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Several different factors contribute to injury severity in traffic accidents, such as driver characteristics,
highway characteristics, vehicle characteristics, accidents characteristics, and atmospheric factors. This
paper shows the possibility of using Bayesian Networks (BNs) to classify traffic accidents according to
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their injury severity. BNs are capable of making predictions without the need for pre assumptions and
are used to make graphic representations of complex systems with interrelated components. This paper
presents an analysis of 1536 accidents on rural highways in Spain, where 18 variables representing the
aforementioned contributing factors were used to build 3 different BNs that classified the severity of
accidents into slightly injured and killed or severely injured. The variables that best identify the factors
that are associated with a killed or seriously injured accident (accident type, driver age, lighting and

ident
lassification number of injuries) were

. Introduction

The number of traffic accidents and their effects, mainly human
atalities and injuries, justify the importance of analyzing the fac-
ors that contribute to their occurrence. Identifying the factors
hat significantly influence the injury severity of traffic accidents
as the main objective of many previous studies. Factors affect-

ng injury severity of a traffic accident are usually caused by one or
ore of the following factors: driver characteristics, highway char-

cteristics, vehicle characteristics, accidents characteristics and
tmospheric factors (Kopelias et al., 2007; Chang and Wang, 2006).

Regression analysis has been widely used to determine the con-
ributing factors that cause a specific injury severity. The most
ommonly used regression models in traffic injury analysis are
he logistic regression model and the ordered Probit model (Al-
hamdi, 2002; Milton et al., 2008; Bédard et al., 2002; Yau et
l., 2006; Yamamoto and Shankar, 2004; Kockelman and Kweon,
002). However, most of the regression models that are used to
odel traffic injury severity have their own model assumptions

nd pre-defined underlying relationships between dependent and

ndependent variables (i.e. linear relations between the variables)
Chang and Wang, 2006). If these assumptions are violated, the

odel could lead to erroneous estimations of the likelihood of
evere injury.

∗ Corresponding author. Tel.: +34 958 24 99 79.
E-mail address: jdona@ugr.es (J. de Oña).

1 These authors have contributed equally to this work.
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ified by inference.
© 2010 Elsevier Ltd. All rights reserved.

Gregoriades (2007) highlighted the interest of using Bayesian
Networks (BNs) to model traffic accidents and discussed the need
to not consider traffic accidents as a deterministic assessment prob-
lem. Instead, researchers should model the uncertainties involved
in the factors that can lead to road accidents. He listed a number of
candidate approaches for modeling uncertainty, such as, Bayesian
probability.

BNs make it easy to describe accidents that involve many inter-
dependent variables. The relationship and structure of the variables
can be studied and trained from accident data. They do not need to
know any pre-defined relationships between dependent and inde-
pendent variables.

The three main advantages of BNs are bi-directional induction,
incorporation of missing variables and probabilistic inference. By
using BNs, it is relatively easy to discover the underlying patterns
of data, to investigate the relationships between variables and to
make predictions using these relationships. Incident data used in
a study by Ozbay and Noyan (2006) were collected from incident
clearance survey forms to understand incident clearance character-
istics and then used to develop incident duration prediction models.
The researchers modeled the incidents’ clearance durations using
BNs and were able to represent the stochastic nature of incidents.

Using BNs to analyze traffic accident injury severity is scarce.
A two car accident injury severity model was constructed using

BNs (Simoncic, 2004). A BN was built using several variables, and
the Most Probable Explanation (MPE) was calculated for the most
probable configuration of values for all the variables in the BN, in
order to serve as an indication of the quality of the estimated BN.
The results pointed out that BNs could be applied in road accident

dx.doi.org/10.1016/j.aap.2010.09.010
http://www.sciencedirect.com/science/journal/00014575
http://www.elsevier.com/locate/aap
mailto:jdona@ugr.es
dx.doi.org/10.1016/j.aap.2010.09.010
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odeling, and some improvements, such as using more variables
nd larger datasets, were recommended. Although this study high-
ighted the possibility of using BNs to model traffic accidents, the
esults were based on building only one possible network, without
easuring the performance of the Bayesian classifier.
The scope of this paper is to validate the possibility of using BNs

o classify traffic accidents according to their injury severity, and to
nd out the best BN classification performance along with the best
raphical representation, in order to be capable of identifying the
elevant variables that affect the injury severity of traffic accidents.

This paper is organized as follows. Section 2 presents the data
sed and briefly reviews the concept of BNs and Bayesian learn-

ng. The methods used for preprocessing and evaluating the data
re also presented; finally a brief description of inference is pre-
ented. In Section 3, the results and their discussion are presented.
n Section 4, summary and conclusions are given.

. Materials and methods

.1. Accident data

Accident data were obtained from the Spanish General Traffic
irectorate (DGT) for rural highways for the province of Granada

South of Spain) for three years (2003–2005). The total number of
ccidents obtained for this period was 3302. The data were first
hecked out for questionable data, and those which were found to
e unrealistic were screened out. Only rural highways were consid-
red in this study; data related to intersections were not included,
ince intersections have their own specific characteristics and need
o be analyzed separately. Finally, the database used to conduct the
tudy contained 1536 records. Table 1 provides information on the
ata used for this study.

Eighteen variables were used with the class variable of injury
everity (SEV) in an attempt to identify the important patterns of
n accident that usually require an explanation.

The data included variables describing the conditions that con-
ributed to the accident and injury severity.

Injury severity variables: number of injuries (e.g., passengers,
drivers and pedestrians), severity level of injuries (e.g., fatal,
severe, slight). Following previous studies (Chang and Wang,
2006; Milton et al., 2008) the injury severity of an accident is
determined according to the level of injury to the worst injured
occupant.
Roadway information: characteristics of the roadway on which
the accidents occurred (e.g., grade, pavement width, lane width,
shoulder type, pavement markings, sight distance, if the shoulder
was paved or not, etc.).
Weather information: weather conditions when the accident
occurred (e.g., good weather, rain, fog, snow and windy).
Accident information: contributing circumstances (e.g., type of
accident, time of accident (hour, day, month and year), and vehi-
cles involved in the accident).
Driver data: characteristics of the driver, such as age or gender.

.2. BN definition

Over the last decade, BNs have become a popular representa-
ion for encoding uncertain expert knowledge in expert systems.

he field of BNs has grown enormously, with theoretical and com-
utational developments in many areas (Mittal et al., 2007) such
s: modeling knowledge in bioinformatics, medicine, document
lassification, information retrieval, image processing, data fusion,
ecision support systems, engineering, gaming, and law.
Prevention 43 (2011) 402–411 403

Let U = {x1, . . ., xn}, n ≥ 1 be a set of variables. A BN over a set
of variables U is a network structure, which is a Directed Acyclic
Graph (DAG) over U and a set of probability tables Bp = {p(xi|pa(xi),
xi ∈ U)} where pa(xi) is the set of parents or antecedents of xi in BN
and i = 1, 2, 3, . . ., n. A BN represents joint probability distributions
P(U) =

∏
xi ∈ Up(xi|pa(xi)).

The classification task consists in classifying a variable y = x0
called the class variable, given a set of variables U = x1, . . ., xn, called
attribute variables. A classifier h: U → y is a function that maps an
instance of U to a value of y. The classifier is learned from a dataset
D consisting of samples over (U, y). The learning task consists of
finding an appropriate BN given a data set D over U.

BNs are graphical models of interactions among a set of vari-
ables, where the variables are represented as nodes (also known
as vertices) of a graph and the interactions (direct dependences)
as directed links (also known as arcs and edges) between the
nodes. Any pair of unconnected/nonadjacent nodes of such a graph
indicates (conditional) independence between the variables rep-
resented by these nodes under particular circumstances that can
easily be read from the graph. Each node contains the states of the
random variable and it represents a conditional probability table.
The conditional probability table of a node contains the probabil-
ities of the node being in a specific state, given the states of its
parents.

Fig. 1 shows that the dependencies and independencies among
the factors that affect the time of journey (the class variable) are
represented in the form of direct edges (arrows) between factors
that are represented as nodes. For example, the variable (vehi-
cle type) is a parent (antecedent) of the two variables (cost and
velocity) called children or descendents. Any knowledge (evidence)
about the parent variable affects the probabilities of occurrence of
the children or descendent variables.

It should be noticed that the edges in a BN are not necessarily
causal. That is, a BN can satisfy the probability distribution of the
variables in the BN without the edges being causal (Neapolitan,
2009). Thus, the edges between variables in a non-causal BN could
imply a sort of interrelationship(s) among these variables.

2.3. BN learning and the scoring metrics used

When there are masses of data available and it is necessary to
interpret them and to provide a model for predicting the behavior
of unobserved cases, the learning of both structure and parame-
ters is used (Cooper and Herskovits, 1992). There are two main
approaches to structure learning in BNs:

• Constraint based: Perform tests of conditional independence on
the data, and search for a network that is consistent with the
observed dependencies and independencies.

• Score based: Define a score that evaluates how well the depen-
dencies or independencies in a structure match the data and
search for a structure that maximizes the score.

The advantage of score-based methods over the constraint-
based methods is that they are less sensitive to errors in individual
tests; compromises can be made between the extent to which vari-
ables are dependent in the data and the cost of adding the edge.
Because of the aforementioned advantages, the score based method
is followed in this study.
Weka software (Witten and Frank, 2005) was used in this study
to build the BN. This software is freely available, it is implemented
in Java language, it contains a collection of data processing and
modeling techniques and it contains a graphical user interface. The
BNs built here used all the nineteen variables of the 1536 records.
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Table 1
Variables, values and actual classification by severity.

Variables Values SEV* Total

SI KSI

ACT: accident type AS: angle or side collision 381 61.45% 239 38.55% 620
CF: fixed objects 99 52.94% 88 47.06% 187
HO: head on 84 40.58% 123 59.42% 207
O: other 75 59.06% 52 40.94% 127
PU: pile up 33 78.57% 9 21.43% 42
R: rollover 163 49.39% 167 50.61% 330
SP: straight path 17 73.91% 6 26.09% 23

AGE: age [18–25] 225 50.34% 222 49.66% 447
(25–64] 586 57.73% 429 42.27% 1015
>64 41 55.41% 33 44.59% 74

ATF: atmospheric factors GW: good weather 730 54.23% 616 45.77% 1346
HR: heavy rain 23 71.88% 9 28.13% 32
LR: light rain 84 61.76% 52 38.24% 136
O: other 15 68.18% 7 31.81% 22

CAU: cause DC: driver characteristics 791 54.93% 649 45.07% 1440
OF: other factors 50 66.67% 25 33.33% 75
RC: road characteristics 3 75.00% 1 25.00% 4
VC: vehicle characteristics 8 47.06% 9 52.94% 17

DAY: day BW: beginning of week 123 60.29% 81 39.71% 204
EW: end of week 132 57.14% 99 42.86% 231
F: festive 29 61.70% 18 38.30% 47
WD: week day 325 55.65% 259 44.35% 584
WE: week end 243 51.70% 227 48.30% 470

GEN: gender F: female 148 63.79% 84 36.21% 232
M: male 704 53.99% 600 46.01% 1304

LAW: lane width THI: thin: <3.25 m 19 67.86% 9 32.14% 28
MED: medium: 3.25 m ≤ L ≤ 3.75 m 176 51.16% 168 48.84% 344
WID: wide: >3.75 m 657 56.44% 507 43.56% 1164

LIG: lighting D: dusk 52 61.18% 33 38.82% 85
DL: daylight 573 58.65% 404 41.35% 977
I: insufficient 27 54.00% 23 46.00% 50
S: sufficient 36 59.02% 25 40.98% 61
W: without lighting 164 45.18% 199 54.82% 363

MON: month AUT: autumn 218 54.23% 184 45.77% 402
SPR: spring 206 59.03% 143 40.97% 349
SUM: summer 246 56.55% 189 43.45% 435
WIN: winter 182 52.00% 168 48.00% 350

NOI: number of injuries 1 539 49.95% 540 50.05% 1079
>1 313 68.49% 144 31.51% 457

OI: occupants involved 1 229 51.58% 215 48.42% 444
2 374 55.99% 294 44.01% 668
>2 249 58.73% 175 41.27% 424

PAS: paved shoulder Missing values 66 51.56% 62 48.44% 128
N: no 253 57.11% 190 42.89% 443
Y: yes 533 55.23% 432 44.77% 965

PAW: pavement width THI: thin: <6 m 95 53.98% 81 46.02% 176
MED: medium: 6 m ≤ law ≤ 7 m 209 54.29% 176 45.71% 385
WID: wide: >7 m 548 56.21% 427 43.79% 975

ROM: pavement markings DME: does not exist or was deleted 60 58.25% 43 41.75% 103
DMR: define margins of roadway 60 57.69% 44 42.31% 104
SLD: separate lanes and defined road margins 714 55.26% 578 44.74% 1292
SLO: separate lanes only 18 48.65% 19 51.35% 37

SHT: Shoulder type NOS: does not exist 311 55.24% 252 44.76% 563
THI: thin: <1.5 m 402 54.47% 336 45.53% 738
MED: medium: 1.5 m ≤ sht <2.50 m 133 58.85% 93 41.15% 226
WID: wide ≥2.50 m 6 66.67% 3 33.33% 9

SID: sight distance A: atmospheric 26 81.25% 6 18.75% 32
B: building 10 55.56% 8 44.44% 18
O: other 6 66.67% 3 33.34% 9
T: topological 187 55.49% 150 44.51% 337
V: vegetation 6 54.55% 5 45.45% 11
WR: without restriction 617 54.65% 512 45.35% 1129

TIM: time [0–6] 99 46.26% 115 53.74% 214
(6–12] 236 57.99% 171 42.01% 407
(12–18] 314 57.72% 230 42.28% 544
(18–24) 203 54.72% 168 45.28% 371

VI: vehicles involved 1 316 52.06% 291 47.94% 607
2 468 56.73% 357 43.27% 825
>2 68 65.38% 36 34.62% 104

Total 852 55.47% 684 44.53% 1536
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Vehicle 
type

Cost
high low

Bus 0.33 0.66
Car 0.75 0.25

Road 
type

Vehicle 
type

Velocity
high low

Urban Bus 0.46 0.54
Urban Car 0.80 0.20
Rural Bus 0.44 0.56
Rural Car 0.90 0.10

Vehicle type
Bus Car
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Distance Velocity

Time of 
journey

< 1 
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Fig. 1. An example of a BN with

In order to build BN structures; BDe Score metric, Minimum
escription Length (MDL) and the Akaike Information Criterion

AIC) score functions were run, based on the hill climbing algorithm.
Let ri (1 ≤ i ≤ n) be the cardinality of xi, qi is used to denote the

ardinality of the parent set of xi in BN, that is, the number of dif-
erent values to which the parents of xi can be instantiated. So, qi
an be calculated as the product of cardinalities of nodes in pa(xi),
i =

∏
xj ∈ pa(xi)

rj . Note pa(xi) = � implies qi = 1.

Nij(1 ≤ i≤ n, 1 ≤ j ≤ qi) denotes the number of records in D for
hich pa(xi) takes its jth value. Nijk(1 ≤ i≤ n, 1 ≤ j≤ qi, 1 ≤ k ≤ri)
enotes the number of records in D for which pa(xi) takes its jth
alue and for which xi takes its kth value. So, Nij =

∑ri
k=1Nijk. N

enotes the number of records in D.
Let the entropy metric H (BN,D) of a network structure and

atabase be defined as:

(BN, D) = −N

n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk
N log

Nijk
Nij

(1)

nd the number of parameters K as:

=
n∑

i=1

(ri − 1) · qi (2)

he AIC metric QAIC(BN, D) of a Bayesian network structure for a
atabase D is:

AIC (BN, D) = H(BN, D) + K (3)

term P(BN) can be added representing prior information over
etwork structures, but will be ignored for simplicity in the Weka

mplementation (Bouckaert, 1995).

The MDL metric QMDL(BN, D) of a Bayesian network structure BN

or a database D is defined as:

MDL(BN, D) = H(BN, D) + K

2
log N (4)
.05

rresponding CPTs for each node.

The BDe metric QBDe(BN, D) of a BN structure for a database D is:

QBDe(BN, D) = P(BN)
n∏

i=0

qi∏

j=1

� (1/qi)
� ((1/qi) + Nij)

ri∏

k=1

� ((1/ri) · qi + Nijk)
� ((1/ri) · qi)

(5)

where P(BN) is the prior on the network structure (taken to be
constant hence ignored in the Weka implementation) (Bouckaert,
1995) and � ( − ) the gamma-function.

Using hill climbing algorithm, the states of search space are pos-
sible models. Operations are the insertion, deletion and reverse of
an edge in the network to modify a model. The hill climbing search
algorithm was applied in this study mainly because it is fast and
widely used, and also produces good results in terms of network
complexity and accuracy (Madden, 2009).

2.4. BN data preprocessing

The variables obtained from the DGT were further refined and
categorized into distinct values in order to be able to work with
them. Other variables were merged or abstracted on the basis of
procedures followed in previous studies (Simoncic, 2004; Helai
et al., 2008), where the class variable was injury severity (slight
injured –SI– and killed or seriously injured –KSI), and the severity
was considered for the most severe case in the accident (Chang and
Wang, 2006; Simoncic, 2004).

The only preprocessing filter used on this dataset was the unsu-
pervised variable filter for replacing missing values. This filter
replaces the missing values with the modes and means from the
training data. The cross validation method was used to split the

data into ten equal folds (or subsets), the BN was built on the fold
(called training set) and the analysis was validated on the other
subset (called the validation set or testing set). Multiple repetitions
or trials (10 times) of cross validation are used to reduce variability,
and the validation results are averaged over the trials.
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model injury severity in traffic accidents. They obtained accuracies
of 60.4% and 65.6% for training and testing sets respectively when
using an MLP neural network, 56.2% when using fuzzy ARTMAP
neural network and 58.1% when using O-ARTMAP. Thus, the results
06 J. de Oña et al. / Accident Analys

.5. BN evaluation indicators

Five indicators are used in this study to compare the BNs built
see Eqs. (6–9)): accuracy, sensitivity, specificity, HMSS, and ROC
rea were calculated for each BN.

ccuracy = tSI + tKSI

tSI + tKSI + fSI + fKSI
100% (6)

ensitivity = tSI

tSI + fKSI
100% (7)

pecificity = tKSI

tKSI + fSI
100% (8)

MSS = 2 × Sensitivity × Specificity
Sensitivity + Specificity

(9)

here tSI is true slight injured cases, tKSI true killed or seriously
njured cases, fSI false slight injured cases, and fKSI false killed or
eriously injured cases.

Accuracy (see Eq. (6)) is proportion of instances that were cor-
ectly classified by the classifier. Accuracy only gives information
n the classifier’s general performance.

Sensitivity represents the proportion of correctly predicted
light injured among all the observed slight injured. Specificity
epresents the proportion of correctly predicted killed or seriously
njured among all the observed killed or seriously injured (see Eqs.
7–8)). Another measure used to assess the performance of the BN
uilt was the Harmonic Mean of Sensitivity and Specificity (HMSS),
hich gives an equal weight of both sensitivity and specificity (see

q. (9)).
Another indicator is the Receiver Operating Characteristic Curve

ROC) Area. What ROC curves represent is the true positive rate
sensitivity) vs. the false positive rate (1 − specificity). ROC curves
re more useful as descriptors of overall test performance, reflected
y the area under the curve, with a maximum of 1.00 describing a
erfect test and an ROC area of 0.50 describing a valueless test.

Other measures used in the literature to evaluate the per-
ormance of BNs specifically include both the Most Probable
xplanation (MPE) (Simoncic, 2004) and the complexity or the total
umber of BN arcs (Cruz-Ramírez et al., 2007). MPE is a technique
hat is developed for generating explanation in BNs, in which the
onfiguration with the maximum posterior probability is calculated
Pearl, 2004).

For the analysis of traffic accident injury severity and to deter-
ine the optimal BN, the measures described above will be

alculated first: accuracy, sensitivity, specificity, ROC area, the MPE
nd the complexity of the built BNs. Later, the best BN found in
erms of these measures will be used for inference.

.6. BN inference

Inference in BNs consists of computing the conditional probabil-
ty of some variables, given that other variables are set to evidence.
nference may be done for a specific state or value of a variable,
iven evidence on the state of other variable(s). Thus, using the
onditional probability table for the BN built, their values can be
asily inferred. Fig. 1 shows an example of a conditional probabil-
ty table, where it could be seen that given evidence for the distance
o be “short” and the velocity to be “high”, the probability that the

ime of journey will be less than 1 h is 0.75. Thus, other inferences
ould be extracted using this figure, where the example presented
ere is used to explain how inference in BNs works.

In this paper, inference is used to determine the most significant
ariables that are associated with KSI in traffic accidents.
Prevention 43 (2011) 402–411

3. Results and discussion

Table 2 shows the results obtained from building BNs using the
hill climbing search method and three different score metrics (BDe,
MDL and AIC) using both the training and the test set to validate
the results. From the original dataset, 2/3 of the data was held for
training the BNs and the other 1/3 was used for testing them.

Ten different schemes of training/testing datasets were used to
analyze the effect of swapping training and test datasets. Table 2
shows the average and the standard deviation of each one of the
indicators for the score metrics used.

It can be seen that both the training and the test results are very
similar. The accuracies performed in this study did not vary sig-
nificantly; the highest accuracy was for the BDe score (61%). Abdel
Wahab and Abdel-Aty (2001) used some data mining techniques to
Fig. 2. The ROC curves for the three score methods and one dataset. (a) The ROC
curve for the BDe score, ROC area is 0.62. (b) The ROC curve for the MDL score, ROC
area is 0.61. (c) The ROC curve for the AIC score, the ROC area is 0.59.
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Table 2
Accuracy, sensitivity, specificity, HMSS and ROC Area for BDe, MDL and AIC score metrics (training and test sets).

Score metric BDe MDL AIC

Dataset Training Test Training Test Training Test
Indicator Average ± s.d.a Average ± s.d.a Average ± s.d.a Average ± s.d.a Average ± s.d.a Average ± s.d.a

Accuracy 0.61 ± 0.01 0.57 ± 0.02 0.60 ± 0.01 0.59 ± 0.02 0.58 ± 0.01 0.58 ± 0.03
Sensitivity 0.74 ± 0.02 0.65 ± 0.04 0.73 ± 0.02 0.65 ± 0.03 0.66 ± 0.02 0.63 ± 0.04
Specificity 0.44 ± 0.03 0.49 ± 0.05 0.45 ± 0.03 0.53 ± 0.05 0.47 ± 0.03 0.53 ± 0.04
HMSS 0.55 ± 0.02 0.56 ± 0.03 0.56 ± 0.02 0.58 ± 0.03 0.55 ± 0.02 0.58 ± 0.02
ROC area 0.62 ± 0.04 0.58 ± 0.02 0.61 ± 0.02 0.62 ± 0.02 0.58 ± 0.02 0.61 ± 0.03

a s.d.: standard deviation.

Fig. 3. The arcs as obtained by applying the three score metrics.
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btained in this paper were within the range of accuracies found
y Abdel Wahab and Abdel-Aty (2001).

Also, the highest sensitivity was for BDe score; where 74% of
he cases observed to be slight were also predicted to be slight.
lthough the BDe was capable of classifying 74% of the slight injured
orrectly, its specificity results indicated that its ability to classify
illed or seriously injured were relatively poor. None of the score
etrics achieved good results regarding the classification of killed

r seriously injured (specificity); the best was for MDL and AIC
cores, and test dataset with 53% of correctly classified killed or
eriously injured.

The results of sensitivity for all the score metrics were relatively
etter than those of specificity, thus indicating that the models
ere able to classify slight injured rather than killed or seriously

njured. This, however, was expected, since the original dataset

ontained more slight injuries.

HMSS could be used as a single measure of performance of the
N instead of using sensitivity and specificity separately. The results

ndicated that the best HMSS was achieved by using MDL and AIC
cores (58%).
r the MDL score.

Fig. 2 shows the ROC curves for the BNs built using the three
score methods, where the X-axis represents (1 − specificity) and
the Y-axis represents the sensitivity.

The best ROC area obtained by BDe and MDL scores was 62%.
Table 2 suggests that the three score metrics were valid and

equally effective on average.
Following Simoncic (2004), the most convenient way to ana-

lyze the graphical performance of the three metrics is to calculate
the Most Probable Explanation (MPE) for the training dataset and
compare it with the results obtained from the test dataset. The
training/testing dataset that showed the best results for the pre-
vious indicators was used for this purpose.

MPE is given by the most probable configuration of values
for all variables in the BN. For the three estimated structures,
the MPE is given by the following values for variables (see

Table 1):

ACT = AS; AGE = (25–64]; ATF = GW; CAU = DC; DAY = WD;
GEN = M; LAW = WID; LIG = DL; MON = SUM; NOI = 1; OI = 2;
PAS = Y; PAW = WID; ROM = SLD; SEV = SI; SHT = THI; SID = WR;
TIM =(12–18]; VI = 2
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Table 3
MPE for the three score metrics.

Score metric MPE formulas MPE MPEtest

BDe

P(ACT = AS)·P(AGE = (25–64]|SEV = SI)·P(ATF = GW|SEV = SI,SID = WR)·

0.00088 0.00081

P(CAU = DC|SEV = SI)·P(DAY = WD|SEV = SI)·P(GEN = M|SEV = SI)·
P(LAW = WID|SEV = SI)·P(LIG = DL|SEV = SI)·P(MON = SUM|SEV = SI,ATF = GW)·
P(NOI = 1|VI = 2)·P(OI = 2)|SEV = SI,NOI = 1,VI = 2)·P(PAS = Y|SEV = SI,SHT = THI)·
P(PAW = WID|SEV = SI,LAW = WID)·P(ROM = SLD|SEV = SI,PAS = Y,PAW = WID)·
P(SEV = SI|ACT = AS,NOI = 1)·P(SHT = THI|PAW = WID)·P(SID = WR|PAS = Y)·
P(TIM = (12–18]|SEV = SI,LIG = DL)·P(VI = 2|ACT = AS)

MDL

P(ACT = AS|PAS = Y)·P(AGE = (25–64]|SEV = SI)·P(ATF = GW|SEV = SI,SID = WR)·

0.00076 0.00073

P(CAU = DC|SEV = SI)·P(DAY = WD|SEV = SI)·P(GEN = M|SEV = SI)·
P(LAW = WID|SEV = SI,PAW = WID)·P(LIG = DL|SEV = SI,TIM = (12–18])·
P(MON = SUM|SEV = SI,ATF = GW)·P(NOI = 1|VI = 2)·P(OI = 2|SEV = SI,NOI = 1,VI = 2)·
P(PAS = Y|SHT = THI)·P(PAW = WID|SHT = THI)·
P(ROM = SLD|SEV = SI,PAS = Y,PAW = WID)·
P(SEV = SI|SHT = THI,PAS = Y,ACT = AS,NOI = 1)·P(SHT = THI)·P(SID = WR|PAS = Y)·
P(TIM = (12–18]|VI = 2)·P(VI = 2|ACT = AS)

AIC

P(ACT = AS|VI = 2)·P(AGE = (25–64]|LIG = DL)·P(ATF = GW|SID = WR)·

0.00100 0.00092

P(CAU = DC|SEV = SI,GEN = M)·P(DAY = WD|SEV = SI,VI = 2)·P(GEN = M|DAY = WD)·
P(LAW = WID|SEV = SI,ROM = SLD,PAW = WID)·
P(LIG = DL|MON = SUM,TIM = (12–18])·P(MON = SUM|PAS = Y,ATF = GW)·
P(NOI = 1|AGE = (25–64],VI = 2)·P(OI = 2|SEV = SI,NOI = 1,VI = 2)·
P(PAS = Y|PAW = WID,SHT = THI)·P(PAW = WID|SHT = THI)·
P(ROM = SLD|PAS = Y,PAW = WID)·

25–64
SLD)·
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P(SHT = THI|ACT = AS)·P(SID = WR|PAS = Y,ROM =
P(VI = 2|TIM = (12–18])

Given the estimated BN structures (BDe, MDL and AIC) and the
onditional probabilities for each node (see Fig. 3), the probability
f the MPE can be computed as shown in Table 3.

For the network built by the BDe score metric, the MPE is given
y the probability values shown in Table 3, column 2, row 2. Using
hese values, MPE for the BDe score equals 0.00088. The same
alculations for the test dataset produced MPEtest = 0.00081. This
omparison of MPE and MPEtest can provide an indication of the
uality of the estimated BN using BDe score metric; where it can
e seen that there is a difference (8.2%) between the MPE produced
y the training dataset and the test dataset.

The MPE for the MDL BN is given by the probability values
hown in Table 3, column 2, row 3. Using these values, MPE equals
.00076. The test dataset produced MPEtest = 0.00073. So, the MPE
s explained by the MDL is closer to the test dataset estimation (4.4%
f difference), thus representing a network that is more capable of
xplaining different data.

The MPE for the AIC BN is given by the probability values shown
n Table 3, column 2, row 4. Using these values, MPE is 0.00100.
he test dataset produced MPEtest = 0.00092. The most probable
xplanation has a higher probability than that produced by the test
ubset (8.7% of difference).

The conclusion from the above calculations of the MPE for the
hree score metrics as compared to the MPEs calculated for the test
ubset is that, in relative terms, the MDL score metric MPE gives the
est explanation with regard to the MPEtest, whereas the difference
etween MPE of the built network and that computed for the test
ubset is the least among all the other MPEs produced by BDe, and
IC score metrics.

The last step in comparing the various score metrics and eval-
ating their performance was to compare the graphs’ complexity,
easured by the total number of arcs produced by the three score
etrics studied.
Fig. 3 shows the number of arcs obtained by using the three score

etrics. The most complicated BN (having the highest number of

rcs) is the BN built using the AIC score; this BN has 35 arcs, while
he least complicated BN was the BN built by the BDe score, with
8 arcs; followed by the BN built by the MDL score, with 29 arcs.

The results of building the BNs showed that the three different
core metrics did not vary significantly in terms of their accuracy,
],NOI = 1,ACT = AS)·
P(TIM = (12–18])·

specificity, sensitivity, HMSS and ROC area. This however, indicates
that BNs are valid for analyzing traffic accident injury severities
and builds on the results presented by Simoncic (2004), who indi-
cated that BNs could effectively be used to analyze this specific
problem.

On the other hand, the results for the complexity of the BN
graphs, the number of arcs and the MPE show some differences
between the three score metrics. MDL shows the best results in
terms of MPE (smaller differences between training and test sets).
BDe and MDL show the best results in terms of complexity of BN
graphs and number of arcs.

A closer look at the results obtained by MDL score shows that
it produced a network that was relatively successful in terms of
classification and prediction, where it had the second best total
accuracy (59–60%). Also, HMSS showed a relatively good result for
both training and testing sets respectively (56–58%,) and the ROC
area results were good as well (61–62%). The BN built by the MDL
score is shown in Fig. 4.

Setting evidences for the variables used to build the BN using
the MDL score could give indications of the values of variables that
contribute to the occurrence of a killed or seriously injured (KSI)
individual in a traffic accident.

Table 4 assists in the identification of the variables and values
that contribute the most to the occurrence of a KSI individual in a
traffic accident. For each variable, the probability of a value was set
to be 1.0 (setting evidence) and the other values of the same vari-
able were set to be 0.0. Thus, the associated probability of severity
was calculated. Underlined values in Table 4 show the values of
variables in which the probability of a KSI was found to be higher
than that of SI.

For example, this table shows that assigning a probability
of 1.0 to the value AS (angle or side impact) of the variable
ACT, the probability of SI becomes 0.6219 and the probability
of KSI becomes 0.3780. These probabilities are calculated from
the conditional probability table of the BN built using the MDL

score. Since it is intended to determine which values of vari-
ables contribute the most to the occurrence of a KSI individual
in a traffic accident, Table 4 does not include the variables in
which the values of probabilities of SI are always higher than those
of KSI.
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Table 4
Inference results for variables that are associated with KSI in traffic accidents.

Variables Values Probabilities when setting evidences

SI KSI

ACT

AS 0.6219 0.3780
CF 0.5226 0.4773
HO 0.3412 0.6587
O 0.5808 0.4191
PU 0.6683 0.3316
R 0.4944 0.5055
SP 0.6066 0.3933

AGE
[18–25] 0.4999 0.5000
(25–64] 0.5567 0.4432
≥64 0.5937 0.4062

LIG

D 0.5486 0.4513
DL 0.5615 0.4384
I 0.6239 0.3760
S 0.6254 0.3745
W 0.4527 0.5472
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1 0.4957 0.5042
>1 0.6545 0.3454

I: slight injured; KSI: killed or seriously injured.

Setting evidences for the values of variables used to build the BN
ndicated that ACT, AGE, LIG and NOI were found to be significant.

A detailed discussion of the most significant variables that were
ound to contribute to the occurrence of a killed or seriously injured
KSI) individual in a traffic accident is given below.

.1. Accident type (ACT)

As shown in Table 4, when setting the probabilities of both HO
head on collisions) and R (rollover) values to be equal to 1.0, the
robability of having KSI accidents increased, which means that
hese types of accidents are more significant in accidents with
illed or seriously injured. Kockelman and Kweon (2002) found that
ead on crashes were more dangerous than angle crashes, left-side,
nd right-side crashes; they also found that they were significant
n accidents that involved killed or seriously injured, but rollover
rashes were more dangerous than all of the preceding crash types.

.2. Age (AGE)

The results shown in Table 4 indicate that drivers in the age
roup [18–25] years were found to be more involved in accidents
hat resulted in KSI. Tavris et al. (2001) found that male drivers in
he age group (16–24) years were much more likely to be involved
n killed or seriously injured accidents than those involving older
rivers.

.3. Lighting (LIG)

Gray et al. (2008) found that among the factors that lead to a
light injury is driving in the daylight, and that more severe injuries
re predicted during darkness. Helai et al. (2008) and Abdel-Aty
2003) found the same results. This coincides with the results found
n this study, which indicate that roadways Without lighting (W)
re associated with accidents that had KSI individuals.

.4. Number of injuries (NOI)

The results obtained in this study indicate that when an accident

esults in one injury, it is more likely to be a serious injury or even
atal. Scheetz et al. (2009) used classification and regression trees
o model the injury severity of traffic accidents. They also found
hat the number of injured occupants was a significant factor in
lassifying injury severity.
Prevention 43 (2011) 402–411

4. Limitations of the study

Before conclusions, some limitations should be pointed out:

• The need for large datasets when working with Bayesian net-
works, and the effect that imbalanced dataset (slight injured
versus killed or seriously injured) has on both sensitivity and
specificity.

• The data collection is based on the standard traffic police report
used in Spain. So, the variable cause of the accident (CAU) was
determined and judged based on the experience of the traffic
police. However, a different person might have determined the
same cause differently, since different time and person might lead
to a different judgment.

5. Summary and conclusions

This paper uses BNs to analyze traffic accident data in order to
validate the ability of this data-mining technique to classify traf-
fic accidents according to their injury severity, and to identify the
significant factors that are associated with KSI in traffic accidents.

Traffic accident data was obtained from the DGT for a period of
three years (2003–2005) for Granada (Spain). Three BNs were built
using three different score metrics: BDe, MDL and AIC.

Several indicators have been used in order to evaluate the
performance of the built BNs: accuracy, sensitivity, specificity,
HMSS, ROC Area, MPE and graph complexity (or number of arcs).
The results obtained for these indicators do not vary significantly
between the different score metrics used and they are within the
range of previous studies (Abdel Wahab and Abdel-Aty, 2001;
Simoncic, 2004). So, it could be concluded that BNs might be a
useful tool for classifying traffic accidents according to their injury
severity.

Inference was used to identify the values of the variables that are
associated with KSI in traffic accidents on Spanish rural highways.
Based on the results, it would be possible to identify the type of
accident that would most probably be classified as KSI on Spanish
rural highways. It would be a head-on or rollover traffic accident
in a roadway without lighting with only one injury within the age
of 18 and 25 years. These factors (head-on or rollover, unlit road-
way, only one injury and within the age of 18 and 25 years) do
not have to exist all at once in order to have a KSI accident. Any
of these or a combination of them might increase the probabil-
ity of a KSI accident. In general, these results are consistent with
the literature (Tavris et al., 2001; Kockelman and Kweon, 2002;
Abdel-Aty, 2003; Helai et al., 2008; Gray et al., 2008; Scheetz et
al., 2009). However, this finding may vary for other countries and
datasets.

BNs, which have proved their effectiveness in different research
areas, could be usefully applied in the domain of traffic accident
modeling. Their effectiveness has been found to be similar to other
data-mining techniques used to model severity in traffic accidents.
Compared with other well-known statistical methods, the main
advantage of the BNs seems to be their complex approach where
system variables are interdependent and where no dependent and
independent variables are needed (Simoncic, 2004).

Acknowledgements
The authors are grateful to the Spanish General Directorate
of Traffic (DGT) for supporting this research and offering all the
resources that are available to them. The authors appreciate the
reviewers’ comments and effort in order to improve the paper.



is and

R

A

A

A

B

B

C

C

C

D

G

G

H

J. de Oña et al. / Accident Analys

eferences

bdel-Aty, M., 2003. Analysis of driver injury severity levels at multiple locations
using ordered probit models. Journal of Safety Research 34, 597–603.

bdel wahab, H.T., Abdel-Aty, M.A., 2001. Development of artificial neural network
models to predict driver injury severity in traffic accidents at signalized inter-
sections. Transportation Research Record 1746, 6–13.

l-Ghamdi, A.S., 2002. Using logistic regression to estimate the influence of accident
factors on accident severity. Accident Analysis and Prevention 34, 729–741.

édard, M., Guyatt, G.H., Stones, M.J., Hirdes, J.P., 2002. The independent contribution
of driver, crash, and vehicle characteristics to driver fatalities. Accident Analysis
and Prevention 34, 717–727.

ouckaert, R.R., 1995. Bayesian Belief Networks: From Construction to Inference.
Ph.D. Thesis, University of Utrecht.

hang, L.Y., Wang, H.W., 2006. Analysis of traffic injury severity: an application of
non-parametric classification tree techniques. Accident Analysis and Prevention
38, 1019–1027.

ooper, G.F., Herskovits, E., 1992. A Bayesian method for the induction of probabilis-
tic networks from data. Machine Learning 9, 309–347.

ruz-Ramírez, N., Acosta-Mesa, H.G., Carrillo-Calvet, H., Nava-Fernández, L.A.,
Barrientos-Martínez, R.E., 2007. Diagnosis of breast cancer using Bayesian net-
works: a case study. Computers in Biology and Medicine 37, 1553–1564.

irección General de Tráfico – DGT [online]. Available from World Wide Web:
http://www.dgt.es/portal/es/seguridad vial/estadistica/accidentes 30dias/
anuario estadistico/.

ray, R.C., Quddus, M.A., Evans, A., 2008. Injury severity analysis of accidents involv-
ing young male drivers in Great Britain. Journal of Safety Research 39, 483–495.

regoriades, A., 2007. Towards a user-centred road safety management method

based on road traffic simulation. In: Proceedings of the 39th Conference on
Winter Simulation: 40 years! The Best is Yet to come, Washington, DC, pp.
1905–1914.

elai, H., Chor, C.H., Haque, M.M., 2008. Severity of driver injury and vehicle dam-
age in traffic crashes at intersections: a Bayesian hierarchical analysis. Accident
Analysis and Prevention 40, 45–54.
Prevention 43 (2011) 402–411 411

Kockelman, K.M., Kweon, Y.J., 2002. Driver injury severity: an application
of ordered probit models. Accident Analysis and Prevention 34, 313–
321.

Kopelias, P., Papadimitriou, F., Papandreou, K., Prevedouros, P., 2007. Urban freeway
crash analysis. Transportation Research Record 2015, 123–131.

Madden, M.G., 2009. On the classification performance of TAN and general Bayesian
networks. Journal of Knowledge-Based Systems 22, 489–495.

Milton, J.C., Shankar, V.N., Mannering, F.L., 2008. Highway accident severities and
the mixed logit model: an exploratory empirical analysis. Accident Analysis and
Prevention 40, 260–266.

Mittal, A., Kassim, A., Tan, T., 2007. Bayesian Network Technologies: Applications
and Graphical Models. IGI Publishing, New York.

Neapolitan, R.E., 2009. Probabilistic Methods for Bioinformatics. Morgan Kaufmann
Publishers, San Francisco, CA.

Ozbay, K., Noyan, N., 2006. Estimation of incident clearance times using
Bayesian Networks approach. Accident Analysis and Prevention 38, 542–
555.

Pearl, J., 2004. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Francisco, CA.

Scheetz, L.J., Zhang, J., Kolassa, J., 2009. Classification tree to identify severe and
moderate injuries in young and middle aged adults. Artificial Intelligence in
Medicine 45, 1–10.

Simoncic, M., 2004. A Bayesian network model of two-car accidents. Journal of
transportation and Statistics 7 (2/3), 13–25.

Tavris, D.R., Kuhn, E.M., Layde, P.M., 2001. Age and gender patterns in motor vehicle
crash injuries: importance of type of crash and occupant role. Accident Analysis
and Prevention 33, 167–172.

Witten, I.H., Frank, E., 2005. Data Mining: Practical Machine Learning Tools and

Techniques, 2nd ed. Morgan Kaufmann, San Francisco, CA.

Yamamoto, T., Shankar, V.N., 2004. Bivariate ordered-response probit model of
driver’s and passenger’s injury severities in collisions with fixed objects. Acci-
dent Analysis and Prevention 36, 869–876.

Yau, K.K.W., Lo, H.P., Fung, S.H.H., 2006. Multiple-vehicle traffic accidents in Hong
Kong. Accident Analysis and Prevention 38, 1157–1161.

http://www.dgt.es/portal/es/seguridad_vial/estadistica/accidentes_30dias/anuario_estadistico/

	Analysis of traffic accident injury severity on Spanish rural highways using Bayesian networks
	Introduction
	Materials and methods
	Accident data
	BN definition
	BN learning and the scoring metrics used
	BN data preprocessing
	BN evaluation indicators
	BN inference

	Results and discussion
	Accident type (ACT)
	Age (AGE)
	Lighting (LIG)
	Number of injuries (NOI)

	Limitations of the study
	Summary and conclusions
	Acknowledgements
	References


