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Abstract

This paper concerns inverse DEA. The aim is to estimate input/output levels of a given Decision Making Unit (DMU) when
some or all of its input/output levels are changed, under preserving the efficiency index. We show that in the case of estimating
increased required input vector when the output vector is increased, the current method which uses weakly efficient solution of the
relevant multiple objective optimization problem may fail. We propose some sufficient conditions for input estimation.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In the two recent decades, the data envelopment analysis (DEA) technique has allocated to itself a wide variety of
research in operations research field, see, e.g., (Cooper et al., 1999). In fact, DEA has become increasingly popular for
efficiency analysis in the practical projects of management, economy, education, sport, etc.

RecentlyWei et al., (2000) proposed inverse DEA, to answer the following question: if among a group of DMUs, we
increase certain inputs to a particular unit and assume that the DMU maintains its current efficiency level with respect
to other DMUs, how much output could the unit produce, or if the outputs need to be increased to a certain level and the
efficiency of the unit remains unchanged, howmuch input should be received by the unit? To estimate the output levels,
Wei et al. proposed an MOLP when the DMU under evaluation is inefficient and a linear programming model when the
DMU is weakly efficient. On the other hand, the treatment of inverse DEA for the case of tracing an increased input
vector on possible output production maintaining the existing efficiency level is covered correctly by Wei et al., but we
show that in the case of tracing an increased output vector on the increased required input consumption maintaining the
existing efficiency level which is discussed in Wei et al. is not correct.

This paper proposes sufficient conditions for input estimation when output is increased. The established results are
based on using any strongly efficient solution of a provided MOLP and using some certain weakly efficient solutions of
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that MOLP. In fact, the inverse DEA model is transformed into and solved as an MOLP. The studying of inverse DEA
(resource reallocation) models has some practical advantages. Firstly, these models imply a new avenue for DEA
applications, i.e., production analysis or production planning. At present, various DEA models are mainly used for
relative technical efficiency measuring and analysis. The physical quantities of inputs and outputs associated with the
concerned DMUs are considered fixed for parametric representation of the efficiency model. In the existing literature,
the problem of resource reallocation is dealt with only for the purpose of guiding an inefficient unit shifting along the
direction of a projected ray from its current position onto the frontier. The DEA model has not been used as a kind of
conditioned production model for a DMU to deal with certain choices of inputs/ouputs, given its standing efficiency
level (Wei et al., 2000). Secondly, the studied inverse DEA adds in a new and important class of application problems
for research on the inverse optimization problem. Furthermore, some additional advantages of using the inverse DEA
models for the tasks of production analysis or resource reallocation are as follows: it can be used naturally for multiple
input/output production without preassigned weights; it can be used for production input/output estimation and
planning without knowing the real form of the production function; and the inverse DEA model is related to multiple
objective programming or single-objective linear programming, which are well structured and studied with well-
developed theories and useful results (Yan et al., 2002).

The rest of this paper is organized as follows. In the following section we state the problem and then present a
counter-example. In Section 3 we revise Wei et al.'s solution and Section 4 contains an extension. Section 3 proposes
sufficient conditions for input estimation when output is increased. Although there are many practical DEA problems
(projects) in the literature where there are no preferences between the units and input/output factors, another
important advantage of using the inverse DEA models for production analysis or resource reallocation is that the
decision makers' preferences can be incorporated into the production analysis. In Section 4, we extend the results of
Section 3 to the case of generalized cone ratio DEA models. The preference cones used in these extended models are
particularly important in short-term production planning or resource reallocation as it more closely reflects the
management reality. Having said that, although incorporating the cone ratio structure into the inverse DEA models
provides additional advantages in supporting resource reallocation and production planning decisions, it also
involves additional complexity in model mathematics. Hence, for reducing the complexity, using ordinary inverse
DEA models is sometimes unavoidable, especially when the difference between the importance of the considered
factors is negligible. Finally, Section 5 provides an application for our study.

2. Statement of the problem

Suppose we have a set of n peer DMUs, {DMUj: j=1, 2,… , n}, which produce multiple outputs yrj (r=1, 2,… , s),
by utilizing multiple inputs xij (i=1, 2,… , m). Let the inputs and outputs for DMUj be Xj=(x1 j, x2 j,… , xmj)

t and Yj=
( y1j, y2j, … , ysj)

t, respectively. Also Xj∈Rm, Yj∈Rs, Xj N 0, and Yj N 0 for all j=1, 2,… , n. When a DMUo, o∈{1,
2, … , n}, is under evaluation, we consider the following generalized DEA model:

PIð Þmin h

s:t:
Xn
j¼1

Xjλj V Xoh

Xn
j¼1

Yjλj z Yo

λaK;

where

K ¼ λjλ ¼ λ1; N ;λnð Þ; d1
Xn
j¼1

λj þ d2 �1ð Þd3m
 !

¼ d1;m z 0;λj z 0; j ¼ 1; N ; n

( )

and δl, δ2, δ3 are parameters with 0–1 values. In fact, it is easy to see that

(i) if δl =0, then (PI) is the CCR model,
(ii) if δl =1 and δ2=0, then (PI) is the BCC model,
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(iii) if δl =δ2=1 and δ3=0, then (PI) is the FG model,
(iv) if δl =δ2=δ3=1, then (PI) is the ST model.

The CCR model is the first DEA model, which has been provided by Charnes et al. (1978), and measures the
efficiency under a constant returns to scale (RTS) assumption of technology. The BCC, FG, and ST models have been
introduced by Banker et al. (1984), Färe and Grosskopf (1985), and Seiford and Thrall (1990), respectively. Also these
three models evaluate the units under variable, nonincreasing, and nondecreasing RTS assumptions of technology,
respectively. In all of the abovementioned models the vector variable λ exhibits the intensity vector variable. The
components of this vector represent the contribution of efficient units to constructing the pattern (projection point) for
inefficient units. Also variable v is an auxiliary variable for integrating four models into a general model, and this
variable does not have any interpretation. It is clear that in all four models, the feasible region is non-empty and the
optimal value θI must satisfy θI≤1.

Definition 1. (Cooper et al., 1999) The optimal value θI of problem (PI) is called the efficiency index of DMUo. If
θI=1, we say DMUo is (at least) weakly efficient.

Now consider the following question: if the efficiency index θI remains unchanged, but the outputs increase, how
much should the inputs of the DMU increase? To solve this problem, suppose the outputs of DMUo are increased from
Yo to βo=Yo+ΔYo, where vector ΔYo≥0 and ΔYo≠0. We need to estimate the input vector αo⁎ provided that the
efficiency index of DMUo is still θI. Here

a4o ¼ a41o; a
4
2o; N ; a

4
mo

� �t
¼ Xo þ DXo;DXo z 0:

For convenience, suppose DMUn+ l represents DMUo after changing the inputs and outputs. Hence, to measure the
efficiency of DMUn+ l, we use the following model:

Pþ
Ið Þmin h

s:t:
Xn
j¼1

XjλI
j þ a4o λI

nþ1 V a4o h

Xn
j¼1

YjλI
j þ boλ

I
nþ1 z bo

λIaKþ;

where

Kþ ¼ λI jλI ¼ λI
1; N ;λ

I
nþ1

� �
; d1

Xnþ1

j¼1

λI
j þ d2 �1ð Þd3m

 !
¼ d1; m z 0;λI

j z 0; j ¼ 1; N ; nþ 1

( )
:

Definition 2. If the optimal value of problem (PI
+) is equal to the optimal value of problem (PI ), we say that the

efficiency is unchanged and we write ef f (αo⁎, βo)=ef f (Xo, Yo).

Now consider the following MOLP model

VIð Þmin a1o; a2o; N ; amoð Þ
s:t:
Xn
j¼1

XjλV
j V hIao

Xn
j¼1

YjλV
j z bo

ao z Xo

λVaK;

where βo and Λ are defined as before and hI is the optimal value of problem (PI).



Table 1
Data of Example 1

DMU A B

Input x1 1 3
x2 1 5

Output y 2 1
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Definition 3. Let (αo⁎, λ
V⁎ ) be a feasible solution of problem (VI). If there is no feasible solution (αo, λ

V) of (VI) such that
αio≤αio⁎ for all i=1, 2,… , m and αiobαio⁎ for at least one i, then we say (αo⁎, λ

V⁎) is a strongly efficient solution of (VI).

Definition 4. Suppose (αo⁎, λ
V⁎ ) is a feasible solution of problem (VI). If there is no feasible solution (αo, λ

V) of (VI) such
that αobαo⁎, that is, αiobαio⁎ for all i=1, 2,… , m, then we say (αo⁎, λ

V⁎ ) is a weakly efficient solution of problem (VI).

Note that any strongly efficient solution is a weakly efficient solution but the converse is not necessarily true. According
to Wei et al., 2000, if θIb1 and the outputs are increased from Yo to βo, then the efficiency index θI remains unchanged if
(αo⁎, λ

V⁎) is a weakly efficient solution of (VI). Here, using an example we show that this assertion is not always true.

Example 1. Consider Table 1.

Here we have two DMUs A and B with two inputs x1 and x2 and one output y. We take B into consideration in the
BCC model, and solve problem (PI)

min h
s:t: λ1 þ 3λ2 V 3h

λ1 þ 5λ2 V 5h
2λ1 þ λ2 z 1
λ1 þ λ2 ¼ 1
λ1;λ2 z 0:

The optimal solution is (λ1, λ2)= (1, 0) and hI ¼ 1
3. Now suppose that the output is increased from 1 to 3

2, and we
would like to know how much more input the unit should receive? So, we solve problem (VI)

min a1B; a2Bð Þ
s:t: λV

1 þ 3λV
2 V

1
3
a1B

λV
1 þ 5λV

2 V
1
3
a2B

2λV
1 þ λV

2 z
3

2
a1B z 3
a2B z 5
λV
1 þ λV

2 ¼ 1
λV
1 ;λ

V
2 z 0:

It can be seen that (α1B⁎ , α2B⁎ , λ1
V⁎, λ2

V⁎)= (5, 5, 1, 0) is a weakly efficient solution of the above problem. Now using
αB⁎=(5, 5) we solve problem (PI

+)

min h
s:t:λI

1 þ 3λI
2 þ 5λI

3 V 5h
λI
1 þ 5λI

2 þ 5λI
3 V 5h

2λI
1 þ λI

2 þ
3
2
λI
3 z

3
2

λI
1 þ λI

2 þ λI
3 ¼ 1

λI
1;λ

I
2;λ

I
3 z 0:
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The optimal solution is (θI
+, λ1

I , λ2
I , λ3

I )= (15, 1, 0, 0) and we see that h
þ
I ¼ 1

5 p
1
3 ¼ hI , hence ef f (5, 5, 32)≠ef f (3, 5, 1).

The above example shows that (Wei et al., 2000) must be revised. We provide a revision in the following section.

3. Revised solution

In this section we are going to determine the solutions of problem (VI) that preserve the efficiency index. The
following theorem shows that if we use strongly efficient solutions of problem (VI), then ef f (αo⁎, βo)=ef f (Xo, Yo).

Theorem 1. Suppose the optimal value of problem (PI ) is θI and (αo⁎, λ
V⁎) is a strongly efficient solution of problem

(VI). Then, when the inputs of DMUo are increased to αo⁎, the optimal value of problem (PI
+) is (θI ), that is, ef f (αo⁎, βo)=

ef f (Xo, Yo).

Proof. Suppose (αo⁎, λ
V⁎ ) is a strongly efficient solution of problem (V1) and (θI

+, λI⁎ ) is the optimal solution of
problem (PI

+). We must show that θI
+=θI. Since (αo⁎, λ

V⁎ ) is a feasible solution of (VI), it satisfies the following
conditionsXn

j¼1

Xjλ
V4
j V hIa4o ð1Þ

Xn
j¼1

Yjλ
V4
j z bo ð2Þ

a4o z Xo ð3Þ

λV4aK: ð4Þ
By Eqs. (1), (2) and (4) it is obvious that (θI, λ̄ ) is a feasible solution for (PI

+), where λ̄ =(λV⁎, 0)∈Rn +1, so θI
+≤θI.

By Eq. (1) and since θIb1, we haveXn
j¼1

XjλV4
j V a4o :

Using this in (PI
+) yields

hþI a
4
o z

Xn
j¼1

XjλI4
j þ a4o λI4

nþ1 z
Xn
j¼1

XjλI4
j þ λI4

nþ1

Xn
j¼1

XjλV4
j ¼

Xn
j¼1

Xj λI4
j þ λI4

nþ1λ
V4
j

� �
: ð5Þ

Also using Eq. (2) and the restrictions in (PI
+) we have

Yo V bo V
Xn
j¼1

YjλI4
j þ boλ

I4
nþ1 V

Xn
j¼1

YjλI4
j þ λI4

nþ1

Xn
j¼1

YjλV4
j ¼

Xn
j¼1

Yj λI4
j þ λI4

nþ1λ
V4
j

� �
:

For each j=1,… , n set

λ̃j ¼ λI4
j þ λI4

nþ1λ
V4
j :

It is not difficult to see that λ̃=(λ̃1,… , λ̃n)∈Λ. Now by contradiction assume that θI
+bθI. There are two cases for

constraint (3) at each strongly efficient solution of problem (VI):

(i) αo⁎=Xo. In this case, by Eq. (5) and since θI
+bθI, we haveXn

j¼1

Xjλ̃j V Xoh
þ
I b XohI :
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That is, (θI
+, λ̃) is a feasible solution to problem (PI), but it is impossible because θI is the optimal value of (PI).

(ii) αo⁎≩Xo. By Eq. (5) and the assumption that θI
+bθI, we haveXn

j¼1

Xj λ̃j V a4o h
þ
I b a4o hI :

On the other hand, in this case there exists at least one i, 1≤ i≤m, such that αio⁎ N xio. Therefore if we define

k ¼ min min
1 V i V m

a4iohI �
Pn

j¼1 xijλ̃j

hI

8<:
9=;; min

1 V i V m
a4io � xio : a4io � xio N 0
n o8<:

9=;;

then we have k N 0. Now defining

Paio ¼ a4io; if a4io ¼ xio;

a4io � k; if a4io N xio;

(

we have

k V

a4iohI �
Pn
j¼1

xijλ̃j

hI
Z

Xn
j¼1

xijλ̃j V hI a4io � k
� �

V hI Paio; i ¼ 1; 2; N ;m;

and

k V a4io � xio Z a4io � k z x4io; for i : a4io � xio N 0;

which implies that ᾱozXo, because ᾱio=xio when αio⁎−xio=0. Therefore (ᾱo, λ̃) is a feasible solution of
problem (VI), where ᾱio≤αio⁎ for all i=1, 2,… , m, and ᾱiobαio⁎ for some i=1, 2,… , m. This contradicts the
assumption that (αo⁎, λ

V⁎ ) is a strongly efficient solution of problem (VI).

Therefore in each case θI
+≮θI, and since θI

+≤θI, we have θI
+ =θI. □

Note that the converse of this theorem is not always true, that is, if (αo, λ
V) is a feasible solution of problem (VI) and

ef f (αo, βo)=ef f (Xo, Yo) then we cannot say that (αo, λ
V) is a strongly efficient solution of (VI). In fact, we can say that

this solution is a weakly efficient solution of problem (VI).
The next theorem shows that we can use some weakly efficient solutions of problem (VI) for input estimation.

Theorem 2. Suppose that (αo⁎, λ
V⁎) denotes some weakly efficient solutions of problem (VI ) such that αo⁎ N Xo, then

ef f (αo⁎, βo)=ef f (Xo, Yo).

Proof. The proof is similar to case (ii) in the proof of Theorem 1; the only difference is that

k ¼ min min
1 V i V m

a4iohI �
Pn

j¼1 xij λ̃j

hI

8<:
9=;; min

1 V i V m
a4io � xio
n o8<:

9=;;

ᾱio=αio⁎−k for i=1, 2,… , m, and hence ᾱobαo⁎. But this is a contradiction, because (αo⁎, λ
V⁎) is a weakly efficient

solution of (VI). □

The following example demonstrates Theorems 1 and 2 for the BCC model. A similar example can be used for other
models, too.

Example 2. Consider Table 2.

Here we have three DMUs A,B, and C with two inputs x1 and x2 and two outputs y1 and y2. We take C into
consideration in the BCC model, and by solving the respective problem (PI) we have hI ¼ 1

4. Now suppose that the



Table 2
Data of Example 2

DMU A B C

Input x1 1 3 4
x2 1 1 4

Output y1 1 1 1
y2 2 4 1
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output is increased from (1, 1) to (1, 3), and we would like to know how much more input the unit should receive? So
we consider problem (VI)

min a1C; a2Cð Þ
s:t: λV

1 þ 3λV
2 þ 4λV

3 V
1
4
a1C

λV
1 þ λV

2 þ 4λV
3 V

1
4
a2C

λV
1 þ λV

2 þ λV
3 z 1

2λV
1 þ 4λV

2 þ λV
3 z 3

a1C z 4
a2C z 4
λV
1 þ λV

2 þ λV
3 ¼ 1

λV
1 ;λ

V
2 ;λ

V
3 z 0:

It can be seen that (α1C⁎ , α2C⁎ , λ1
V⁎, λ2

V⁎, λ3
V⁎ )= 8; 4; 12 ;

1
2 ; 0

� �
and (α1C⁎⁎, α2C⁎⁎, λ1

V⁎⁎, λ2
V⁎⁎, λ3

V⁎ )= 8; 5; 12 ;
1
2 ; 0

� �
are

strongly and weak efficient solutions to the above problem, respectively, where (α1C⁎⁎, α2C⁎⁎) N XC. Now using αC⁎=(8, 4)
and αC⁎⁎=(8, 5) we solve the following problems (PI

+), respectively:

min h
s:t: λI

1 þ 3λI
2 þ 4λI

3 þ 8λI
4 V 8h

λI
1 þ λI

2 þ 4λI
3 þ 4λI

4 V 4h
λI
1 þ λI

2 þ λI
3 þ λI

4 z 1
2λI

1 þ 4λI
2 þ λI

3 þ 3λI
4 z 3

λI
1 þ λI

2 þ λI
3 þ λI

4 ¼ 1
λI
1;λ

I
2;λ

I
3;λ

I
4 z 0

and

min h
s:t: λI

1 þ 3λI
2 þ 4λI

3 þ 8λI
4 V 8h

λI
1 þ λI

2 þ 4λI
3 þ 5λI

4 V 5h
λI
1 þ λI

2 þ λI
3 þ λI

4 z 1
2λI

1 þ 4λI
2 þ λI

3 þ 3λI
4 z 3

λI
1 þ λI

2 þ λI
3 þ λI

4 ¼ 1
λI
1;λ

I
2;λ

I
3;λ

I
4 z 0:

Solving each of the above models gives hþI ¼ 1
4 as the optimal value which is equal to θI as has been established in

Theorems 1 and 2.
The following example, which uses the data of Example 1, clarifies the ability of Theorem 1. In fact, this example

exhibits a case in which the strongly efficient solution preserves the efficiency level while the weakly efficient solution
does not preserve the efficiency level.
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Example 3. Consider the data of Example 1, listed in Table 1. We take B into consideration in the BCC model, and
solve problem (PI)

min h
s:t: λ1 þ 3λ2 V 3h

λ1 þ 5λ2 V 5h
2λ1 þ λ2 z 1
λ1 þ λ2 ¼ 1
λ1;λ2 z 0:

The optimal solution is (λ1, λ2)= (1, 0) and hI ¼ 1
3. Now suppose that the output is increased from 1 to 3

2, and we
would like to know how much more input the unit should receive? So we solve problem (VI)

min a1B; a2Bð Þ
s:t:λV

1 þ 3λV
2 V

1
3
a1B

λV
1 þ 5λV

2 V
1
3
a2B

2λV
1 þ λV

2 z
3
2

a1B z 3
a2B z 5
λV
1 þ λV

2 ¼ 1
λV
1 ;λ

V
2 z 0:

As it was seen in Example 1, (α1B⁎ , α2B⁎ , λ1
V⁎, λ2

V⁎) = (5, 5, 1, 0) is a weakly efficient solution of the above MOLP
and ef f (5; 5; 32)≠ ef f (3, 5, 1). Now we consider a strongly efficient solution of the above MOLP. It can be seen
that (α1B⁎ , α2B⁎ , λ1

V⁎, λ2
V⁎) = (3, 5, 1, 0) is a strongly efficient solution of the above MOLP. Now using αB⁎=(3, 5) we

solve problem (PI
+)

min h
s:t: λI

1 þ 3λI
2 þ 3λI

3 V 3h
λI
1 þ 5λI

2 þ 5λI
3 V 5h

2λI
1 þ λI

2 þ
3
2
λI
3 z

3
2

λI
1 þ λI

2 þ λI
3 ¼ 1

λI
1;λ

I
2;λ

I
3 z 0:

The optimal solution is (θI
+, λ1

I , λ2
I , λ3

I )= (13, 1, 0, 0) and we see that hþI ¼ 1
3 ¼ hI .

Regarding Theorems 1 and 2, by solving the provided MOLP (VI) one can answer the question sketched in Section 1. To
solve MOLP (VI), we recommend using the method provided by Jahanshahloo and Foroughi (2004), see also (Steuer 1986).

The MOLP model (VI) may obtain alternative optimal solutions. In this case we recommend using a manager-
specified utility function to choose the most preferred solution. To this end, we must solve the optimization problem
min{ f (αo⁎)|(αo⁎, λ

V⁎ )∈E}, in which f is the considered utility function and E is the set of all strongly efficient solutions
of (VI). This model can be solved using the technique provided by Tu (2000). Note that a convenient choosing of the
related utility function can help the manager to select better efficient solution(s). For example, assume that x1o=x2o and
hence we would like to have this relation for αo⁎, as much as possible. In this case f (αo⁎)=α1o⁎−α2o⁎ can be a convenient
utility function.

4. Extension

In another paper in the inverse DEA filed, Yan et al. (2002) discussed the inverse DEA problem with preference
cone constraints, to capture the top management's preferences on inputs and outputs, or on some DMUs. Denote by
V⊂R+

m the preference cone of the relative importance of m input entities; by U⊂R+
s the preference cone of the relative
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importance of s output entities; and by K⊂R+
n the preference cone which shows the predilection on some DMUs. In

addition, denote by U⁎ and V⁎, the negative polar cones of U and V, respectively, and by Int V⁎ and Int U⁎ the interior
sets of V⁎ and U⁎, respectively. We can assume that

xja� IntV4; yja� IntU4; j ¼ 1; 2; N ; n:

Then the input-oriented generalized DEA model can be defined as follows:

bPI

� �
min h

s:t
Xn
j¼1

Xjλj � hXoaV4

�
Xn
j¼1

Yjλj þ YoaU4

λabK;

where

bK ¼ λa� K4jλ ¼ λ1; N ;λnð Þ; d1
Xn
j¼1

λj þ d2 �1ð Þd3m
 !

¼ d1; m z 0

( )
;

and δ1, δ2, δ3 are parameters with 0–1 values as presented for model (P1). Suppose that the outputs of DMUo are
increased from Yo to βbo, such that βbo−Yo∈−U⁎. We need to estimate the input vector αb⁎o provided that the efficiency
index of DMUo is still θbI, the optimal value of (PbI). In this extended case, we consider the following MOLP:

bV I

� �
min ba1o; ba2o; N ; bamo� �
s:t
Xn
j¼1

Xjλ
bV
j � bhI baoaV4

�
Xn
j¼1

Yjλ
bV
j þ bboaU4

bao � xoa� V4bλabK:

The following theorems show that if we use strongly efficient solutions or certain weakly efficient solutions of (VbI),
then ef f (αbo⁎, βbo)=ef f (Xo, Yo). In these theorems the three considered cones are convex, and the proofs of these
theorems are similar to those of Theorems 1 and 2, respectively, and are hence omitted.

Theorem 3. Suppose the optimal value of problem (PbI ) is θbI and (αbo⁎, λVb⁎) is a strongly efficient solution of problem
(VbI ). Then, when the inputs of DMUo are increased to αbo⁎, ef f (αbo⁎, βbo)=ef f (Xo, Yo).

Theorem 4. Suppose (αbo⁎, λVb⁎) is a weakly efficient solution of problem (VbI ) and αbo⁎−Xo∈− Int V⁎, then ef f (αbo⁎, βbo)=
ef f (Xo, Yo).

5. An application

In this section we illustrate the application of the provided results by applying them to the real-world data of 17
university departments, denoted by D1, D2,… , D17. The data has been adopted from one of first-author’s research
projects in Azad University, Mobarakeh, Iran (Hadi-Vencheh, 2007). Each unit consumes two inputs to produce two
outputs. The inputs are the number of bachelor students (X1) and the number of (full time and part time) faculty
members (X2); and the outputs are the number of graduates (Y1) and the number of research papers (Y2). Data of the
above factors for the 17 DMUs under consideration are reported in Table 3. Here, we have used the CCR model and
produced input-oriented CCR efficiency scores have been listed in the last column of Table 3.



Table 3
Data related to the real application

DMU X1 X2 Y1 Y2 θ

D1 26 7 12 3 0.86784
D2 29 6 10 7 1.00000
D3 40 8 20 6 0.99681
D4 42 7 12 6 0.81155
D5 45 9 18 6 0.82766
D6 92 12 40 2 0.63218
D7 83 11 58 3 1.00000
D8 87 14 52 7 0.96760
D9 149 16 61 4 0.75648
D10 177 17 54 12 0.94524
D11 191 19 61 11 0.87024
D12 185 14 73 4 0.99905
D13 186 20 85 10 0.98338
D14 74 12 36 5 0.79227
D15 164 22 69 8 0.72232
D16 225 20 80 5 0.78590
D17 108 10 27 3 0.61356
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We take three units D1, D5, and D11 into consideration in the CCR model and suppose that we would like to
increase the output vectors of these units from (12, 3), (18, 6), and (61, 11) to (14, 5), (20, 8), and (63, 11), respectively,
and we would like to know how much more input the unit should receive? In fact, the management of the university
wants to improve the output levels of the above-mentioned departments as stated above. And we would like to help the
management to find out how much to increase the level of inputs to obtain the desired level for the outputs, under the
reference production technology and maintaining the efficiency level. To this end, we have considered the MOLP
problem (VI) corresponding to these units. For instance, this MOLP problem for unit D1 is as follows:

min a1C; a2Cð Þ
s:t: 26λV

1 þ 29λV
2 þ 40λV

3 þ 42λV
4 þ 45λV

5 þ 92λV
6 þ 83λV

7 þ 87λV
8 þ 149λV

9 þ 177λV
10 þ 191λV

11 þ 185λV
12

þ 186λV
13 þ 74λV

14 þ 164λV
15 þ 225λV

16 þ 108λV
17 V 0:86784a1;1

7λV
1 þ 6λV

2 þ 8λV
3 þ 7λV

4 þ 9λV
5 þ 12λV

6 þ 11λV
7 þ 14λV

8 þ 16λV
9 þ 17λV

10 þ 19λV
11 þ 14λV

12 þ 20λV
13

þ 12λV
14 þ 22λV

15 þ 20λV
16 þ 10λV

17 V 0:86784a2;1
12λV

1 þ 10λV
2 þ 20λV

3 þ 12λV
4 þ 18λV

5 þ 40λV
6 þ 58λV

7 þ 52λV
8 þ 61λV

9 þ 54λV
10 þ 61λV

11 þ 73λV
12

þ 85λV
13 þ 36λV

14 þ 69λV
15 þ 80λV

16 þ 27λV
17 z 14

3λV
1 þ 7λV

2 þ 6λV
3 þ 6λV

4 þ 6λV
5 þ 2λV

6 þ 3λV
7 þ 7λV

8 þ 4λV
9 þ 12λV

10 þ 11λV
11 þ 4λV

12 þ 10λV
13 þ 5λV

14
þ 8λV

15 þ 5λV
16 þ 3λV

17 z 5
a1;1 z 26
a2;1 z 7
λV
1 ;λ

V
2 ; N ;λ

V
17 z 0:

Considering MOLP problem (V1) for the three units mentioned, D1, D5 and D11, it can be seen that

λV4; a41

� �
¼ 0; 0:06596; 0; 0; 0; 0; 0:1277; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 34:2499; 7ð Þ;

λV44; a45

� �
¼ 0; 1:0745; 0; 0; 0; 0; 0:1596; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 53:6504; 9:91ð Þ;

and

λV444; a411

� �
¼ 0; 1:1941; 0; 0; 0; 0; 0:8803; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 191; 19:3606ð Þ

are strongly efficient solutions for these three MOLP models. Then using α1⁎=(34.25, 7), α5⁎=(53.65, 9.91), and α11⁎ =
(191, 19.36) we have solved model (PI

+), which led to the efficiency scores 0.86784, 0.82766, and 0.87024,
respectively, which are the same as the efficiency scores obtained from the CCR model and listed in Table 3, as
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expected regarding the results established in Section 3 of the paper. For applied purposes, we can use the values α1⁎=
(34, 7), α5⁎=(54, 10), and α11⁎ =(191, 19), which have been rounded off.

As a supplementary study, owing to some educational reasons in the department numbered D5, the management
expected the bachelor students (input-1) to be equal to four times as many as the faculty members (input-2). To meet
this requirement, we have added a further constraint as

0 V a1;5 � 4a2;5 V 0

to MOLP model (VI) corresponding to D5. After adding this constraint, it can be seen that

λVO; aO5
� � ¼ 0; 1:0745; 0; 0; 0; 0; 0:1596; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 53:6504; 13:4126ð Þ;

is a strongly efficient solution for this MOLP model corresponding to D5. Then using α5
O=(53.6504, 13.4126) led to

the efficiency score 0.82766 which is the same as the efficiency score obtained from the CCRmodel. Here, also, we can
use the numbers (54, 13), which have been rounded off.
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