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Abstract—Big sensor data is prevalent in both industry and scientific research applications where the data is generated with high

volume and velocity it is difficult to process using on-hand database management tools or traditional data processing applications.

Cloud computing provides a promising platform to support the addressing of this challenge as it provides a flexible stack of massive

computing, storage, and software services in a scalable manner at low cost. Some techniques have been developed in recent years for

processing sensor data on cloud, such as sensor-cloud. However, these techniques do not provide efficient support on fast detection

and locating of errors in big sensor data sets. For fast data error detection in big sensor data sets, in this paper, we develop a novel data

error detection approach which exploits the full computation potential of cloud platform and the network feature of WSN. Firstly, a set of

sensor data error types are classified and defined. Based on that classification, the network feature of a clustered WSN is introduced

and analyzed to support fast error detection and location. Specifically, in our proposed approach, the error detection is based on the

scale-free network topology and most of detection operations can be conducted in limited temporal or spatial data blocks instead of a

whole big data set. Hence the detection and location process can be dramatically accelerated. Furthermore, the detection and location

tasks can be distributed to cloud platform to fully exploit the computation power and massive storage. Through the experiment on our

cloud computing platform of U-Cloud, it is demonstrated that our proposed approach can significantly reduce the time for error

detection and location in big data sets generated by large scale sensor network systems with acceptable error detecting accuracy.

Index Terms—Big data, cloud computing, data abnormality, error detection, time efficiency, sensor networks, complex network systems

Ç

1 INTRODUCTION

RECENTLY, we enter a new era of data explosion which
brings about new challenges for big data processing. In

general, big data [1], [2] is a collection of data sets so large
and complex that it becomes difficult to process with on-
hand database management systems or traditional data
processing applications. It represents the progress of the
human cognitive processes, usually includes data sets with
sizes beyond the ability of current technology, method and
theory to capture, manage, and process the data within a
tolerable elapsed time [1], [2], [12], [13], [14], [15], [16], [17],
[30], [31], [32], [33]. Big data has typical characteristics of
five ‘V’s, volume, variety, velocity, veracity and value. Big
data sets come from many areas, including meteorology,
connectomics, complex physics simulations, genomics, bio-
logical study, gene analysis and environmental research [1],
[2]. According to literature [1], [2], since 1980s, generated
data doubles its size in every 40 months all over the world.
In the year of 2012, there were 2.5 quintillion (2.5 � 1018)
bytes of data being generated every day. Hence, how to pro-
cess big data has become a fundamental and critical chal-
lenge for modern society. Cloud computing provides a

promising platform for big data processing with powerful
computation capability, storage, scalability, resource reuse
and low cost, and has attracted significant attention in align-
ment with big data.

One of important source for scientific big data is the data
sets collected by wireless sensor networks (WSN). Wireless
sensor networks have potential of significantly enhancing
people’s ability to monitor and interact with their physical
environment. Big data set from sensors is often subject to
corruption and losses due to wireless medium of communi-
cation and presence of hardware inaccuracies in the nodes.
For a WSN application to deduce an appropriate result, it is
necessary that the data received is clean, accurate, and loss-
less. However, effective detection and cleaning of sensor big
data errors is a challenging issue demanding innovative
solutions.

WSN with cloud can be categorized as a kind of complex
network systems [21]. In these complex network systems
[21], [22], [23], [24], such as WSN and social network, data
abnormality and error become an annoying issue for the
real network applications [25], [26], [27]. Therefore, the
question of how to find data errors in complex network sys-
tems for improving and debugging the network has
attracted the interests of researchers. Some work [28], [30]
has been done for big data analysis and error detection in
complex networks including intelligence sensors networks.
There are also some works related to complex network sys-
tems data error detection and debugging with online data
processing techniques [37], [38]. Since these techniques
were not designed and developed to deal with big data on
cloud, they were unable to cope with current dramatic
increase of data size. For example, when big data sets are
encountered, previous offline methods for error detection
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and debugging on a single computer may take a long time
and lose real time feedback. Because those offline methods
are normally based on learning or mining, they often intro-
duce high time cost during the process of data set training
and pattern matching.

WSN big data error detection commonly requires power-
ful real-time processing and storing of the massive sensor
data as well as analysis in the context of using inherently
complex error models to identify and locate events of abnor-
malities. In this paper, we aim to develop a novel error
detection approach by exploiting the massive storage, scal-
ability and computation power of cloud to detect errors in
big data sets from sensor networks. Some work has been
done about processing sensor data on cloud [38], [39]. How-
ever, fast detection of data errors in big data with cloud
remains challenging. Especially, how to use the computa-
tion power of cloud to quickly find and locate errors of
nodes in WSN needs to be explored. Cloud computing, a
disruptive trend at present, poses a significant impact on
current IT industry and research communities. Cloud com-
puting infrastructure is becoming popular because it pro-
vides an open, flexible, scalable and reconfigurable
platform. The proposed error detection approach in this
paper will be based on the classification of error types. Spe-
cifically, nine types of numerical data abnormalities/errors
are listed and introduced in our cloud error detection
approach. The defined error model will trigger the error
detection process. Compared to previous error detection of
sensor network systems, our approach on cloud will be
designed and developed by utilizing the massive data proc-
essing capability of cloud to enhance error detection speed
and real time reaction. In addition, the architecture feature
of complex networks will also be analyzed to combine with
the cloud computing with a more efficient way. Based on
current research literature review, we divide complex net-
work systems into scale-free type and non scale-free type.
Sensor network is a kind of scale-free complex network sys-
tem which matches cloud scalability feature. Our proposed
error detection approach on cloud is specifically trimmed
for finding errors in big data sets of sensor networks. The
main contribution of our proposed detection is to achieve
significant time performance improvement in error detec-
tion without compromising error detection accuracy.

The reminder of this paper is organized as follows. In
Section 2, we review related work and conduct problem
analysis. In Section 3, the classification and definition are
provided for differentiating error types in big data sets of
complex network systems, such as WSN on cloud. In Sec-
tion 4, based on the defined error types and models, a fast
approach is developed to detect big sensor data with cloud
computing. Section 5, the algorithms will be developed
with related analysis. In Section 6, the experimental results
will be presented and analyzed to show significant time per-
formance improvement with accuracy. In Section 7, we con-
clude the research contributions of this paper with a brief
outlook of future work.

2 RELATED WORK AND PROBLEM ANALYSIS

To address various challenges of big data, research
works can be found intensively from the database view

[30], [31], [32]. However, the problem can be also dis-
cussed from the perspective of parallel systems and
cloud [35], [36]. In this section, related literature for big
data processing on cloud, and data error detection for
complex network systems will be reviewed and
compared.

2.1 Big Data Processing on Cloud

With the fast development of modern information technol-
ogy, we enter a new era of data. Hence, the technique to pro-
cess big data has become a fundamental and critical
challenge for modern society. Cloud computing can be
regarded as an ingenious combination of a series of devel-
oped or develop-ing ideas and technologies, establishing a
pay-as-you-go business model by offering IT services using
economies of scale [5], [6], [7], [8], [9], [10], [11]. Cloud com-
puting is the use of computing resources (hardware and soft-
ware) that are delivered as a service over a network
(typically the Internet). The name comes from the use of a
cloud-shaped symbol as an abstraction for the complex infra-
structure it contains in system diagrams. Cloud computing
provides an ideal platform for big data storage, dissemina-
tion and interpreting with its massive computation power
[3], [4]. In many today’s real world applications, such as
social networks, complex network monitoring, the scientific
analysis of protein interactions andwireless sensor networks
self monitoring, it is unavoidable to encounter the problem
of dealingwith big data and big data streams on cloud.

At present, some work has been done for processing big
data with cloud. Amazon EC2 infrastructure as a service is
a typical cloud based distributed system for big data proc-
essing. Amazon S3 supports distributed storage. MapRe-
duce [7], [10], [18], [19], [20] is adopted as a programming
model for big data processing over cloud computing. Plenty
of recent research has investigated the issues of processing
incremental data on cloud. Kienzler et al. [8] designed a
“stream-as-you-go” approach to access and process on
incremental data for data-intensive cloud applications via a
stream-based data management architecture. The extension
of the traditional Hadoop framework [11] to develop a
novel framework named Incoop by incorporating several
techniques like task partition and memorization-aware
schedule. Olston et al. [9] present a continuous workflow
system called Nova on top of Pig/Hadoop through stateful
incremental data processing. MapReduce has been widely
revised from a batch processing framework into a more
incremental one to analyze huge-volume of incremental
data on cloud. It is a framework for processing paralleliz-
able problems across big data sets using a large number of
computers (nodes), collectively referred to as a cluster in
which all computers (nodes) are on the same local network
and use similar hardware; or a grid in which the nodes are
shared across geographically and administratively distrib-
uted systems. It can sort a petabyte of data in only a few
hours. The parallelism also provides some possibility of
recovering from partial failure of servers or storage during
the operation.

According to the above literature, most of current big
data processing and analysis techniques on cloud focus on
the workload distribution, scalability, data filtering speed,
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and query accuracy. However, there is not enough work
dedicated to the issue of error detection and correction for
big data sets with cloud computing.

2.2 On-Cloud Processing for WSN

Recently, wireless sensor network systems have been
used in different areas, such as environment monitoring,
military, disaster warning and scientific data collection.
In order to process the remote sensor data collected by
WSN, sensor-cloud platform [28], [38], [39] has been
developed including its definition, architecture, and
applications. Due to the features of high variety, volume,
and velocity, big data is difficult to process using on-
hand database management tools or traditional sensor-
cloud platform. Big data sets can come from complex net-
work systems, such as social network and large scale sen-
sor networks. In addition, under the theme of complex
network systems, it may be difficult to develop time-
efficient detecting or trouble-shooting methods for errors
in big data sets, hence to debug the complex network sys-
tems in real time [21], [22], [23], [29].

Sensor-Cloud [27] is a unique sensor data storage,
visualization and remote management platform that lev-
erages powerful cloud computing technologies to pro-
vide excellent data scalability, fast visualization, and
user programmable analysis. Initially, sensor-cloud was
designed to support long-term deployments of Micro-
Strain wireless sensors. But nowadays, sensor-cloud has
been developed to support any web-connected third
party device, sensor, or sensor network through a simple
OpenData API. Sensor-Cloud can be useful for a variety
of applications, particularly where data from large sensor
networks needs to be collected, viewed, and monitored
remotely. For example, structural health monitoring and
condition-based monitoring of high value assets are
applications where commonly available data tools often
come up short in terms of accessibility, data scalability,
programmability, or performance. Sensor-Cloud repre-
sents a direction for processing and analyzing big sensor
data using cloud platform.

The online WSN data quality and data cleaning issues
are discussed in [37] by Elnahrawy and Nath. They deal
with the problems of outliers, missing information, and
noise. A novel online approach for modeling and online
learning of temporal-spatial data correlations in sensor
networks is developed. A Bayesian approach for reduc-
ing the effect of noise on sensor data online is also pro-
posed [37]. The proposed approach is efficient in
reducing the uncertainty associated with noisy sensors.
However, the scalability and error detection accuracy are
not dealt. It is an initial and important step for online
error detection of WSN. But lots of work still needs to
be done. Especially, under the cloud environment, the
computational power and scalability should be fully
exploit to support the real time fast error detection for
sensor data sets.

To the best of our knowledge based on the above work,
the error detection issues of big data from WSN are rarely
discussed on current sensor-cloud technology or other
online WSN data processing techniques.

2.3 Data Error Detection in Sensor Networks
and Complex Networks

As an important scientific big data source, scientific sensor
systems and wireless sensor network applications produce
a variety of large data sets in real time through various mon-
itored activities in different application domains, such as
healthcare, military, environment, and manufacturing.

In many real world complex network systems, data
error is unavoidable [22], [23], [24], [25], [26], [34]. With
the dramatic increase of big data generated from complex
network systems, such as social networks and large scale
sensor networks, to find and locate the errors in big data
sets becomes quite challenging with normal computing
and network systems.

Wang et al. [22] provide a classification for errors on
social networks based on error scenarios analysis. This clas-
sification includes 6 types of common errors with missing
data or erroneous data. This work compares the robustness
of four node-level network measures, clustering coefficient,
network constraint, and centrality. It performs as a good
base for developing error finding and detecting techniques
for social networks. Social network is a typical instance of
complex networks with graph data sets with it. Hence, the
error models and types presented in [22] can be extended
for the errors in complex network systems. Xiong proposed
an approach [23] which can be used to detect the text data
errors in data sets of social network.

Mukhopadhyay [24] proposed a model based error cor-
rection method for WSN. It is conducted over intelligent
sensor network itself. This technique is based on the correc-
tion with data trend prediction. Because the work [24] is in-
network fast error detection by intelligent sensors, its proc-
essing capability and time performance are extremely lim-
ited when encountering big data sets. Similar work can also
be conducted with the consideration of data awareness and
low cost according to the description of Mukhopadhyay. Sli-
jepcevic analyses the location errors in sensor networks in
[25]. The primary goal of this location error analysis is to
demonstrate the practical use of the location errors for opti-
mal resource consumption. Ramanathan presents a detailed
study of sensor faults that occur in deployed sensor net-
works and a systematic approach to model these faults [26].
Sheth develops a decentralized fault diagnosis system for
WSN in [28]. It enables efficient management of a WSN by
diagnosing the true root cause of a degraded performance
by combining multiple sensor observations. This diagnosis
requires minimal data collection at the centralized base sta-
tion. Khan in [29] presents a sensor network troubleshoot-
ing tool that helps the developer diagnose root causes of
errors. The tool is geared towards finding interaction bugs.
Anyway, in the paper [29], it is pointed out that scalability,
user interface and detecting time still need to be improved.

It can be concluded that current data error detection tech-
niques for complex network systems focus on in-network
detecting with intelligent nodes or offline analysis at the
root. They ignore the scalability, massive resource and pow-
erful computation capability provided by cloud. The pro-
posed approach in this paper aims to address this issue by
utilizing the inherent features of cloud computing to realize
fast error detection on cloud. In addition, the traditional
error detection for WSN data sets has not paid enough
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attention to making use of complex network features to
improve the error detection efficiency on the cloud plat-
form. Compared to the previous sensor data error detection
and localization approach, complex network topology fea-
tures will be explored with the computation power of cloud
for error detection efficiency, scalability and low cost.

3 ERROR TYPES IN WSN BIG DATA SETS

Many systems in nature can be described as large networks
(nodes or vertices connected by links or edges): Friendship
networks, Social networks, computer networks, Internet,
metabolic networks, power grids, scientific citations, neural
networks and large scale sensor networks. Network analy-
sis has been troubled by the issue of measurement of error
for a long time [21], [22], [23]. Before deploying an error
detection approach on cloud, the error models for big data
sets from wireless sensor network systems perspective
should be presented first.

3.1 Error and Abnormality Classification

Under the theme of the big data sets from real world com-
plex networks, there are mainly two types of data generated
and exchanged within networks. (1) The numeric data sam-
pled and exchanged between network nodes such as sensor
network sampled data sets. (2) The text files and data logs
generated by nodes such as social network data sets. In this
paper, our research will focus on the error detection for
numeric big data sets from complex networks.

In the previous work [22], the errors of complex networks
can be classified as six main types for both numeric and text
data as Appendix A.1, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/ TPDS.2013.2295810. This error classification
can effectively describe the common error types in complex
network systems. However, when it comes to the errors in
wireless sensor network data sets, the above classification
loses the accuracy in separating node or edge data error
caused by different wireless data communication failures.
In addition, it is not enough in describing the error data
phenomena in sensor data sets. To better capture the error
features of sensor data sets, the above general error classifi-
cation in [22] should be extended.

Considering the specific feature of numeric data errors,
there are several abnormal data scenarios demonstrated in
Fig. 1. The “flat line faults” indicates a time series of a node
in a network system keeps unchanged for unacceptable
long time duration. In real world applications, sampled
data and transmitted data always have slight changes with
the time flow. The “out of data bounds faults” indicates
impossible data values are observed based on some domain
knowledge. In real world applications, if a temperature
value of water is reported as 300 �C, it can be treated as a
data fault directly. The “data lost fault” means there are
missing data values in a time series during the data genera-
tion or communication. The time series with “data lost
fault” normally needs data cleaning. Finally, in Fig. 1, the
“spike faults” indicates in a time series data items which are
totally out of the prediction and normal changing trend.
Because the above four types of errors can happen both at
data generation and exchange stages, the error types can

also be categorized into node side and edge side separately.
Combining the data faults scenarios in Fig. 1 with the work
in paper [21], [22], [23], [29], we present a classification of
complex network systems data errors based on the time
series analysis as Appendix A.2, available in the online sup-
plemental material.

3.2 Error Definition and Modeling

With the above classification, the definition of each error
type is presented to guide our error detection algorithm.
Suppose that a data record from a network node is denoted
as r(n, t, f(n, t), g(n, l)), where n is the ID of the node in a net-
work systems. t represents the window length of a time
series. f(n, t) is the numerical values collected within win-
dow t from the node n. g(n, l) is a location function which
records the cluster, the data source node and partition situa-
tion related to the node n. g(n, l) is used to calculate the dis-
tance between the data source node n and the node l which
is the initial data source node. g(n, l) indicates that a current
detected error data node is the initial data source node. Fur-
thermore, g(n, l) is also used to parse the data routing
between data communication nodes.

Definition 1 (node side flat line error). Let riðni; tiÞ, fðni; tiÞ;
gðni; lÞ) be a time series record from node ni, where i is a time
stamp. If any element x � di, where di is an effective constant
during time window t; x 2 fðni; tiÞ, and gðni; lÞ ¼ 0; ni is the
data source node, there is a node side flat line error.

Definition 2 (edge side flat line error). Let riðni; tiÞ, fðni; tiÞ;
gðni; lÞ) be a time series record from node ni, where i is a time
stamp. If any element x � di, where di is an effective constant
during time window t; x 2 fðni; ti), and gðni; lÞ! ¼ 0; ni is the
data source node, there is an edge side flat line error.

Definition 3 (node side data lost error). Let riðni; tiÞ, fðni;
tiÞ, g(n, l)) be a time series record from node ni, where i is a
time stamp. If fðni; tiÞ ¼ null&& ti > t, ‘t’ is the time dura-
tion from outside application requirement, and if
gðni; lÞ ¼ 0; ni is the data source node, the error is a node side
data lost error.

Definition 4 (edge side data lost error). Let riðni; tiÞ,
fðni; tiÞ, g(n, l)) be a time series record from node ni, where i
is a time stamp. If fðni; tiÞ ¼ null && ti > t, ‘t’ is the time
duration from outside application requirement, and if

Fig. 1. Error scenarios from sensor network systems data.
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gðni; lÞ! ¼ 0; ni is the data source node, the error is an edge side
data lost error.

Definition 5 (node side out of bounds error). Let riðni; tiÞ,
fðni; tiÞ, g(n, l)) be a time series record from node ni, where i
is a time stamp. If any element x > u; x 2 fðni; tiÞ, u is a
threshold defined from the application requirement, and if
gðni; lÞ ¼ 0; ni is the data source node, the error is a node side
out of bound error.

Definition 6 (edge side out of bounds error). Let riðni; tiÞ,
fðni; tiÞ, g(n, l)) be a time series record from node ni, where i
is a time stamp. If any element x > u; x 2 fðni; tiÞ, u is a
threshold defined from the application requirement and if
gðni; lÞ! ¼ 0; ni is the data source node, the error is an edge
side out of bound error.

Definition 7 (node side spike error). Let riðni; ti; fðni; tiÞ, g
(n, l)) be a time series record from node ni, where i is a time
stamp. If jfðni; tiÞ � fpðni; tiÞj=ti > c;c is the acceptable
changing trend, fpðni; tiÞ is the predicted time series with an
adopted prediction model, and if gðni; lÞ ¼ 0; ni is the data
source node, the error is a node side spike error.

Definition 8 (edge side spike error). Let riðni; ti; fðni; tiÞ, g
(n, l)) be a time series record from node ni, where i is a time
stamp. If jfðni; tiÞ � fpðni; tiÞj=ti > c;c is the acceptable
changing trend, fpðni; tiÞ is the predicted time series with an
adopted prediction model, and if gðni; lÞ! ¼ 0; ni is the data
source node, the error is an edge side spike error.

Definition 9 (Aggregation and Fusion error). Let riðni; tiÞ;
fðni; tiÞ, g(n, l)) be a time series record from node ni, where i
is a time stamp. If Sijfðni; tiÞ � fpðni; tiÞj=ti > c� &&
8jfðni; ti) – fpðni; tiÞj=ti < c, where c� is a given total
acceptable error bound, there is an aggregate and fusion error.

4 TIME-EFFICIENT ERROR DETECTION FOR BIG

SENSOR DATA ON CLOUD

In this section, a cluster-head WSN will be introduced and
processed as a kind of complex network system. These com-
plex networks may have non-trivial statistical properties
which will influence the data processing strategy on them.

4.1 Scale-Free Sensor Networks Systems

For a WSN with a hierarchical structure, it is a graph
denoted as G(V, E), the degree of a vertex V is denoted as
degðvÞ. We define a function s(G) in formula (1).

s Gð Þ ¼
X

ðu;vÞ2E
degðuÞ degðvÞ: (1)

If the high degree nodes are connected to other high
degree nodes in G, we can get formula (2), where the maxi-
mum value of s(H), andH are the graphs with degree distri-
bution similar to G. S(x) denotes the distribution function
corresponding to a probability mass function fPkg1k¼0.

SðGÞ ¼ sðGÞ
MAX

: (2)

Because we assume that the sensor network has a hierar-
chical structure. If SðGÞ ! 1, the graph G is called “scale-
free”. The classification and prove for the complex networks
are as follows.

Suppose there is a graph sequence fGng; n½1;þ1Þ, we
can calculate the vertices. n is the size of vertices in Gn.

The proportion of vertices with k degree in Gn is noted
as P

ðnÞ
k .

P
ðnÞ
k ¼ 1

n

Xn

j¼1

1�
D
ðnÞ
j

¼k
�; (3)

In formula (3),D
ðnÞ
i is the degree of vertex j 2 f1; . . . ; ng in

the graph Gn. The degree sequence of Gn is given by
fPn

k gþ1
k¼0. The random graph process fGngþ1

n¼1 is sparse for
the fpkgþ1

k¼0. if formula (4) can be satisfied.

lim
n ! 1

Pn
k ¼ pk: (4)

Because the limit pk in formula (4) is deterministic, the
convergence in formula (4) can be taken as convergence in
probability or in distribution. And fPn

k gþ1
k¼0 ends up as 1. In

terms of a large value of n, a large number of vertices in Gn

have a limited degree. Then, a random graph process with
the above feature is called scale-free with an existing expo-
nent t which can be calculated by formula (5)

lim
k! 1

log pk

log1=k
¼ t: (5)

Hence, for a scale-free graph process, its degree con-
verges to a limited probability described in formula (4).

Under some situation, there is too much restriction for
the formula (5). For example, when the probability mass
function k� > pk is not smooth, the formula (5) can be
replaced with (6).

lim
k!1

log ½1� SðkÞ�
log 1=k

¼ t � 1; (6)

where SðXÞ ¼ ðPx>y py) is the distribution according to

the function fpkgþ1
0 . When the formula (7) can be satisfied,

we say that a graph process fGngþ1
n¼1 has a highly clustered

structure.

If the formula (7) can be satisfied, the WSN graph G car-
ries strong features of a scale-free complex network as a
cluster-head WSN.

Based on the above analysis, the scale-free networks are
inhomogeneous and only a few nodes have a large number
of links. In real applications, the cluster-headWSN is similar
to scale-free networks, which can be described with the
scale-free complex networks and has the feature of scale-free
networks. In Fig. 2, the instance of scale-free networks and
exponential networks are compared. It can be concluded
that the scale-free networks have a more clustered hierarchi-
cal nodes topology. Central nodes are highly connected by
the out-layer nodes has only 1 or 2 links.
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4.2 Model Based Error Detection on Cloud
for Sensor Network Big Data

According to the above analysis, it is clear that complex net-
work systems have a similar clustered network topology.
During the filtering of big data sets, whenever an abnormal
data is encountered, the detection algorithm needs to finish
two tasks. They are depicted as two functions here.
“fdðn=e; tÞ” is a decision making function which determines
whether the detected abnormal data is a true error. In other
words, fdðn=e; tÞ has two outputs, “false negative” for
detecting a true error and “false positive” for selecting a
non-error data. “flðn=e; tÞ” is a function for tracking and
returning the original error source. With the results from
the above two functions, the error detection process can be
successfully finalized.

As shown in Fig. 3, there is a complex network and cloud
platform for running error detecting algorithms. Without
any consideration of network features and data characteris-
tics, the error detection algorithm needs to filter the whole
big data set from the network. Whenever, an abnormality
defined in Section 3 is encountered, the algorithm will call
fdðn=e; tÞ and flðn=e; tÞ to traverse the whole network big
data set for the final decision making and error source loca-
tion. However, based on the analysis of scale-free network
systems, it has been proved that scale-free networks have a
clustering and hierarchical topology. Only a few nodes in
the whole network have large sets of links to other nodes.
So, based on these nodes, the whole networks can be parti-
tioned into a group of clusters (red circles). If there is certain
abnormal data occurs for a certain node k, the high opportu-
nity is that most of the related data for fdðn=e; tÞ and
flðn=e; tÞ will be located in the clusters where the node k
locates. As a result, fdðn=e; tÞ and flðn=e; tÞ only need to nav-
igate the related clusters for error detection result. This is
because of the fact that except for a few central nodes, most
of nodes only have limited links within themselves in their
clusters. Hence, the proposed clustering can significantly
reduce the time cost error locating and final decision mak-
ing by avoiding whole network data processing. In addi-
tion, with this detection technique, cloud resources only
need be distributed according to each partitioned cluster in
a scale-free complex network.

5 ALGORITHMS

To deploy the proposed error detection model and identify-
ing the location of the error, the algorithm can be divided
into two parts, detection and location. In this section, we

will introduce the big data error detection/location algo-
rithm, and its combination strategy with cloud.

5.1 Error Detection

We propose a two-phase approach to conduct the computa-
tion required in the whole process of error detection and
localization. At the phase of error detection, there are three
inputs for the error detection algorithm. The first is the graph
of network. The second is the total collected data set D and
the third is the defined error patterns p. The output of the
error detection algorithm is the error setD’. The details of the
error detection algorithm can be found in Appendix B.1,
available in the online supplemental material.

5.2 Error Localization

After the error pattern matching and error detection, it is
important to locate the position and source of the detected
error in the original WSN graph G(V, E). The input of the
Algorithm 2 is the original graph of a scale-free network G
(V, E), and an error data D from Algorithm 1. The output of
the algorithm 2 is G’(V’, E’) which is the subset of the G to
indicate the error location and source. The details of the
error detection algorithm can be found in Appendix B.2,
available in the online supplemental material.

5.3 Complexity Analysis

Suppose that there is a sensor network system consisting of
n nodes. For the error detection approach without consider-
ing the scale-free network feature, the error detection algo-
rithm will carry out the error pattern matching and
localization with whole network data by traversing the
whole data set. Suppose that there is R nodes on the data
routing, in the worst case, the detection algorithm without
considering the scale-free network feature will be executed
R� n time for error detection and localization, denoted as
OðR� nÞ; 1 	 R 	 n. Anyway, with the hierarchical net-
work topology, the network can be partitioned in to m clus-
ters. Based on our scale-free network definition and our
algorithm, in each cluster, the nodes which are involved in
error detection will be reduced to n/m on average. In addi-
tion, in each cluster, the data values are highly correlated.
The data worst case of data traverse times for error detec-
tion and localization is determined by OðR� ffiffiffiffiffiffiffiffiffiffi

n=m
p

),
1 	 R 	 n=m; 1 	 m 	 n. Because our scale-free error detec-
tion approach limits most of computation within each clus-
ter, the communication and data exchange between clusters
can be ignored. Finally, the worst case algorithm complexity

Fig. 2. Examples for scale-free networks and non scale-free networks. Fig. 3. Cluster based error detection strategy on cloud.
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of our scale-free error detection approach can outperform
the traditional error detection algorithms.

5.4 Algorithm Calibration on Cloud

The big sensor data error detection and localization algo-
rithms based on the scale-free topology feature of cluster-
head networks are designed and analyzed in Sections 5.2
and 5.3. During the development of our scale-free error
detection and location algorithm, how to make it more suit-
able for cloud implementation is already evolved in
consideration.

5.4.1 Partition of Sensing Data Set

In order to effectively deploy our proposed algorithm on
cloud, the data sets need to be partitioned before feeding to
the algorithm on cloud. There are two points should be
mentioned when carrying out partitioning. Firstly, the parti-
tion process could not bring new data errors into a data set;
or change and influence the original errors in a data set.
That is different to the previous partition algorithm which
normally divides data set according certain application
preference or clustering principles. Secondly, due to the
scale-free network systems being a special topology, the
partition has to form the data clusters according to the real
world situation of scale-free network or Cluster-head based
WSN. The partition process is as follows.

When the whole data set D is partitioned into
Di; 1 	 i 	 q, we need to guarantee that the distribution of
data set in a cluster Di is similar to D. A sub data set Di, here
can be treated as a point in an m-dimension space, where m
is the number of sensor nodes in a partitioned cluster.
According to the partition principle, to avoid the new error
or error type change, during the process of partition, light
weighted error type matching has to be carried out for
warning the new abnormalities during the partition. Specifi-
cally, the defined variables and functions including r(n, t, f
(n, t), g(n, l)), c, t, u in Section 3 will be used again for abnor-
mality warning.

5.4.2 Deployment Strategies for MapReduce

MapReduce is a framework for processing parallelizable
problems across huge data sets using a large number of
computers (nodes), collectively referred to as a cluster (if all
nodes are on the same local network and use similar hard-
ware) or a grid (if the nodes are shared across geographi-
cally and administratively distributed systems, and use
more heterogenous hardware). Computational processing
can occur on data stored either in a filesystem (unstruc-
tured) or in a database (structured). MapReduce can take
advantage of locality of data, processing data on or near the
storage assets to reduce data transmission. “Map” function.
The master node takes the input, divides it into smaller sub-
problems, and distributes them to worker nodes. A worker
node may do this again in turn, leading to a multi-level tree
structure. The worker node processes the smaller problem,
and passes the answer back to its master node. “Reduce”
function. The master node then collects the answers to all
the sub-problems and combines them in some way to form
the output – the answer to the problem it was originally

trying to solve. MapReduce allows for distributed process-
ing of the map and reduction operations.

However, traditional MapReduce is very strict, which
limits its application in complex systems, such as WSN. The
following is a standard MapReduce example, it counts
words. However, our algorithms in error detection and
localization are not so ideal and it is hard to directly use one
MapReduce to solve perfectly.

The Standard MapReduce Example:
function map(String name, String document):
// name: document name
// document: document contents
for each word w in document:
emit (w, 1)
function reduce(String word, Iterator partialCounts):
// word: a word
// partialCounts: a list of aggregated partial counts
sum ¼ 0
for each pc in partialCounts:
sum þ ¼ ParseInt(pc)
emit (word, sum)

Based on the knowledge for MapReduce and its wide
applications, three technical changes are commonly
adopted to transform the targeting problem for applying
MapReduce on it.

1. Original algorithm � > (embedded in) Map
()/Reduce()

2. Partition the task flow of algorithm � > Identify
which part of the task flow to generate a MapReduce
job � > MapReduce generated result returns back to
the task flow

3. Complete MapReduce design � > control flow paralle-
lization/data parallelization.

Based on the analysis of the above three strategies and
the complicated flow of our error detection and location
algorithms, in our implementation, we adopt different Map-
Reduce strategies in terms of different control flow and data
partition in the detection and localization algorithms.

6 EXPERIMENTS

To verify the time efficiency and the effectiveness of our
approach for detecting errors in big data with cloud,
experiments are conducted on U-Could (cloud computing
environment at the University of Technology Sydney) [12],
[13], [14], [15], [16], [18]. There are three purposes for this
experiment. 1) Demonstrate that the significant time-sav-
ing is achieved in terms of detecting errors from complex
network big data sets. 2) Demonstrate the effectiveness of
our proposed error detection approach in terms of differ-
ent error types. 3) Demonstrate that the false positive ratio
of our proposed error detection algorithm is limited within
a small value.

6.1 Experiment Environment and Process

The U-Cloud system is set up as shown in Appendix C.1,
available in the online supplemental material. Four types
of data values collected by a real WSN (scale-free com-
plex network system) are used as the testing data set.
The total testing data set size is around 2,000,000 KB,
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including temperature, sound, light and vibration. Even
only considering one node, four types of testing data are
gathered with different frequency. In other words, the
data sampling from each real world node is heteroge-
neous. Before the experiment, we conduct the normaliza-
tion for the testing data set. The normalization process is
described in Appendix C.2, available in the online sup-
plemental material.

6.2 Experiment Results

In order to test the false positive ratio of our error detection
approach and time cost for error findings, we impose five
types of data errors following the definition in Section 3 into
the normalized testing data sets with a uniform random dis-
tribution. These five types of data errors are generated
equally. Hence, the percentage of each type of errors is
20 percent from the total imposed errors for testing.

The first imposed error type is the flat line error. The sec-
ond imposed error type is out of bound error. The third
imposed error type is the spike error. The forth imposed
error type is the data lost error. Finally, the aggregate &
fusion error type is imposed. By imposing the above listed
five types of data error types, the experiment is designed to
measure the error selection efficiency and accuracy during
the on-cloud processing of data set.

In Fig. 4, the testing results show the time performance of
our proposed scale-free error detection algorithm on U-
Cloud after 740 seconds. Specifically, 10 different error rates
are imposed into the experimental data set and tested inde-
pendently. The testing error rate changes from 1 to 10 percent
in 10 repetitive experiments. After about 100 seconds, the
proposed algorithm can detect more than 60 percent errors
whatever the testing error rate is within the domain between
1 and 10 percent . During the time duration between 0 and
100 second, all error detection rates increase dramatically
with a steep trend. After the time point of 300 second, the
error detection rates increase slowly with a flat trend. At the
time of 740 second, the proposed error detection algorithm
on cloud can find and locate more than 95 percent imposed
errors from the testing data sets. When testing error rate is
1 percent , the best performance gains are achieved, as about
99.5 percent total errors detection. With the increase of the
testing error rate, the error detection rate decreases.

It also can be found in Fig. 4 that during the first 300 sec-
onds of data processing and error detection on cloud,
almost more than 80 percent of total errors are detected
whatever the testing error is. This fast detection is due to
our scale-free error detection approach which only allocates
the cloud computation resources for traversing and process-
ing a small chunk of data instead of a whole data set analy-
sis. With the testing time longer than 740 seconds, most of
imposed errors are detected. This result also shows that the
algorithm can provide near real time cloud error detection
service for most of current scale-free network systems, such
as wireless sensor networks.

A comparative experiment between our proposed scale-
free big data error detection in WSN and non scale-free
error detection algorithms is conducted. As shown in Fig. 5,
when the testing data error rate changes from 1 to 10 per-
cent , at any time slot, our proposed scale-free error detec-
tion algorithm achieves significant error detection
performance gains compared to non scale-free error detec-
tion algorithms. Our proposed scale-free detection on cloud
can fast detect most of error data (more than 80 percent )
after 740 seconds time duration. However, the non scale-
free error detection algorithm can only achieve as much as
44 percent error detection rate as the best case. So, it can be
concluded from the experiment results in Fig. 5 that the
scale-free detection algorithm on cloud for big data can sig-
nificantly outperform non scale-free error detection algo-
rithms in terms of error finding time cost.

Except for time cost, to measure an error or abnormal-
ity detecting algorithm, we also need to consider other
statistic metrics for verifying the quality of an error
detection algorithm. Suppose that we have n logical “T/
F” hypotheses: h1, h2 . . . ; hi; . . .hn. The number of true
null hypotheses is denoted as n0, an uncertain parame-
ter. Then we can get the number of true alternative
hypotheses n� n0. If we further denote the null hypothe-
sis being true as T , we can get T is the number of false
positives. Hence we can calculated the false positive rate
T=n0 and the false positive ratio EðT=n0Þ. In our experi-
ment, T=n0 and EðT=n0Þ depicts how many normal data
are selected as errors during the error detecting process.
A smaller false positive ratio in the experiment indicates
a better accuracy for selecting error data items from the
testing data set.

Fig. 4. Time cost for detecting errors from the testing data set. Fig. 5. Comparison of two error detection strategies.
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It is demonstrated in Fig. 6 that, with the testing data
error rate changes from 1 to 10 percent , our scale-free detec-
tion algorithm can achieve similar false positive ration com-
pared to the non scale-free algorithms. Initially, the non
scale-free detection performs slightly better because the
whole network data traversing and analyzing contribute to
improve the decision making correctness for error detection.
However, with the increase of error data size in the testing
data set, the whole network data traversing and analysis
will bring the influence of other error data from other parts
of a network into the current error detection decision mak-
ing. That influence will increase the false positive ratio,
which is not expected. As shown in Fig. 6, when the data
error rate is larger than 6 percent , our scale-free detection
algorithm can outperform the non scale-free algorithm in
terms of false positive ratio.

However, the false positive ratio in Fig. 6 is the overall
testing result. The individual testing results for detecting
each error type with our proposed error detection algorithm
are compared in Fig. 7. It can be got from Fig. 7 that “flat
line error”, “out of bound error”, “spike error” and “data
lost error” curves of false positive ratio are similar to each
other. In other words, our proposed error detection algo-
rithm achieves similar error detection accuracy in detecting
the above four types of errors. When it comes to “aggregate
& fusion error”, the false positive ratio runs slightly higher
than the other four types of errors whatever the total
imposed error rate is. In other words, the error detection
accuracy of our proposed algorithm decreases when
encountering “aggregate & fusion error” in the testing data
set. The reason is that the “aggregate & fusion error” is
caused by the accumulating error effect and multi-hop data
communication. Lots of data drifting and data approxima-
tion may be involved in the error detection process, which
influences the error detecting accuracy of the proposed
algorithm for big data on cloud.

Based on the above experiment results and analysis, it
can be concluded that our proposed error detection
approach for big data processing on cloud can dramatically

increase the error detecting speed without losing error
selecting accuracy. Especially, when the error rate for a tar-
geting big data set is limited and within a small value (1-10
percent ), the algorithm can efficiently detect the error with
high fidelity.

7 CONCLUSIONS AND FUTURE WORK

In order to detect errors in big data sets from sensor net-
work systems, a novel approach is developed with cloud
computing. Firstly error classification for big data sets is
presented. Secondly, the correlation between sensor net-
work systems and the scale-free complex networks are
introduced. According to each error type and the features
from scale-free networks, we have proposed a time-efficient
strategy for detecting and locating errors in big data sets on
cloud. With the experiment results from our cloud comput-
ing environment U-Cloud, it is demonstrated that 1) the
proposed scale-free error detecting approach can signifi-
cantly reduce the time for fast error detection in numeric
big data sets, and 2) the proposed approach achieves similar
error selection ratio to non-scale-free error detection
approaches. In future, in accordance with error detection
for big data sets from sensor network systems on cloud, the
issues such as error correction, big data cleaning and recov-
ery will be further explored.
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