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REVIEW

The impact of Disrupted-in-Schizophrenia 1 (DISCI) on the
dopaminergic system: a systematic review

T Dahoun'?3, SV Trossbach?, NJ Brandon®, C Korth* and OD Howes'*>®

Disrupted-in-Schizophrenia 1 (DISCT1) is a gene known as a risk factor for mental illnesses possibly associated with dopamine
impairments. DISC1 is a scaffold protein interacting with proteins involved in the dopamine system. Here we summarise the impact
of DISC1 disruption on the dopamine system in animal models, considering its effects on presynaptic dopaminergic function
(tyrosine hydroxylase levels, dopamine transporter levels, dopamine levels at baseline and after amphetamine administration) and
postsynaptic dopaminergic function (dopamine D1 and D2 receptor levels, dopamine receptor-binding potential and locomotor
activity after amphetamine administration). Our findings show that many but not all DISCT models display (1) increased locomotion
after amphetamine administration, (2) increased dopamine levels after amphetamine administration in the nucleus accumbens, and
(3) inconsistent basal dopamine levels, dopamine receptor levels and binding potentials. There is also limited evidence for
decreased tyrosine hydroxylase levels in the frontal cortex and increased dopamine transporter levels in the striatum but not
nucleus accumbens, but these conclusions warrant further replication. The main dopaminergic findings are seen across different
DISCT models, providing convergent evidence that DISCT has a role in regulating dopaminergic function. These results implicate
dopaminergic dysregulation as a mechanism underlying the increased rate of schizophrenia seen in DISCT variant carriers, and
provide insights into how DISC1, and potentially DISC1-interacting proteins such as AKT and GSK-3, could be used as novel

therapeutic targets for schizophrenia.
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INTRODUCTION

The Disrupted-in-Schizophrenia 1 (DISC1) gene was originally
discovered at the breakpoint of a balanced translocation t(1;11)
(942;914.3) in a Scottish family and later identified in a North
American family with high rates of schizophrenia.'™ Since then,
preclinical models have shown that DISCT mutant animals exhibit
behavioural, neurostructural and neurochemical features relevant
to schizophrenia, > although its significance for the human
disease has been debated.”® DISC1 is described as a scaffold protein
with multiple interactors involved in a wide range of cellular
processes including neurotransmitter signalling.'®'" In particular,
DISC1 is known to interact with several proteins involved in
dopamine signalling including fasciculation and elongation
protein zeta 1, phosphodiesterase 4D9 and phosphodiesterase
4B, serine/threonine protein kinase Akt and glycogen synthase
kinase-3 (GSK-3)'2""6 as well as synaptic interactors such as kalirin-
7 and the Traf2, Nck-interacting kinase,'””'® and the microtubule/
centrosomal proteins pericentriolar material 1 and Bardet-Bied|
syndrome protein.'®?° These multiple interactions have high-
lighted the potential of DISC1 as a therapeutic target.2' >

The neurotransmitter dopamine is widely thought to have a
central role in the aetiology of psychotic disorders.?*"2° The dopa-
mine hypothesis of schizophrenia was initially based on the findings
that the affinity of antipsychotic medications for dopamine
receptors is closely related to their clinical potency,””2° and that

drugs that increase dopamine levels provoke psychotic symptoms
in healthy people.*®*' Molecular imaging studies since then have
shown increased presynaptic dopamine synthesis capacity and
release in schizophrenia®*>> and in subjects with prodromal
symptoms of schizophrenia.*®~3° Alterations in dopamine D1 and
D2/3 receptors, tyrosine hydroxylase (TH) levels and baseline
synaptic dopamine levels in schizophrenia have also been
reported,*®*! although with some inconsistency.*?

These findings highlight why dopaminergic dysfunction has a
pivotal role in schizophrenia. In view of this, we sought to review
the evidence from animal models that DISCT pathway alterations
may impact on dopaminergic function, as it has not been
comprehensively synthesised before. The aim of our review was
therefore to summarise the impact of DISC1 on TH levels,
dopamine transporter (DAT) levels, basal dopamine levels and
after amphetamine administration, dopamine D2 receptor-binding
potential (BP), dopamine D1 (D1R) and D2 receptor (D2R) levels,
and locomotor activity after amphetamine administration for
dopamine-related behaviour*® We selected publications citing
data collection in the midbrain, as this is the location of the
majority of dopaminergic neuron cell bodies in the brain, and the
frontal cortex, hippocampus and striatum as these are the target
sites of the main dopaminergic pathways relevant to psychiatric
disorders.***

"Psychiatric Imaging Group MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK; ZInstitute of Clinical Sciences, Faculty of Medicine, Imperial College,
Hammersmith Hospital, London, UK; 3Department of the Institute of Clinical Sciences, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Imperial
College-Hammersmith Hospital Campus, London, UK; “Department of Neuropathology, Medical Faculty, Heinrich Heine University Diisseldorf, Diisseldorf, Germany; *AstraZeneca
Neuroscience, Innovative Medicines and Early Development Biotech Unit, R&D Boston, Waltham, MA, USA and ®Department of Psychosis Studies, Institute of Psychiatry,
Neurology and Neuroscience (IoPPN), King's College London, London, UK. Correspondence: Dr T Dahoun, Psychiatric Imaging Group, MRC London Institute of Medical Sciences

(LMS), Imperial College-Hammersmith Hospital Campus, London W12 ONN, UK.
E-mail: t.dahoun14@imperial.ac.uk
Received 21 July 2016; revised 16 November 2016; accepted 27 November 2016


http://dx.doi.org/10.1038/tp.2016.282
mailto:t.dahoun14@imperial.ac.uk
http://dx.doi.org/10.1038/tp.2016.282
http://www.nature.com/tp

Impact of DISCT on the dopaminergic system

T Dahoun et al
65 articles 33 articles excluded
identified by I
search i
-24 reviews

-4 articles not in English
-5 human studies with no dopamine measures

18 articles excluded

-articles addressing DISC1-interacting
proteins or with no outcome measures as

32 eligible defined above or with no DISC1 gene
articles — ™| mutations

14 articles
included in

systematic review

Figure 1. Flow chart of identification, exclusion and inclusion of
eligible studies. DISC1, disrupted-in-schizophrenia 1.

MATERIALS AND METHODS
Selection of studies

The entire PubMed database was searched to select publications.
Studies were screened based on the terms (‘Disrupted-in-
Schizophrenia-1” OR ‘DISC1’) AND (‘dopamine’ OR ‘tyrosine
hydroxylase’ OR ‘dopamine receptor’ OR ‘DAT’ OR ‘amphetamine’
OR ‘behavioral alterations’ OR ‘locomotor activity’ OR ‘Positron
Emission Tomography’ OR ‘PET" OR ‘Single Photon Emission
Computed Tomography’ OR ‘SPECT’). Only articles meeting the
following criteria were included: (1) original studies; (2) English
language; (3) peer-review journals; (4) findings reporting TH levels,
DAT levels, basal dopamine levels and/or dopamine levels after
amphetamine administration, and/or dopamine receptor-binding
potential, dopamine receptor levels and/or locomotion after
amphetamine administration in a DISCT model compared with a
control group; and (5) in the frontal cortex, striatum, nucleus
accumbens, midbrain and/or hippocampus, as these regions are
major target sites of dopaminergic projections in the brain and are
thought to be involved in the pathophysiology of
schizophrenia.*** The DISC1 models were selected based on
gene mutation in DISCT or alteration in the quantitative expression
of DISCT protein. Method and results sections of the eligible
articles were screened to identify the measures of interest
listed above.

Data extraction

The main outcome measures were the differences between the
DISCT models and controls in (1) TH levels; (2) DAT levels; (3) basal
dopamine levels; (4) dopamine levels after amphetamine admin-
istration; (5) dopamine receptor-binding potential; (6) D1R and
D2R levels; and (7) locomotion after amphetamine administration.
In addition, the following data were extracted: (8) authors; (9) year
of publication; (10) the DISCT model; (11) samples size; and (12)
methods. The data were extracted by TD and checked by SVT.
Findings related to the nucleus accumbens and olfactory tubercle
were merged as both being part of the ventral striatum.*®

RESULTS

Fifty-one studies were excluded from a total of 65 studies
screened (Figure 1). Fourteen studies were included of which
two were of TH levels, three of DAT levels, nine of basal dopamine
levels, six of induced dopamine release, four of dopamine receptor
BP, four studies of DR levels, four studies of D2R levels and
thirteen of locomotion after amphetamine administration. Table 1
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summarises all studies including the DISCT model used, sample
sizes and methods. It should be noted that we were not able to
find evidence that dopaminergic function had been investigated
in more recently disclosed DISCT models, for example.*’*

DISCT models

Five types of DISCT models were identified across the studies as
follows: (1) transgenic expression of truncated human Disc1
protein with dominant-negative (DN) effect; (2) DISCT haploinsuf-
ficiency/silencing; (3) full-length human DISCT overexpression; (4)
artificial Disc1 mutation; and (5) wild-type model (Table 1). Data on
locomotion after amphetamine administration from Su et al.®®
were included despite the absence of a direct comparison
between mutant and wild-type mice as they showed a functional
relationship between Disc1 and the dopamine receptor. Both
genotype effects (wild type versus transgenic) and genotype
effect in a stress condition (isolated wild type versus isolated
transgenics) were included from Niwa et al>'

TH levels

Two studies investigated TH levels in the hDISCT and the Disc1
RNA interference (RNAi)/silencing models compared with
controls.>’** These studies showed reduced TH levels in frontal
cortical regions in isolated hDISCT mice compared with isolated
controls®' and in the Disc RNAi/silencing model compared with
controls®* (Figure 2 and Table 3).

One study showed no significant changes in TH levels between
hDISC1 and controls, and between isolated hDISCT mice and
isolated controls in the nucleus accumbens.’’

DAT levels

Three studies investigated DAT levels in the DISCT model
compared with controls.>?>®*® Two studies found increased DAT
levels in the striatum of DN homozygous line 37 mice and tgDISCT
rats compared with controls Tables 2 and 3.5%°8

One study found no significant difference between the
Disc1A2-3 mice compared with controls in the nucleus
accumbens.®

Basal dopamine levels

Nine studies investigated basal dopamine levels in DISCT models
compared with controls.*932>436383981 1 yjyo microdialysis and
post-mortem high-performance liquid chromatography with elec-
trochemical detection (HPLC-ED) were used, measuring extra-
cellular and total dopamine levels, respectively.

Eight studies investigated basal dopamine levels in the frontal
cortex/mPFC, six using HPLC-ED*%°%>>585961 and two using both
post-mortem HPLC-ED and microdialysis.>’** One of the two
studies using microdialysis showed decreased basal dopamine
levels in the Disc1 RNAi/silencing model compared to controls,>*
whereas the other study found no significant changes between
the hDISCT mice and controls and the isolated hDISCT mice and
isolated controls.>" For HPLC-ED, decreased basal dopamine levels
were found at postnatal day 56 in the Disc1 RNAi/silencing
model,>* and in males from the prenatal hDISC1 expression group
(until embryonic day 17), the postnatal expression group (from
embryonic day 17 on) groups and the pre- and postnatal hDISCT
expression (entire life) compared with controls.*® No significant
differences were reported in the other studies.>%>'>>78596!

Six studies investigated basal dopamine levels in the striatum
using HPLC-ED**-°1°%%881 and one using both HPLC-ED and
microdialysis.”® One study found decreased total dopamine levels
in the full-length DISC7-overexpressing rat model compared with
controls in the dorsal striatum.®

Six studies investigated basal dopamine levels in the
nucleus accumbens, one using in vivo microdialysis,>? four using
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HPLC-ED***8°96" and one using both techniques.®® Two studies
using in vivo microdialysis showed decreased basal dopamine
levels in the Disc1 RNAi/silencing model compared with controls®*
and the hDISC1 heterozygous line 10 and 37 mice compared with
controls>?> One study using HPLC-ED showed significant
decreased basal dopamine levels in L100P ENU-generated
missense mutation mice' whereas the others found no
significant differences **>%>859

One study investigated basal dopamine levels in the midbrain
and found no significant difference between the Disc1A2-3
haploinsufficiency model and controls.>

Seven studies investigated basal dopamine levels in the
hippocampus using HPLC-ED.**°0345385961 Ope study found
decreased dopamine levels in females in the postnatal
hDISCT expression group compared with prenatal expression
only and controls.* The other studies found no significant
differences.5°’54'55'58’59’61

Time of functional effect

of mutation

Affected brain regions

Induced dopamine release

All the studies induced dopamine release by administrating
amphetamine-related drugs. Two studies investigated induced
dopamine release in the frontal cortex and found no significant
differences, one using microdialysis®’ and one using HPLC-ED.>°

One study investigated induced dopamine release in the
striatum using in vivo microdialysis®® and one study using HPLC-
ED,*° both reporting no significant differences.

Four studies investigated induced dopamine release in the
nucleus accumbens using microdialysis.>'>*#>¢ The four studies
found significantly increased dopamine release. This was in the
DISCT knockdown compared with controls,>® in isolated hDISC1
compared with isolated controls,”’ in heterozygous line 10 and 37
compared with controls °2 and female but not male Disc1A2-3
mice compared with controls.>®

One study investigated induced dopamine release in the
hippocampus using HPLC-ED and found no significant difference
between the hDISCT and controls.*

Promoter
Mouse: C57BL/  Endogenous
Endogenous
Endogenous
Endogenous

6J
Mouse: C57BL/

6J
Mouse: C57BL/

6J
Mouse: C57BL/

Rodent strain
6J)

Dopamine D1 receptor
Two studies investigated D1R levels in the frontal cortex and
found no significant differences between the hDISCT and controls,
and the Disc1A2-3 haploinsufficiency model and controls.>'>®
Three studies investigated D1R levels in the striatum.
One study found increased levels in the hDISCT model com-
pared with controls,>® whereas the others found no significant
differences.”®*®
Two studies investigated DI1R levels in the nucleus
accumbens.®'® One study found significant increased D1R levels
in female and no significant changes in male and mixed Disc1A2-3
groups,”® whereas the other showed no significant differences.”’

ENU-induced artificial

ENU-induced artificial
mutation

ENU-induced artificial
mutation

Method
mutation

52,56,58

leucine to proline substitution
at amino acid 100 in the Disc1
protein (L100P)

leucine to proline substitution
at amino acid 100 in the Disc1

protein (L100P)
substitution at amino acid 31 in

the protein (Q31L)

A127T transition leading to a
Wild-type mice

Functional impact on DISC1
Missense mutation in exon 2
T334C transition leading to a
Missense mutation in exon 2:
T334C transition leading to a
Missense mutation in exon 2:
glutamine to leucine

Dopamine D2 receptor
Three studies investigated D2R levels in the frontal cortex.
One study found significant increased D2R levels in the hDISCT
mice compared with controls and isolated hDISCT mice compared
with isolated controls®® and the two other studies found no
significant differences between the Disc1 RNAi/silencing/haploin-
sufficiency models and controls.>*>®

Two studies investigated D2R levels in the striatum.’**® The
hDISC1 mice showed significant increased D2R levels,>? whereas
the other showed no significant differences between the Disc1A2-
3 models and controls.>®

Four studies investigated dopamine receptor-binding potential
in the striatum.’®*?°#°° The dopamine D2 receptor is known to
exist in two interconverting states, a low-affinity (uv) and a high-
affinity (nm) state.%® Lipina et al>® and Trossbach et al.>® found a
significant increase in dopamine D2 high-affinity receptor levels

51,54,56

59

Arime
et al.®®
Lipina
et al®!

Lipina
et al.
Su et al.®?

Authors™*

1
12.
13

14

(Continued)

Abbreviations: ENU, N-nitroso-N-ethylurea; hDISC1, human DISC1; GFAP promoter, glial fibrillary acidic protein promoter; GSK-3, glycogen synthase kinase-3; PDE4B, phosphodiesterase 4B—enzyme inactivating

intra-cellular adenosine 3’,5'-monophosphate (cCAMP); PrP, prion protein; tgDISC1, transgenic DISCT; WT, wild type.

DISC1 model category
Artificial DiscT mutation
Wild-type Disc1

Table 1.
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Figure 2. The impact of DISCT models on the dopamine system. AMPH, amphetamine; DA, dopamine; DAT, dopamine transporter; NAc,
nucleus accumbens; SN, substantia nigra; TH, tyrosine hydroxylase; VTA, ventral tegmental area.

using [*Hldomperidone binding challenged with dopamine, but
Trossbach et al. found no difference in [*Hlraclopride binding by
autoradiography. As raclopride does not distinguish low from high
affinity or D2 from D3 receptors, taken together, these studies are
consistent with a shift to the high-affinity state without a change
in total D2/3 receptor levels. Jaaro-Peled et al.>* found significantly
increased binding potential of D2/3 receptor availability in the
striatum using [''Clraclopride PET and significantly increased
levels of D2/3R in the medial part of the right rostral striatum
using [*Hlspiperone autoradiography but no significant differ-
ences in D2/3 levels in the total right rostral striatum and the
lateral part of the right striatum in the hDISCT compared with
controls. Pogorelov et al.>° found no significant difference in the
rostral part of the striatum using [''Clraclopride autoradiography
in the hDISCT mice compared with controls.

Two studies investigated D2R levels in the nucleus
accumbens.®’® One study found significantly increased D2R
levels in female but not male and mixed Disc1A2-3 groups,”®
whereas the other showed no significant differences.”’

One study investigated D2/3R-binding potential in the nucleus
accumbens using [''Clraclopride autoradiography PET and found
no significant differences in the nucleus accumbens but signifi-
cantly decreased levels in the right olfactory tubercle of female
hDISCT mice compared with controls™® They used the same
approach to investigate D2/3R-binding potential using [''Clraclopride
autoradiography in the midbrain (substantia nigra/VTA) and found no
significant difference between the hDISCT and controls.”

One study investigated D2R levels in the hippocampus and
found no significant difference between the Disc1A2-3 haploin-
sufficiency and controls.”®

Locomotion after amphetamine administration

Thirteen studies investigated locomotion after amphetamine
administration.**=%%%? Ten studies found increased locomotion
after amphetamine administration in the DISCT models compared
with control animals, in the pre- and postnatal hDISCT expression
groups,*® hDISC1 mice,>* the Disc1 RNAi/silencing model,>* female

but not male Disc1A2-3 mice,>®> male but not female Disc1A2-3

mice,*® full-length hDISCT-overexpressing rats,”’~% Disc1-L100P
mice,*® isolated hDISCT mice compared with isolated controls®’
and wild-type Disc1 mice with no DISC1-D2R disruption.®> Two
studies found decreased locomotion after amphetamine admin-
istration, in female but not male hDISCT mice after escalating dose
of methamphetamine treatment compared with controls in
Pogorelov et al.>° and wild-type mice with Disc7-D2R disruption
in Su et al.%? No significant changes were found in the hDISCT mice
and Disc1-L100P/L100P mice compared with controls in three
studies.>>36°

DISCUSSION

The main findings show that compared with controls, the DISCT
models exhibit reasonably consistent (1) increased locomotion
after amphetamine administration (2) increased dopamine levels
after amphetamine administration in the nucleus accumbens but
(3) inconsistent alterations in basal dopamine levels and
dopamine receptor levels and binding potentials. These findings
extend other studies showing increased methamphetamine-
induced dopamine release in the nucleus accumbens and
locomotor hyperactivity in mice lacking DISC1-interacting pro-
teins, such as fasciculation and elongation protein zeta 1%* and
PDE4,%’ to indicate that the DISCT pathway affects specific aspects
of dopaminergic function.

Limitations

The findings presented in this systematic review must be
considered in the light of the following limitations. First, the
number of studies was modest for some aspects of dopaminergic
function, such as transporter levels, and some regions. This limits
the conclusions that can be drawn about these aspects, and
highlights the needs for further studies. Second, the studies used a
heterogeneous set of DISCT models (Table 1), which could
contribute to variability in results. Third, the evidence comes
from a relatively small number of research groups. Thus,

Translational Psychiatry (2017), 1-15
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258 replication would be useful to determine generalisability. And
@ @ = fourth, alterations in other neurotransmitter system such as
= 2 = % T8 noradrenaline might also contribute to the locomotor hyperactiv-
2 % % £ %E ity phenotype observed. However, several reports indicate that
= o © T gg £ locomotor hyperactivity after amphetamine is specifically
3 = 2 g’ a 3 SEE mediated through dopamine and not noradrenergic transmission
g 25 = g = n:‘g z in the nucleus accumbens.%6-%8
S (5% % 5 o% g
" . - - %_“gj §_ Potential mechanisms underlying locomotor hyperactivity
S £ ‘gg é The majority of the DISCT models used showed' locomotor
S, %% g L8 hyperactivity following amphetamine challenge. This shows a
< ERU N g g relatively conserved phenotype of the DISCT models that might be
'§ 3<Z( v e explained by (1) the presynaptic effects of DISCT on dopamine
@ - E “g’§ release in the nucleus accumbens or (2) a direct impact of 'the
~ SEE | O e S setmetmoone o ki (ke
i) I_‘%’ 3 bt %fé glycogen synthase kinase-3 (GSK-3) pathway. In support of the
2 g g 3 g v s ?JE g first hypothesis, the nucleus accumbens is thou.gj%wt to have an
T 8- @ T £ T important role in regulating locomotor activity.>’® Local admin-
q';g 5 € p ,%T E’_‘é o istration of dopamine and amphetamine has been shown to
g gn 8 gs® 258 induce hyperactivity similar to systemic administration,®®”°~? and
Z,s“; : S 8 % cEn % f‘t', our review has identified reasonably consistent evidence that
s ge' . £Tc f T 8 DISCT models are associated with greater dopamine release to
£55 2 £s5 o S fcj amphetamine. With regards to the second hypothesis, Akt and
SE® g SE® TE o GSK-3 are two proteins regulated b3y DISC1 with respectively
g 8¢k S sc 3 Seog indirect and direct interactions.”'®”®> The Akt-GSK-3 pathway
§ g'é é _ £ g S E 2 g2 modulates dopamine neurotransmission and amphetamine-
< 3838y g 987 £4° mediated locomotor activity.”*’® Amphetamine/methampheta-
2= 32 mine-induced dopamine release decreases Akt activation (ph.os—
< % g phorylation state’”), wbsich activate; GISK-S l()jy dephosp:jhorylegmg(
29 the Serine 9 site to modulate opamine-dependen
R oo vow oo ° o g %g behaviours.”* AIthoqu73D7igsc1 wild-type protein decreases Akt
& 55 8588 58 S8 450 and GSK-3 activation, >"*’® the impact of mutant DISC1 on Akt
© == === == == Lo and GSK-3 is less clear. Evidence shows increased and decreased
% _%; Akt activation in DISCT knockdown,'®6%8% no effects on Akt and
a i ~ N SI & § GSK-3 levels in hDISCT mice®® and consistently increased GSK-3
€ ® L to™ Sy shlcDe activation in DISC1 knockdown and Disc7 point mutation
B B 8g¢ Q31L.5%8"82 |nterestingly, mice overexpressing GSK-3 develop
&9 -§ locomotor hyperactivity,sz4 GSK-3 kn.ockd.own mice express
9 55 o reduced locomotor activity®™ and adminlstratlonggf GSK-3 inhibitor
€ ° E‘% b decreases amphetamine-induced hyperactivity.
S £3 3 glE5 8
5 i % E § § é % g Poteﬂtial mechanisms underlying increased dopamine release to
g oA ° S| SES amphetamine
0 3 E’ E’ k) é 5 % '::' '::' .§'“§ i The studies reporting increased dopamine levels following
g £5 T EL =t g £E2z amphetamine administration in the nucleus accumbens used a
S S8 £32 8k £& 0o Disc1A2-3 haploinsufficiency,”® a DN hDISCT model in combina-
&5 Z tion with adolescent isolation stress,”' a transient knockdown in
E & g prefrontal cortex >* and a DN hDISCT model targeting specifically
3z P pyramidal neurons of the cortex and hippocampus.>* This raises
3. G, g ﬁ% the questions of (1) the time course of changes in dopamine and
- E 2> Q 3% whether there are developmental periods that are particularly
E& $ o S SE o vulnerable to DISC1 alterations, (2) the brain regions minimally
£ £ s s & éé required to lead to increased dopamine release to amphetamine,
<3 < 3 a k; 2 '3 and in particular, the role of the cortical regions in regulating the
£49 nucleus accumbens dopamine levels.
~ oA < E f § With regards to the first point, recent studies suggest ’Fhat DISC1
- = - .“g’_ £ g alterations interact with stress to impact on dopaminergic neurons
eS g g during adolescence.’® These findings are irflinfe wil':h e(zividelnce
5 YRR showing that adolescence is a critical time life for the develop-
g E’:' s3 S ment of psychotic disorders including schizophrenia.®” With
b= 2 < :‘T:’ 2 regards to the second point, a possible mechanism underlying
§ 3 ?J g % S ingreased dopamine levels in the nucleus accumbens could be a
“lgx o 583 % reduction in cortical parvalbumin-positive interneurons. Suppo.rt-
NS §a > i § X5 ing this, studies have shown a decreased number of parvallc‘)‘gg;lg(;
=|£5§ S Sws<T positive interneurons in the cortex of DN DISCT models.”
B <o °F Parvalbumin-positive interneurons are GABAergic inhibitory
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neurons thought to regulate the dopaminergic activity in the
nucleus accumbens and to have a role in schizophrenia through
the modulation of cortical glutamate excitatory pyramidal
neurons.”’™* Finally, the specific localisation of the findings in
the nucleus accumbens might be related to an increased
sensitivity of this region to stimulants, as it has been shown to
release more dopamine following amphetamine administration
compared with other striatal subdivisions.®*

Inconsistent basal dopamine levels and dopamine receptor-
binding potential and levels

We summarise here a series of inconsistent findings on basal
dopamine levels and dopamine receptor-binding potentials and
levels in the frontal cortex, striatum, nucleus accumbens and
hippocampus. These findings might be due the heterogeneity of
the DISCT models used (Table 1). Among these, only the short
interfering RNA knockdown or knockout models should have loss
of function phenotypes whereas all others could have either loss
of function, or gain of function, or combined phenotypes at the
same time. However, no more consistency is observed when
looking only at the loss of function models. It should also be noted
that the tgDISCT rat was conceived as a model for protein
pathology related to DISC1 rather than a model for mutant
DISC1.2%%> Another possible explanation could be that these are
adaptive changes not always seen following the core dopamine
release alteration.

Implications

The effects of DISC1 on dopamine release and the behavioural
effects of amphetamine are in line with evidence showing
increased amphetamine-induced dopamine release in schizophre-
nia, and that this positively correlates with amphetamine-induced
positive psychotic symptoms.3**>9%%7 The absence of clear
receptor changes is also consistent with the lack of changes in
dopamine D2/3 receptors alterations seen in a meta-analysis of
in vivo findings in schizophrenia.”® However, the inconsistent
findings in striatal basal dopamine levels do not agree with the
in vivo evidence showing increased basal dopamine levels in
schizophrenia.>*° Taken together, these findings indicate that
DISC1 alterations may increase the risk of schizophrenia by
dysregulating the presynaptic regulation of dopamine but they do
not result in the full dopaminergic phenotype, suggesting other
factors must interact with DISC1. Stress is one likely candidate
factor'® that has been shown increase dopamine release in
psychosis.>®

It should be noted that DISCT is also associated with affective
disorders including major depression.'®"'%? The implications of
the findings for this association remains unclear, as human PET
studies have shown decreased dopamine synthesis capacity in
patients with major depression particularly in individuals with
reduced affect or psychomotor slowing symptoms'®*'%> and
some endophenotypes such as anhedonia are thought to be
underlined by dopamine function.'%%%”

Our conclusions drawn from the preclinical research reviewed
here may have interesting implications for clinical research and
hence translational value at pointing to the necessity of
identifying a biomarker to identify illness subtypes related to
DISC1 dysfunction, to guide treatment choice and as a lead for the
development of novel therapies. Determining whether DISC1
function is aberrant in a given individual could be a useful to
subtype patients. Given that aberrant DISC1 function modulates
aspects of dopaminergic function, this may help identify patients
who may be responsive to drugs that act on the dopaminergic
system, in line with emerging evidence on dopaminergic and non-
dopaminergic subtypes of schizophrenia.'®® What directions could
the search for identifying biomarkers for aberrant DISC1 function
take? Screening for DISC1 polymorphisms may be one way to

Translational Psychiatry (2017), 1-15

assess this as some polymorphisms have been associated with
different neuronal functions and with treatment-resistant
schizophrenia.'®™""" As it has been demonstrated that single-
nucleotide polymorphisms of DISC1-interacting genes are over-
represented in schizophrenia,''? the use of a DISC1-interactome
polygenic risk score might also be a complementary approach to
stratify the risk associated with a specific signalling pathway or
response to treatment. However, it should be recognised that
genetic diagnostics alone may not provide sufficient information
because DISC1 levels also depend on other factors, for example,
BACE1-dependent cleavage of neuregulin 1."'® Large cohort
studies of patients are needed to determine whether DISCT
polymorphisms and/or DISC1 protein levels in peripheral cells do
identify subsets of patients with distinct illness characteristics or
treatment response.'’ This may require the combinatorial
analysis of blood-based, imaging and/or neurophysiological
factors, to both identify those patients with both aberrant DISC1
and neuronal function. Another key implication is that under-
standing how DISCT alterations lead to dopamine dysregulation
could identify new treatment approaches to address the
dopamine dysfunction seen in schizophrenia and people at risk
of schizophrenia in a broader sense. Pharmacological targeting of
aberrant DISC1 function may be able to correct dopamine
dysfunction without directly interfering with dopamine receptors
themselves, providing an alternative to existing antipsychotic
drugs, which are all D2/3 receptor blockers. In that sense, clinical
development of diagnostics and pharmacotherapy of DISC1-
related disorders may go hand in hand® to support the
development of precision medicine in psychiatry.

Future directions

We identify four key lines of direction for future studies based on
the findings: first, as results to date come from a relative small
number of studies, it would be useful to investigate dopamine
function in DISCT models recently developed.*’*® Second, the
mechanism by which DISCT leads to increased dopamine release
to amphetamine needs further investigation, in particular to
determine whether this could be mediated by disinhibition of
parvalbumin-positive interneurons or the Akt-GSK-3 pathway.
Interestingly, a DISCT model has been recently developed with
selective knockdown of interneuronal DISC1 in parvalbumin
neurons,*” which might provide insightful knowledge on the
mechanisms linking DISCT and dopamine regulations. In that
context, it is also remarkable that DISCT as a single factor is able to
both regulate dopamine neuroanatomy as well as parvalbumin-
positive interneuron placement in cortical layers."”> Third,
elevated dopamine synthesis capacity is the other aspect of
presynaptic dopamine dysregulation widely linked to schizophre-
nia and people at risk of schizophrenia.3**7""'® Thus, future work
should test if DISCT alterations affect this aspect of presynaptic
dopamine function in humans. Fourth, it would be useful to
examine further the impact of environmental stress on dopamine
release and dopamine levels in DISCT models as proposed by
some authors.>"""’

CONCLUSIONS

Compared with controls, the majority of the DISCT models but not
all exhibits (1) increased locomotion after amphetamine admin-
istration and (2) increased dopamine levels after amphetamine
administration in the nucleus accumbens but (3) inconsistent
basal dopamine levels and dopamine receptor levels and binding
potentials. This suggests that presynaptic dopamine dysregulation
is a potential mechanism for the increased rates of psychotic
disorders seen in the original DISCT families and DISCT variant
carriers, and identifies a number of potential therapeutic targets



for treating or even preventing schizophrenia based on the DISCT
pathway.
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