean baseline of ongoing connections for host i

si Suspend cap for host i

wi Warning cap for host i

SL Suspending deviation level
WL Warning deviation level
B Global baseline
S Global absolute suspend cap
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attackers at once and does not needs to check packet by packet. It is
our belief that this practice is effective in protecting the controller
processing and memory resource from the large amounts of DoS
packets.

• Two message queues with different priorities ensures that the legit
requests from clean hosts with no attack history are prioritized and
processed first. On the other hand, the requests from suspicious host
who has the history of being attacked or currently increasing its
number of ongoing connections over the baseline are only handled
after the normal queue is completely empty. Without the priority
queue mechanism, legit packets on the waiting line would get
dropped because of many malicious packets filling up the queue.

3.2.2. Statistic processing thread
The statistics collecting thread is activated at the end of each

timeslot to update the parameters including host peak history, host
baseline and limits, host reputation and global baseline.

STATISTIC PROCESSING THREAD
for each host in topo list:

if reputation[host_i_MAC] == “attacker”
reputation[host_i_MAC] = “suspicious”

else if reputation[host_i_MAC] == “suspicious”
reputation[host_i_MAC] = “normal”

if length h( [])i == Nh:

remove the oldest entry from h []i

add pi to h []i

b avg h k= ( ∑ [ ])i k 1
length h

i=
( )i

s b SL= *i i
w b WL= *i i

B avg b= ( ∑ )i

First Statistic Processing thread updates the reputation for each
host:

– The attacker in current timeslot will have “suspicious” reputation in
the next timeslot.

– The “suspicious” host with no violation in this timeslot will have its
reputation reset to “normal”.

As can be seen in Fig. 5, the peak number of ongoing connection
for each host in previous Nh timeslot will be about average to
produce the baseline bi of this host in next timeslot.

– Warning cap wi is the product of baseline bi and a predefined
warning derivation level WL.

– Suspend cap si is the product of baseline bi and a predefined suspend
derivation level SL.

When the number of connection requests from host exceeds
warning cap or suspend cap, host reputation will be marked as
“suspicious” or “attacker” respectively. The global baseline B is about

average from the baseline sum of all hosts. The global baseline will be
assigned to the newly join to the network host with no connection
history.

There is a trickier situation when the attacker deliberately increases
the number of peak connections gradually over several timeslots in
order to reach a high baseline number eventually. To prevent this we
introduce Global absolute suspend cap S applied for all hosts in the
system. Regardless of individual suspended limit, when a host reaches
this number of peak connections, it will be treated as attacker.

The baseline calculation only takes a summation and average of
collected peak connection values so the calculation complexity is O(n2).
However, the number and saved values are small and the Statistic
Processing thread runs independently with the main firewall thread so
there is no significant performance degradation from statistic calcula-
tion.

3.2.3. Stateful firewall thread
This thread bears the main function of stateful firewall described in

the previous section. In addition, Stateful firewall also continuously
updates and evaluates the peak connection record for each host.

STATEFUl FIREWALL THREAD
while (true)

if normal queue is not empty:
current_packet = pop a packet from normal queue

else if warning queue is not empty:
current_packet = pop a packet from warning queue

else
continue

if packet violates firewall policies:
continue; // Drop

else if packet is for initiating new connection:
c 1+=i
if c p>i i:

p c=i i

if c S≥i or c s≥i i:
reputation[host_i_MAC] = “attacker”
b B=i
s b SL= *i i
w b WL= *i i

drop all further packets from host i in normal
and warning queue

else if c w>i i:
reputation[host_i_MAC] = “suspicious”

record new connection
install forwarding rules

continue

Stateful firewall thread will update the current number of connec-
tions ci of the particular host as soon as the new connection is detected

Fig. 4. FlowTracker multiple hashing queues structure.
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and approved. Peak connection value is also updated accordingly. It is
then compared with Global Absolute Suspend cap S, host suspend cap
si and host warning cap wi. If pi exceeds S or si, the host is ruled out as
attacker. FlowTracker performs the following countermeasures:

– Change host reputation to “attacker” so further incoming packets
from the host in this timeslot will be discarded.

– Discard the rest of incoming packets from host i in normal queue
and warning queue.

Reset the connection baseline/current peak pi of host i to global
baseline B to reduce the connection cap of host i.

4. Experiment result

The experiment is set up and performed on GENI test bed [15]. The
linear topology contains five OVS switches [17], each switch connecting
with four XEN VM hosts. Links between switches and hosts have
bandwidth of 100Mbps. FlowTracker runs as an extension on top of
POX controller framework [16] which supports OpenFlow protocol
version 1.0. Hping3 software [26] was used to generate TCP and UDP
packets.

We focus on examining two aspects: the effectiveness of DoS
detection and mitigation function measured by a number of attack
packets processed/rejected and time to discard all malicious packets in
controller, the performance of FlowTracker and its additional con-
troller processing overhead including connection latency and controller
service rate. DoS mitigation result and service rate are compared with
those of single controller request queue as in normal case while latency
result is measured against the latency of LearningSwitch module.

4.1. DoS prevention testing

We set up an attack host and a normal host. The attacker and
normal host send a number of TCP SYN requests in each timeslot. The
number of requests per time slot of normal host is static throughout all
timeslots while that of attacker suddenly increases and decreases to
simulate bursting TCP SYN flood attack. The attack is in pulse pattern,
repeating five normal timeslots, then followed by five attacking time-
slots. This attack pattern is shown in Fig. 6 and the parameters for this
experiment is listed in Table 3.

4.1.1. Attack detection and prevention
Fig. 7 shows the number of processed packets and rejected packets

from attacker host by controller in each timeslot.
It can be observed that in the timeslot when the attacker host

follows normal behavior with the number of new connection request
under host suspend cap, all the requests are accepted. On the other
hand, during the attack wave timeslots, FlowTracker is able to reject all
of the requests exceeding the suspending limit. Because SDN firewall
design is still in infancy stage, there is yet a de facto solution to be used
as a baseline to evaluating how effective FlowTracker is in rejecting

attacking packets. However the result in Fig. 7 could indicate the
feasibility and practicality of FlowTracker in protecting the controller
from harmful incoming requests.

4.1.2. DoS mitigation effect
The DoS mitigation function of FlowTracker utilizes multiple

hashing queues with different priorities to rapidly discard malicious
packets and reduce processing delay for legit users. To test this feature,
we compares the performance of FlowTracker running multiple hash-
ing message queues against FlowTracker with a single message queue.
The mitigation time is defined as the duration from the moment DoS is
detected until all the malicious packets are discarded from controller
queue(s). The mitigation time is recorded for all attack waves.

With multiple hashing queues, FlowTracker only has to check the
queues corresponding to MAC address of attacker in normal and
warning list and removed all of them at once. In contract, when using
a single queue, FlowTracker has to check each individual packet to
match the attacker info. The longer these unwanted requests present-
ing in the queue, the more overwhelming processing and memory
resources controller has to spend. Moreover, the high number of these
malicious packets could have negative effects upon legit packets such as
additional delay and higher chance of getting dropped due to overflow
queues. As can be seen in Fig. 8, mitigation times when using multiple
hashing queue range only from 0.3 to 0.85 ms. Even when the number
of attack requests goes as high as 600, the mitigation time is still less
than 1 ms. For the single queue, the mitigate time is 10 to 25 times
higher, from 2.5 ms in case of 100 attack requests to 21 ms when the
number of attack requests increases to 600. It can be seen that using
multiple hashing queues is more effective in DoS mitigation than using
single message queue.

In the next evaluation, we focus on the impact of different priority
queues on the processing of legit requests in case that DoS happens.
The total processing time for requests coming from normal host is
requested. The total processing time marks the duration it takes
FlowTracker to process all requests from normal host in each timeslot.

From Fig. 9, it can be observed that the processing duration for
normal user using one queue is mostly stable and only slightly
increases toward the ends align with the increment of total request
number. It can be noticed that the incoming packets arrives in chunk
and all the requesting packets from one host come at once, followed by
those of other hosts. This is different from our presumption of mixing
arrival between two hosts and can be explained due to slightly
difference in delay from packet generating, link traffic and very fast
arrival rate etc. Naturally, one queue FlowTracker itself will process all
the requests from one host to another.

On the contrary, using multiple hashing queues with round-robin
queue lookup allows FlowTracker to process requests from both hosts
in turn. Hence, the processing duration for normal user during the time
slots with no attacks is double those of single queue. A repeating
pattern from the second timeslot of attacking period to the first
timeslot of cool-down period can be observed. The processing dura-
tions for normal user greatly decrease and match the duration of single
queue. During the second attacking timeslot (6, 16, 26, 36 ,46), the

Fig. 5. Connection baseline estimation.
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attacker is identified and marked as suspicious host at the first
attacking timeslot and all the requesting packets from attacker are
put in warning queue. Hence, the requests from normal host in normal
queue are processed first, which results in halving the processing
duration. On the other hand, at the first timeslot of normal period (11,
21, 31, 41), the processing duration for normal request does not pick
up because the attacker host still have suspicious reputation and its
requesting packets still have lower priority.

After that, in the next timeslot the attacker reputation is reset as
normal on the next timeslot because of no violation, thus, the
processing duration is doubled with the in-turn packet lookup. It can
be concluded that FlowTracker is able to lower the processing priority
of violated hosts to reduce the latency and dropping probability for legit
request. Moreover, the penalty is automatically removed after the
attacker host shows no suspicious behavior in the next timeslot. In this
experiment, the penalty period is only one timeslot; however, if there is

demand for higher security level, the operator can dynamically change
this period to keep the attacker in the suspicious list for a longer time.

4.2. Performance testing

Stateful firewall performance has previously been evaluated in [6].
Jake et al. interests in examining the latency increment when the
packet arrive rate and number of firewall rules varies. In this work, the
aim is to explore a different aspect: the connection latency and
controller service rate fluctuation due to the increasing number of
simultaneous requests. We compare the performance of SDN network
running FlowTracker with the network running solely LearningSwitch
module. Due to the simple learning switch logic of LearningSwitch
module, after the set up face to populate switching rules in each switch,
LearningSwitch bears no controller communication overhead.
Comparing FlowTracker with LearningSwitch performance eliminates
the similar factors that affect the connection latency such as link traffic
and bandwidth, switching packet processing time etc. to give us the
clear idea of the connection latency caused by additional stateful
firewall logic.

Because of different handling methods in FlowTracker, we per-
formed separate tests for connection-oriented protocol – TCP and
connectionless protocol – UDP. Ten hosts were set up as servers and
the other ten hosts as clients. To generate traffics, the clients send
multiple requests to corresponding servers simultaneously.

For TCP, we measured the total download time for a small file via
HTTP, for UDP the round trip time of sending and replying a UDP
packet is recorded. These figures reflect the latency increment when the
number of concurrent connections goes up.

Fig. 6. SYN Flood attack pattern.

Table 3
Experiment parameters.

Parameters Value

Simulation duration 50 timeslots
Singe attack wave duration 5 timeslots
Packet arrival rate 100,000 packets/s
Nh 5

WL 125%
SL 150%
B 100
S 200

Fig. 7. Number of accepted and number of rejected attack packets.
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Beside the controller communication overhead, the service rate of
controller is also measured during each request periods in case of using
a single queue and using multiple hashing queue to get a better idea of
how much using multiple message queues affects controller perfor-
mance.

4.2.1. Controller communication overhead
Fig. 10 shows that the average TCP connection duration of

FlowTracker is considerably higher than those of LearningSwitch
module. By subtracting LearningSwitch number to FlowTracker num-
ber, we obtain the net latency caused by controller communication
overhead. During the connection increasing period from 10 to 200, the
controller communication overhead rises from 24.1 ms to 152.6 ms.
From the range of 10 to 130 simultaneous connections, the difference
is quite stationary in the range of 20–30 ms. However, after that time,
the latency increases rapidly with the connection number from 140–
200; especially with 190 and 200 connections, the latency is 3–5 times
larger than the like of connections in the range of 10–130.

The difference of the FlowTracker-single queue and FlowTracker-
multiple queues is significant. Although FlowTracker-multiple has a
higher peak, the sum average latency of both are similar. It can be
explained that the additional memory and processing for operating
multiple queues is not significant within this range of connection
number. The same symptoms can be seen with the Fig. 11 of UDP
connection latency comparison. One observation which can be made
from Fig. 11 is that after the number of on-going requests surpasses
110, the mean connection times are highly fluctuated, and even the
maximum latency reaches the peak of 160 connections, greater than
that of 200 connections.

4.2.2. System loads penalty of multiple queues
Regarding the possible system load of multiple queues, the service

rate of FlowTracker 20-queue and single queue are compared. All 20
hosts are scheduled to send multiple TCP SYN packets simultaneously,

the service rate of FlowTracker is measured in the process of handling
all the requests. The service rate for FlowTracker using single queue is
recorded for comparison.

Fig. 12 describes the service rate variation when FlowTracker
processes from 100 to 800 pending requests. The service rates of
multiple queues and single queue does not show significant difference.
The results imply that using multiple hashing queues in FlowTracker
provides DoS mitigation and requests balancing at a small cost of
additional memory and no significant performance tradeoff. However,
Fig. 12 also shows a significant drop in service rate at the high number
of request. After checking the performance of each atom process, it can
be observed that the most time-consuming operation in FlowTracker
process is one that checks if the new request belongs to existing
connection. Because of multiple header fields extracting and compar-
ing, this action will take considerable processing time, especially when
there is a high number of on-going connections in the connection data
of FlowTracker.

4.3. Discussion and research limitations

4.3.1. Accuracy of estimated routine
FlowTracker uses the peak number of on-going connections in one

timeslot to track host behavior. However, to avoid false alarms, the
network characteristics need to be taken into consideration to decide
the sampling frequency. For example, timeslot length for the servers
that runs continuously could be set to one day to reduce data collection.
On the other hand, with common office computer timeslot length can
be flexibly changed between office hours and standby hours. Further
speaking, host peak connection tracking can be used to profile the host
behavior in the specific hours of the day. Generally speaking, the
advantage of centralized high-level network control in SDN greatly
supports network operators to dynamically configure the tracking
period.

Fig. 8. Mitigation time comparison.

Fig. 9. Processing time for normal host.
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4.3.2. Tracking scope and impact on network performance
There are concerns about the practicality of stateful firewall and its

impact on network performance when all the connections are reported
to the controller [7]. However, the author argues that it is not always
necessary to report all the connections. In FlowTracker solution the
author picks two common protocols TCP and UDP for tracking in
general explanation. Nonetheless, the tracking scope can be narrowed
or extended to fit the types of connection the network operator
interests in. For example, FlowTracker can specifically track HTTP
requests initiating from subnet 10.0.0.x/24 only. Operating stateful
does not need to be an excessive delay. In other words, the tradeoff
between security level and network performance can be well adjusted.

4.3.3. TCP tracking overhead
Current handling of FlowTracker still requires continuous forward

traffics from one side to the controller to detect connection tear down.
Although this does not cause connection delay, additional controller
communication and processing overhead is inescapable. The reason for
this inefficient practice is that the FlowTracker is built upon POX
controller framework which only support for OpenFlow 1.0. This
particular version does not support TCP flags in the list of matching
fields. To the best of our knowledge, the current on-going draft
OpenFlow 1.5 specification has added the support for matching TCP
flags. However, at the moment this work is conducted only Ryu
controller [18] and OpenvSwitch [17] just partially support for OF
1.5, and the hardware switches capable of handling OF 1.5 are still in
the development program. The author would like to revisit this issue
when the OpenFlow 1.5 is mature and supported well enough.

4.3.4. False positive case
Of course there is possible case when the host legit changes its

routine and the number of ongoing connection increases significantly.

With the DoS detection logic of FlowTracker, this host will be marked
as attacker. However as explained in the 3.2.3 section, the mitigation
steps performed by FlowTracker only reduces the connection number
the attacker host can maintain and lower the new connection request
priority from the host while the previous approved connections from
the host are still carried on. So even in the false positive case, the host
network communication is not completely shut down. Moreover, since
the attacker record and mitigation policy are on the controller side, the
network operator can remove the attacker status and/or update the
limited connection baseline of the host easily and rapidly. The changes
are made on the software side so it's much simpler than manually
configuration on the network hardware devices.

4.3.5. TCAM over populated
In a switch, TCAM (Ternary Content Addressable Memory) is the

most expensive component of the commodity switches [19] and TCAM
lookup is very power and memory consuming. TCAM table has a finite
capability of flow entries [20]. FlowTracker needs a separate flow entry
in the switch for one connection forwarding, so that the connection
forwarding entries could fill up the switch TCAM table as the number of
ongoing connections in the network increase. Considering an example
of an OpenFlow switch NEC PF5820 with maximum 4000 12-tuple
flows, when a host maintains around 200 simultaneous connections,
each switch can manage up to 20 hosts (given that the connection
detection and switching flow entries are only layer 2 entries that take
much less space [21]). This can be sufficient for medium size networks,
however, the scalability of FlowTracker given various network sizes and
data plane configurations still needs more investigation. Moreover, to
solve this problem thoroughly, we have to find a solution for how to
concise and group the connection forwarding entries in FlowTracker.

Fig. 10. Connection latency comparison (TCP).

Fig. 11. Connection latency comparison (UDP).
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4.3.6. Multiple attackers – multiple protecting targets
FlowTracker demonstrates its effectiveness in DoS detection and

migration, i.e., a single attacker case. However, in DDoS attack, where
the hacker orchestrates a large number of hosts to attack the target
system, is more complicated because of multiple attacker involvement.
As a quick solution, by summing up the peak connection statistics of all
hosts in the network, we could get the baseline requests activity for the
controller and detect the abnormal increment. However, since there are
multiple hosts participating in the attack, it is harder to detect if a host
shows significant excessiveness in connection requests. Therefore,
FlowTracker could detect when the controller under DDoS with little
additional computation overhead. However, to pinpoint exactly the
hosts take part in DDoS attack is still an unsolved issue.

In this work, FlowTracker only focused on protecting the controller
from DoS attacks. However in many situations, the hackers might
target a server in the network. To add the support for host DoS
detection, FlowTracker not only needs to maintain the peak requests
from one host but also the peak requests to that host in its statistic.
Similarly, if there is an abnormal surge in the number of requests
toward the server, FlowTracker can be alerted and perform actions.
Then again this feature would require further statistics recording and
processing in the controller.

5. Conclusion

In this paper, we studied the challenges of and solution to stateful
SDN firewall. The delay and overload for dynamic control of stateful
firewall are inherent and serious bottlenecks for stateful control. It has
been shown that the challenge can be overcome in a significant level by
the proposed algorithms, topology-based selective filtering rules for
setup and maintenance stage, three-layer rule structure for in-switch
flow tables, and FlowTracker.

Importantly, FlowTracker is able to set up the firewall flows
efficiently, eliminate redundant flows and duplicate new connection
reports, monitor the states of both connection-oriented and connec-
tionless protocols. The novel DoS detection and mitigation solution
incorporates well with FlowTracker while no additional network
components or changes in data plane side are required. Our simulation
results show that FlowTracker can achieve adaptive connection track-
ing in real time, complete profile host normal routine and immediate
detection of suspicious behavior, and 5–20 times faster in DoS
mitigating than the current controller setup with single message queue.

The new OpenFlow version 1.5 adds TCP flag matching fields in
flow rules, which could be utilized to reduce the number of commu-
nication requests between controller and data plane for connection
tracking. In this work, we focused on protecting the DoS attacks
towards controller, but traditional DoS and DDoS attack towards an
application server, such as a web server [29,30] is important issue to
study. Thanks to the centralized architecture of SDN network, DDoS
attack detection become much easier than in non-SDN network.
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