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Abstract—Surface plasmon polariton (SPP) nanolasers have re-
cently emerged as promising candidates for generating a coherent
light source in nanophotonic integration circuits. The properties
of SPP nanolasers, such as group velocity, mode area, modulation
speed, and threshold performance, can be manipulated using a dis-
persion relation. In this study, we investigated the characteristics
of SPP nanolasers operated near and far from the SP frequency.
Our results indicated that SPP nanolaser performance can be sig-
nificantly influenced by manipulating the dispersion relation.

Index Terms—Aluminum, nanowire, plasmonic laser, silver, sur-
face plasmon, zinc oxide (ZnO).

I. INTRODUCTION

THE use of small optoelectronic devices with low power
consumption for realizing high-density integrated opto-

electronic circuits has attracted increasing attention in recent
years [1]–[3]. Although current semiconductor device manufac-
turing technology enables the development of nanoscale semi-
conductor optoelectronics, such devices are restricted by the
optical diffraction limit and cannot be downscaled further. Re-
cently, a new type of nanoscale cavity has emerged that involves
the localization of plasmons at the metal–insulator interface.
These localized modes at the interface are referred to as surface
plasmon polaritons (SPPs) [4]. The use of diffraction-unlimited
plasmons has been successfully demonstrated in applications
such as super-resolution optical microscopy, photolithography,
photovoltaics, chemical sensing, and nanolasers [5]–[9]. An ex-
tremely small volume of field occupation at the microscale occu-
pation at the microscale and nano-scale for potentially scalable
photonic devices provides a new avenue in modern quantum
information technologies [10]–[12].
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Recently, semiconductor–insulator–metal (SIM) waveguides
have become one of the most frequently employed plasmonic
structures that confine the electromagnetic field beyond the op-
tical diffraction limit. Currently, SIM structures are widely used
in nanolasers at different wavelengths from the ultraviolet (UV)
to visible regions [13]–[18]. By carefully selecting a material
combination with appropriate insulator thickness, the distribu-
tion of the electromagnetic field in SIM structures can be com-
pressed to a subwavelength scale. An extremely small mode
distribution enhances the interaction between light and matter
by increasing the Purcell factor, which is beneficial for laser
operations in a nanoscale cavity [13]–[16]. Similar to any mi-
crocavity, these confined modes can interact with other exci-
tations such as excitons in semiconductors. Therefore, energy
can be amplified in nanoscale cavities in a manner similar to
that in traditional microcavities. Several studies have conducted
laser operations in SIM structures, with a gain medium placed
on a metal film and separated by a thin dielectric layer to com-
pensate for ohmic losses [8], [13]–[16], [19], [20]. The most
widely used gain media for SIM structures are semiconductor
nanowires (NWs), which can naturally form a Fabry–Perot-type
SP cavity.

Recently, nanolaser development through SPP manipula-
tions has attracted increased attention in the construction of
ultra-compact integrated optoelectronic devices and systems
[21]–[23]. The characteristics of SPPs can be determined by
the dispersion relation of devices, which is influenced by the
material’s permittivity and structural parameters [24]–[28]. An
alternative method for manipulating the dispersion relation of
SPP nanolasers relies on the thickness control of the insulation
layer between a semiconductor and a metal thin film [29]. How-
ever, the manipulation range of the dispersion relation is limited
by material characteristics. To investigate the characteristics of
SPP nanolasers with substantial dispersion differences, we se-
lected SPP nanolasers with silver- and aluminum-based thin
films to analyze the differences between SPP lasers operating
near and those operating far from the SP frequency. Because Ag
has an interband transition at 350 nm, the dispersion relation of
SPs near 370 nm is bent [18]. To understand the characteristics
of SPP nanolasers operating near and far from the SP frequency,
we selected a semiconductor with a bandgap near 370 nm as the
gain medium. Aluminum and silver are not only useful for vis-
ible and UV optoelectronic applications but also provide an
excellent test bed for exploring quantum plasmonic effects [30],
such as ultrafast modulation [17], strong interactions between
excitons and SPs [18], and high characteristic temperatures
[31]. For highly reliable SPP laser operation, ZnO NWs provide
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Fig. 1. ZnO SPP nanolaser with a SIM structure.

exciton binding energies greater than the thermal energy at room
temperature (25.6 meV) and strong oscillation strength for in-
teracting with SPPs [32]. Therefore, ZnO NWs are the most
suitable material for stable SPP laser operation under different
operating conditions.

II. DEVICE STRUCTURE AND SIMULATION

In this study, we evaluated SIM structures with ZnO NWs
placed on different metal substrates (see Fig. 1). Therefore,
SPs can be localized at the metal–dielectric layer interface. The
oscillation electrons in metals can couple with the excitation
electromagnetic wave and form SPPs. For SPPs with large wave
vectors, the operation frequency approaches the characteristic
SP frequency [33]:

ωsp =
ωp√

1 + εd
(1)

where ωp is the plasmon frequency of the metal and εd is
the dielectric constant of the material contact to the metal
surface. According to (1), the SP frequency for Al (ωAl

sp =
1.4 × 1015 Hz) is far from the ZnO bandgap energy frequency,
whereas that for Ag (ωAg

sp = 8.3 × 1014 Hz) is near the ZnO
bandgap energy frequency (ωZnO

ex = 8.6 × 1014 Hz). To il-
lustrate the differences between SPP nanolasers operated far
from and those operated near the SP frequency, the fundamental
dispersion relations of ZnO NWs (side length, d = 35 nm) placed
on SiO2 (thickness, h = 7 nm) with different metal substrates
(Al or Ag) are shown in Fig. 2(a) and (b), and the corresponding
group indices calculated as ng = c0dω/dβ were 5.7 and 79,
respectively, where c0 is the speed of light in vacuum. To inves-
tigate the field distribution, we used the finite element method
[34]. For devices with Al substrates, the SP frequency was at
least 1.5 times higher than the ZnO bandgap energy frequency;
therefore, the electric field partially dissipated into the air [see
Fig. 2(c)]. By contrast, Ag had a strong material dispersion rela-
tion in the UV region; therefore, the SP frequency was near the
ZnO bandgap energy frequency. Furthermore, strong plasmonic
effects reduced the mode profile into extremely small regions
compared with those in Al samples [see Fig. 2(d)]. The SPs were
confined at a wavelength of 370 nm with an effective mode area
of 4.8 × 10−3λ2 for Al and 1.3 × 10−3λ2 for Ag.

Fig. 2. Dispersion curve of fundamental SPP modes of (a) Al-based nanolaser.
(b) Ag-based nanolaser. (c) and (d) show the electric field distributions of
fundamental SPP modes inside nanolasers.

III. EXPERIMENTAL RESULTS

A. Device Fabrication and Measurement Setup

We used GaAs (100) substrates for depositing Al thin films.
After the substrate was treated with rapid thermal annealing, a
200-nm-thick aluminum film was deposited through molecular
beam epitaxy onto the substrate [35]. For the Ag-based ZnO SPP
laser, we used an electron-gun evaporation system to deposit a
200-nm-thick Ag film on a silicon (100) wafer. After the metal
film was deposited, a 7-nm-thick SiO2 film was deposited using
an electron-gun evaporator. To identify the precise locations of
individual NWs on the metal film, we used a gold pattern on
the SiO2 insulation layer. Single-crystalline ZnO NWs with an
average side length (d) of 35 nm were fabricated using the hy-
drothermal method [36] and placed onto the patterned substrate
after insulator deposition. To compare the optical performance
of ZnO NWs on Al- and Ag-based substrates, both samples were
placed into a cryogenic chamber with a controlled ambient tem-
perature. The fabricated device was mounted in a cryostat cham-
ber, and the excitation beam was split by a 50:50 dichroic mirror
to monitor the power of the incident beam. The beam generated
by a Nd:YVO4 355-nm pulse laser, with a 0.5-ns pulse width
and 1-kHz repetition rate, was launched into a 100× near-UV
high-magnification objective lens (numerical aperture = 0.55)
with a focal spot size diameter (D) of 15 μm to focus on a single
NW. To measure the polarization of emission signals, a polarizer
was placed in front of the fiber. Photons emitted from the ZnO
SPP nanolaser were collected by the same objective lens and
transmitted through a UV optical fiber into a monochromator
with a spectral resolution of 0.2 nm (see Fig. 3). Because the
coordinates of a single NW were already verified through scan-
ning electron microscopy, we used a white lamp to illuminate
the device surface and capture the location of the single NW
using a CCD camera on the monitor. To confirm that the signals
detected by the spectrometer originated from a single ZnO NW,
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Fig. 3. Micro photoluminescence spectroscopy. Samples were mounted into
a temperature-controlled vacuum chamber and optically pumped by the third
harmonic generation of a Nd:YVO4 355-nm pulse laser at different ambient tem-
peratures. Incident beams were focused by a 100× near-UV infinity-corrected
objective lens with a numerical aperture of 0.55. Inset shows the emission profile
of the ZnO NW.

Fig. 4. (a) Measured spectra at a laser pumping power density of
10–62 MW/cm2. (b) L–L curve of the emission peak at 370 nm. The solid
lines represent the fitted results calculated using simplified rate equations. The
extracted spontaneous coupling factor (β) is 0.1. (c) Linewidth of the emission
peak versus pumping power density. Inset shows the corresponding polar plot
of emission intensity. The polarization direction of the lasing mode is parallel
to the NW.

a laser profiler was used to record the emission profiles of the
NW (inset, Fig. 3).

B. Optical Properties of the Devices

Fig. 4(a) shows the spectra and lasing characteristics of ZnO
NWs placed on Al with a 7-nm SiO2 insulation layer at 77 K.
Lasing emission was observed with a linewidth narrowed from
6 to 0.4 nm. A nonlinear behavior of the light in–light out (L–
L) curve with a pumping threshold (Pth ) of 27 MW/cm2 was
clearly observed in the Al sample. The lasing mode was highly
polarized in the direction parallel to the NW [inset, Fig. 4(c)].
The direction of polarization indicated that the observed modes

Fig. 5. (a) Measured spectra of the Ag sample at a laser pumping power density
of 223–560 MW/cm2. (b) L–L curve of the emission peak at 370 nm. The solid
lines represent the fitted results calculated using simplified rate equations. The
extracted spontaneous coupling factor (β) is 0.2. (c) Linewidth of the emission
peak versus pumping power density. Inset shows the corresponding polar plot of
emission intensity. The polarization direction of the lasing modes is parallel to
the NW. (d) Peak positions extracted from the emission spectra. (e) Calculated
group index above the threshold.

belonged to the fundamental SP mode. Due to smooth changes
of the dispersion gradient, single-mode operation was achieved
by selecting material combinations (ZnO/SiO2 /Al) with an SP
frequency far from the operation frequency (<0.6 ωSP ).

For samples having an operation frequency (0.97 ωSP ) near
the SP frequency, multiple longitudinal modes were observed
under a higher pumping density [see Fig. 5(a)]. The broad PL
linewidth narrowed to 0.5 nm at a pumping threshold (Pth ) of
260 MW/cm2. The observed mode spacing was approximately
1 nm [see Fig. 5(d)], and the corresponding group index, 65, can
be calculated as Δλ = λ2/(2ngL) [see Fig. 5(e)]. Such large
group indices are mainly caused by drastic changes in the dis-
persion relation near the operation frequency. The polarization
direction of all peaks [see Fig. 5(a)]was parallel to the ZnO NW
direction, which is consistent with the fundamental SP mode.
Therefore, when a material combination (ZnO/SiO2 /Ag) with
an SP frequency near the operation frequency (0.97 ωSP ) is se-
lected, the highly dispersive SP mode leads to an extremely large
group index with mode confinement in an ultra-small region.

To further understand the differences between SPP nanolasers
operated far from and near the SP frequency, we calculated the
transparency gain as gtr = 1/(Lp · Γwg ), which is defined as
the gain for which energy can travel through the SIM waveguide



4601907 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 23, NO. 6, NOVEMBER/DECEMBER 2017

Fig. 6. (a) Calculated normalized transparency threshold gain of the fun-
damental SPP mode in ZnO NWs placed on Al/SiO2 and Ag/SiO2 films.
(b) Average threshold quarter box chart of 13 NWs on different metal sub-
strates with a 7-nm SiO2 insulation layer.

without dissipation. The propagation length (Lp ) was defined
as the distance at which energy falls to 1/e and was determined
using the imaginary part of the mode propagation constant kz

as Lp = 1/[2Im(kz )]; Γwg is the waveguide confinement fac-
tor of the SIM structure, which indicates the overlapping of
the portion of a mode with the gain medium and is defined as
the ratio of the modal gain to the material gain in the active
region. This factor can be expressed as previously described
in [37] as follows: Γwg = (na/2η0)

∫
Aa

|E(ρ)|2dρ/Pz , where
E(ρ) is the electric field expressed in cylindrical coordinates;
Pz is the power flow in the propagation direction; na is the
refractive index of the gain medium; Aa is the region of the
gain medium; and η0 is the intrinsic impedance. Fig. 6(a) shows
the transparency gain normalized to the operation wavelength.
Although the Ag-based SPP nanolaser benefitted from the dis-
persive SP mode with a large waveguide confinement, it had a
shorter propagation length. The trade-off between the confine-
ment factor and propagation length resulted in an extreme mini-
mum of transparency gain at hSiO2 = 7 nm [18]. Compared with
the Ag-based SPP nanolaser, the Al-based SPP nanolaser (<0.6
ωSP ) offered a favorable trade-off between the mode confine-
ment and propagation length. Moreover, when the appropriate
material combination was selected on the basis of the material’s
permittivity, the minimum transparency gain was achieved at an
insulator thickness of zero [31]. To verify the transparency gain
of SPP nanolasers with different SP dispersion relations, the
threshold performance was compared between the Al- and Ag-
based SPP nanolasers. The Ag-based SPP nanolaser had an av-
erage threshold density of approximately 190 MW/cm2, which
is three times higher than that of the Al-based SPP nanolaser
[see Fig. 6(b)]. The simulation and experimental results revealed
that the SPP nanolaser operated near the SP frequency had a
higher transparency threshold gain than that operated far from
the SP frequency. Both the simulation and experimental results
reveals that for SPP nanolaser operating nearby the SP frequency
has a higher transparency threshold gain than the SPP nanolaser
operating away from the SP frequency.

C. Temperature Characteristic and Rate Equation

We compared the evolution of SPP energy with other ZnO
excitations across a wide temperature range [38]–[42]. The las-
ing peak energies of the Al- and Ag-based ZnO SPP nanolasers

Fig. 7. Temperature-dependent excitation peaks in ZnO and fabricated ZnO
SPP nanolasers.

were far from the electron-hole plasma (EHP) peaks between
77 K and room temperature (see Fig. 7). The lasing peak ener-
gies of the Al- and Ag-based ZnO SPP nanolasers were between
the exciton absorption peak (Exciton A) and the P-line (exciton–
exciton collision) emission peaks. This finding confirmed that
the optical gain from the ZnO SPP nanolasers did not originate
from EHP, which requires the carrier density to be higher than
the exciton Mott density (for ZnO at 300 K, nmott = 0.5 × 1017

cm−3 ∼4 × 1017 cm−3 [41], [42]).
The energy split from the exciton mode was approximately

60 meV for both samples at 77 K, probably due to exciton–SP
coupling. In addition, the energy split decreased slightly toward
the heating process because of the decreased Purcell factor and
lower coupling rate. To further understand the evolution of exci-
ton and SP densities in SPP nanolasers, the following two cou-
pling rate equations for n (exciton density) and s (SP density)
with various contribution and dissipation terms were employed
[18]:

dn

dt
= ηη′P − An − g0(n − ntr)s (2)

ds

dt
= ΓwgβAn + Γwgg0(n − ntr)s − γs (3)

For simplification, only one SP mode was considered, and
the exciton distribution in the NW after excitation was treated
uniformly. The injection efficiency of the ZnO NW was as-
sumed to be η = 0.1 cm−1. The pumping ratio was estimated
as η′ = SNW /Sspot , where the scattering cross section of a NW
was defined as SNW = Ld(πd/λ)2 , and the excitation area of
the laser spot was defined as πD2/4. P is the excitation power
density; β is the spontaneous emission factor; A is the average
spontaneous emission rate of the ZnO exciton withA = F/τr ,
where τr is the spontaneous emission lifetime of the ZnO NW,
which was 248 ps from the measured value, and F is the effective
Purcell factor, which was 15 for the Al sample and 67 for the
Ag sample; g0 is the differential gain of ZnO and is proportional
to the Purcell factor and group velocity vg = c/ng , where c is
the speed of light and ng denotes the calculated group index of
the SP mode; ntr = 1 × 1017 cm−3 is the transparent exciton
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Fig. 8. Exciton density as a function of pumping power for ZnO SPP
nanolasers on the Al/SiO2 and Ag/SiO2 of the ZnO surface plasmon nanolaser
with SIM structure. The light blue region shows the lower bound [41] and upper
bound [42] of ZnO Mott density (bulk@300 K).

density [32]; and γ refers to the SPP loss rate [18].The exciton
and SPP densities in a steady-state regime are represented by
(2) and (3), with dn/dt = 0 and ds/dt = 0. In the steady state, the
SP density is given by

s =
ΓβAn

γ − Γg0(n − ntr)
(4)

According to (4), threshold conditions can be achieved when
the denominator approaches zero, and the guided lines of L–L
curves with fitted β factors for different nanolaser structures can
be obtained by using steady-state equations. The mode inside
the nanolaser was tightly confined, resulting in a confinement
factor Γ larger than unity and a Purcell factor F that was two
orders of magnitude larger than that of conventional lasers. In
this study, the large Purcell factor and strong confinement factor
suppressed the exciton density to exceed the Mott transition
region under the threshold condition [32], [41], [42].

Fig. 8 shows the evolution of exciton density with an increase
in the pumping density for NWs lying on Ag and Al films with
a 7-nm-thick SiO2 insulation layer. The exciton density above
the threshold of samples with SiO2 /Ag and SiO2 /Al structures
remained below the ZnO bulk exciton Mott density (300 K), en-
suring efficient coupling between excitons and SPs. In addition,
it has been reported that system with reduced dimensionality
will have more stabilized exciton properties, and the Mott den-
sity in ZnO NW might be higher than the ZnO bulk [43].

The turn-on behaviors of the Ag or Al based SPP nanolasers
in Fig. 9 are calculated based on the simple rate equations shown
above. As shown in Fig. 9, relaxation frequencies up to 10 THz
and 4 THz can be observed for Ag and Al based SPP nanolasers
above the threshold. Such a fast relaxation process is due to the
large Purcell factor that drastically reduces the carrier recom-
bination lifetime and the extremely small cavity with a short
plasmon lifetime. It should be noted that our simulation did
not take into account the gain saturation effect, relaxation and
diffusion times of exciton, which would impede such a high
relaxation frequency. More elaborate analyzed on direct modu-
lation speed of nanolaser were discussed by K. Ding et al. [44].

Fig. 9. Turn-on dynamics of Ag/SiO2 /ZnO SPP nanolasers (blue) and
Al/SiO2 /ZnO SPP nanolasers (red). The brown line is the normalized pumping
signal. The solid and dashed lines represent exciton and SP densities, respec-
tively, as functions of time.

Here, our preliminary demonstration of such high relaxation
frequency realized in a nanoscale light emitters shall be very
promising in the future high speed and high density information
applications.

IV. CONCLUSION

Our work reveals the importance of dispersion relation con-
trol in plasmonic devices and paves the way for application of
ultraviolet nanolasers in areas such as optical communications,
data storage, subwavelength imaging, and biosensing. In this
study, both the Al- and Ag-based SPP nanolasers sustained up
to room temperature with high-quality films. In addition, single-
mode operation was achieved by selecting metal combinations
with an SP frequency far from the operation frequency. For
metals with an SP frequency near the operation frequency, mul-
tiple longitudinal modes were observed. The theoretical group
indices calculated using ng = c0(dω/dβ) were 5.7 and 79, re-
spectively. For the Ag-based SPP nanolaser operating near the
SP frequency, multiple longitudinal modes with large group in-
dices and ultra-compact mode areas were supported by a strong
dispersion relation near the operation frequency. By contrast, the
Al-based SPP nanolaser operating far from the SP frequency had
small group indices with larger mode areas and could support
only single-mode operation for ZnO NWs with a length (L)
of 1–2 μm. By balancing the trade-off between the waveguide
confinement factor and propagation length, the threshold of the
Al-based SPP nanolaser was much lower than that of the Ag-
based SPP nanolaser. Our results indicate that the characteristics
of SPP nanolasers can be manipulated by selecting metals with
different SP frequencies. Moreover, the ultra-compact mode ar-
eas and strong interactions between SPs and excitons provide
a new class of coherent sources for quantum plasmonic test
beds.
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