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Abstract

In this study, a feed-forward back-propagation artificial neural network (ANN) algorithm is proposed for heat transfer analysis of
phase change process in a finned-tube, latent heat thermal energy storage system. Heat storage through phase change material
(PCM) around the finned tube is experimentally studied. A numerical study is performed to investigate the effect of fin and flow param-
eter by the solving governing equations for the heat transfer fluid, pipe wall and phase change material. Learning process is applied to
correlate the total heat stored in different fin types of tubes, various Reynolds numbers and different inlet temperatures. A number of
hidden numbers of ANN are trained for the best output prediction of the heat storage. The predicted total heat storage values obtained
by an ANN model with extensive sets of non-training experimental data are then compared with experimental measurements and numer-
ical results. The trained ANN model with an absolute mean relative error of 5.58% shows good performance to predict the total amount
of heat stored. The ANN results are found to be more accurate than the numerical model results. The present study using ANN
approach for heat transfer analysis in phase change heat storage process appears to be significant for practical thermal energy storage
applications.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Thermal energy storage (TES) is considered to be one of
the most important energy technologies, and recently,
increasing attention has been paid to utilizing TES in a vari-
ety of thermal engineering applications ranging from heat-
ing to cooling (including air conditioning) processes [1].
TES systems are now popular in many countries, particu-
larly in Canada, the United States, and Europe. Because
these are the most efficient methods to avoid costly energy
price and to reduce summer-time peak load electricity
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demand. The increased cooling demand results in peak elec-
trical power demand during the hottest summer days. TES
systems not only shift cooling energy to use at non-peak
times, but also reduce energy consumption, depending on
site-specific design, notably where chillers can be operated
at full load during the night. Dincer and Rosen [2] explained
energetic, environmental and economic aspects of thermal
energy storage systems for cooling capacity and found some
of the advantages of utilizing TES such as reduced energy
cost, consumption, equipment size and pollutant emissions,
also increased flexibility of operation, efficiency and effec-
tiveness of equipment utilization (for details, see [3]).

Many researchers have focused on storing energy
through the phase-change material due to their relatively
low volume requirement and narrow band of temperature
variation. A few studies related to the heat transfer through
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Nomenclature

ai experimental value
ANN artificial neural network
AMRE absolute mean relative error
c, cp specific heat (J kg�1 K�1)
C0 heat capacity (J m�3 K�1), c*q
C C0=ðcl � qlÞ
Csl cs/cl

D inside diameter of the circular pipe (m)
dk target activation of output layer
H enthalpy (J kg�1)
HTF heat transfer fluid
h vector of hidden-layer neurons
k thermal conductivity (W m�1 K�1)
K dimensionless thermal conductivity (k/kl)
Ksl ks=kl

L length of pipe (m)
_m mass flow rate (kg s�1)
n number of the data
Nu Nusselt number
PCM phase change material
R2 absolute fraction of variance
STD standard deviation
TES thermal energy storage
Pef fluid Peclet number, Ref � Prf

Prf fluid Prandtl number, mf=af

Q dimensionless total stored energy
r radial coordinate (m)
R dimensionless radial direction, r/D or solidifica-

tion front
Ref fluid Reynolds number, 4 _m

pDlf

S0 source term
S dimensionless source term, S0=qlclðT 0

m � T 0
inÞ

Ste Stefan number
t time period, or fin thickness (m)
T temperature (K)
w fin spacing (m)
wij weights connecting the ith input node to the jth

hidden layer node
wkj weights connecting the jth hidden layer node to

the kth output layer
X dimensionless axial direction, x/D
x multiple inputs, or axial coordinate (m)
y output
yi prediction value

Greek symbols

h external threshold, or dimensionless tempera-
ture, ðT � T mÞ=ðT m � T inÞ

hj threshold between the input and hidden layers
dhm dT =ðT m � T inÞ
H latent heat of PCM (J kg�1)
f( ) logistic sigmoid activation function
fh( ) logistic sigmoid activation function from input

layer to hidden layer
k variable which controls the slope of the sigmoid

functional
hk threshold connecting the hidden and output lay-

ers
fk( ) logistic sigmoid activation function from hidden

layer to output layer
f 0k local slope of the node activation function for

output nodes
dk vector of errors for each output neuron
dj vector of errors for each hidden layer neuron
f 0h local slope of the node activation function for

hidden nodes
a learning rate, or thermal diffusivity (m2 s�1)
l dynamic viscosity (N s m�2)
q density (kg m�3)
s dimensionless time, af � t/D2

g momentum factor
t kinematic viscosity (m s�1)

Subscripts

f transfer fluid, or fin
h hidden layer
i input node, or initial condition
inf outside of the thermal storage tank
in inlet
j hidden layer node
k output layer node
l liquid PCM
n number of the data
m mushy phase
s solid PCM
w container wall or surface
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solidification or melting have been published in the last dec-
ade. A theoretical model of the shell-and-tube type unit has
been reported by [4]. Cao and Faghri [5,6] modeled a similar
problem at which both the heat charging and the recovery
processes were performed by the circulating fluid for the
shell wall of the unit assumed to be adiabatic. Bellecci and
Conti solved the problem of storing energy in a shell-and-
tube type unit by using the enthalpy model. Cao and Faghri
[6] studied the latent heat energy storage systems for both
annular and countercurrent flows and numerically deter-
mined the countercurrent flow was an efficient way to
absorb heat energy. Many theoretical and experimental
studies have been undertaken by various researchers, e.g.,
[7–12] to investigate the solidification of phase change mate-
rial around finned tube, considering steady and unsteady
effects, geometry, convection effects, etc.



K. Ermis et al. / International Journal of Heat and Mass Transfer 50 (2007) 3163–3175 3165
This study focuses on prediction of total thermal energy
stored in latent heat thermal storage systems by using
experimental data and artificial neural network (ANN)
model. ANNs are non-linear mapping systems whose struc-
tures are based on principles inspired by the biological
nervous systems of humans. An ANN consists of a large
number of simple processors linked by weighted connec-
tions. By analogy, the processing units are called neurons.
Neural networks provide a fundamentally different
approach from the numerical solution methods to forecast
the future project. This technique has been applied in many
disciplines of science and has produced preliminary results
in many areas of modeling a system, e.g., [13–19].

Although various analytical and numerical heat transfer
models have been employed for thermal modeling of latent
heat storage systems, ANN methods have not yet been
applied to such systems for thermal modeling. This is the
motive behind the present work which aims to study heat
transfer aspects during phase change process in a finned
tube latent heat storage system and compare its results with
some numerical calculations and experimental data.

2. Experimental procedure

The experimental data obtained from an experimental
test unit as shown in Fig. 1 is used for analysis. The exper-
imental unit basically consists of the flow system, heat
transfer test section and temperature measurement system.
Its heat transfer test section consists of an energy storage
Fig. 1. The experiment
tank, having dimensions of 420 mm � 570 mm � 500 mm
(width � length � height), finned tube and phase change
material (e.g., water) around this tube. To visualize the
solidification fronts around the finned tube, a digital cam-
era is used, and the data are then transmitted to a PC. The
base of the tank is supported with 50 mm thick Styrofoam
layer and, the side walls and the top wall are covered with
3 cm thick Styrofoam layer for insulating the tank to
obstruct heat losses. The finned tubes are made of a solid
bronze cylinder (87.2% Cu, 6.57% Sn, 4.13% Zn and
1.97% Pb). All tubes have the same total length of
570 mm (with a finned length of 440 mm), a fin thickness
of 3 mm, and inner and outer tube radii of 10 mm and
15 mm, respectively. The tube dimensions are listed in
Table 1. A reservoir for the heat transfer fluid, constant
temperature circulating bath, variable speed pump, flow
meter and the hydrodynamic entry section are the essential
parts of the flow system. The hydrodynamic entry section
length is chosen long enough as �240 diameter, 6500 mm
in order to provide fully developed flow conditions for
the heat transfer fluid at the inlet of the energy storage unit.
Ethyl-alcohol (CH3–CH2OH) is used as the heat transfer
fluid to assure liquid behavior for such a low temperature
range. A data logger is employed for temperature measure-
ments. The thermocouples are embedded into midsections
of the fin tip and the base sensed the surface temperature.
The pure water is used as the test PCM and initially cooled
down to the temperature of 0.3 �C to be pumped into the
insulated storage tank. The experimental data are taken
al test system [12].



Table 1
The dimensions of the tubes used in the experiments

Tube type Number
of fins

Fin diameter
(mm)

Fin spaces
(mm)

Heat transfer
area (m2)

1 (bare tube) – – – 0.094248
2 7 54 65.0 0.164961
3 7 64 65.0 0.193621
4 11 54 40.0 0.206030
5 11 64 40.0 0.251327
6 15 54 27.5 0.250517
7 15 64 27.5 0.313855
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at three different inlet temperatures of �10 �C, �15 �C and
�20 �C and six different Reynolds number varies between
500 and 7000 flow rates of conditions. Thus, a total of 45
experimental runs are carried out. More details of experi-
mental procedure can be found in [12].
3. Numerical model

A schematic representation of the physical model for a
finned-tube heat storage unit for analysis is shown in
Fig. 2. The PCM fills the annular space, around the finned
tube, of inner radius ro and outer radius rinf, while the heat
transfer flows inside the tube. The tube wall has inner and
outer radii of ri and ro. The outside wall of the energy stor-
age unit is insulated. The thermophysical properties of the
PCM, tube wall and heat transfer fluid (HTF) are indepen-
dent of temperature, but the properties of the PCM can be
different into the solid and liquid phases. Initially, the sys-
tem is set to a temperature of Ti higher than Tm. The HTF
(at a temperature of Tin) less than Tm flows into the finned
tube to form solidification around the finned tube. To
model this process, the system is divided into following
three subsections: (i) tube flow of heat transfer fluid, (ii)
the finned tube, and (iii) the region filled by PCM.
PHASE CHANGE MATERI

HEAT TRANSFER FLUID (.
m , Tin

Fig. 2. A sectional view
The following dimensionless variables and groups are
introduced here for analysis:

R ¼ r
D
; X ¼ x

D
; s ¼ af � t

D2
; h ¼ T � T m

T m � T in

;

dhm ¼
dT m

T m � T in

;

Re ¼ 4 _m
pDlf

; Prf ¼
cf

af

; Pef ¼ Ref � Prf ;

Ste ¼ cpl � ðT m � RinÞ
DH

;

C ¼ C0

qlcl

; S ¼ S0

qlcl � ðT m � T inÞ
; K ¼ k

kl

:

Assuming that axial conduction is negligible and that the
fully developed conditions exist at the tube inlet, the
dimensionless energy equation of the heat transfer fluid
can be expressed as

ohb

os
¼ 4Nubðhw � hbÞ � RefPrf

oh
oX

: ð1Þ

The quasi-steady assumption is applied to the convec-
tion heat transfer inside the tube. Transient convection is
considered inside the tube as a series of steady state forced
convection problems. For laminar flow, the local Nusselt
number can be obtained by an analytical method with arbi-
trary varying temperature at the tube wall as described by
[20,21]:

ðNubÞj ¼
Pj

k¼1Dhk
P1

n¼0Gn exp � 2k2
n

Pef
ðX � ðk � 1ÞDX Þ

h i
2
Pj

k¼1Dhk
P1

n¼0
Gn

k2
n

exp � 2k2
n

Pef
ðX � ðk � 1ÞDX Þ

h i :
ð2Þ

where Dhk ¼ ðhRiÞk � ðhRiÞk�1 and j ¼ int X
DX

� �
þ 1. The val-

ues of constant Gn and eigenvalues kn can be found in the
studies of [20]. Furthermore, for turbulent flow, the local
AL (PCM) 

HTF) 

rinf

rori

FINNED TUBE 

of the finned tube.
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Nusselt number can be obtained by using empirical corre-
lation described by [22].

For finned pipe wall, the energy equation is well known
as the two-dimensional heat conduction equation,

oh
os
¼ al

af

1

R
o

oR
KR

oh
oR

� �
þ o

oX
K

oh
oX

� �� �
: ð3Þ

As the initial temperature of the system is considered to be
at a same or close to the phase change temperature, the
natural convection effect around the tube and fins can be
neglected. The heat conduction in the PCM is described
by a temperature transforming method using a fixed grid
numerical model [5]. This model assumes that solidification
process occurs over a range of phase change temperature
from T m � dT m to T m þ dT m, but it can also be successfully
used to simulate solidification process occurring at a single
temperature by taking a small range of phase change tem-
perature, 2dT m. The dimensionless heat transfer equation
for the PCM is written as

oðChÞ
os
¼ a1

af

1

R
o

oR
KR

oh
oR

� �
þ o

oX
K

oh
oX

� �� �
� oS

os
; ð4Þ

where

C¼CðhÞ¼
Csl h<�dhm solid phase

1
2
ð1þCslÞþ 1

2�Ste�dhm

� 	
�hdm6 h6 hdm mushy phase

1 h> hdm liquid phase

8><
>:

ð5Þ

S¼ SðhÞ¼
Csldhm h<�dhm solid phase

1
2
dhmð1þCslÞþ 1

2Ste

� �
�hdm6h6hdm mushy phase

Csldhmþ 1
Ste h> hdm liquid phase

8<
:

ð6Þ
K¼KðhÞ

¼
Ksl h<�dhm solid phase

Kslþð1�KslÞðhþdhmÞ=2dhm �hdm6 h6 hdm mushy phase

1 h> hdm liquid phase

8<
:

ð7Þ
The initial and boundary conditions are defined as

follows:

� Initial conditions (s = 0):

0 6 X 6 L=D; 0 6 R 6 Rinfh ¼ hi ð8aÞ
� Boundary conditions (s > 0):

X ¼ 0; 0 < R < 0:5 : h ¼ hin ¼ �1; ð8bÞ

X ¼ 0; 0:5 < R < Rinf :
oh
oX
¼ 0; ð8cÞ

0 6 X 6 L=D; R ¼ Rinf

oh
oR






R¼Rinf

¼ 0; ð8dÞ

X ¼ L=D; 0 < R < Rinf :
oh
oX
¼ 0: ð8eÞ

The temperature distribution inside the solution domain
is obtained by solving the above listed equations through a
control volume approach as introduced by [23]. Assuming
the bulk temperature approach in the pipe flow, the local
Nusselt number is determined using Eq. (2) for laminar
flow or an empirical correlation for turbulent flow. How-
ever, thermal conductivity, K, is calculated by harmonic
mean method at the control surface. Semi implicit solver,
[24], is used for solving the discretization equations of
energy equations. Using this solver, the CPU time is
reduced a great amount for a single iteration since this sol-
ver requires less heat storage than the other solvers.

Since heat transfer equation occupied by PCM is a non-
linear heat conduction equation, iterations are needed for
each time step. For a given time step, convergence is
declared at the k + 1th iteration when jhkþ1

i;j � hk
i;jj 6 10�5.

The numerical results are then verified by testing the result-
ing predictions for independence of the grid size, time-step
and the other parameters. The grid size used for the solu-
tion was 168(axial) � 114(radial) with a time step Ds =
0.001 for finned tube type 2. The total number of axial
nodes increases with the number of fins. In addition, start-
ing the fin-tip in PCM, non-uniform grid size is used with a
successive ratio of 1.04. Also, the overall heat transfer bal-
ance is checked during the calculation process to verify the
numerical results. At a time step, the change of heat storage
in PCM and finned tube must be equal to the total energy
supplied by the heat transfer fluid as follows:Z s

0

p
4
� Pef � Cf � ðhb;out þ 1Þ � ds

¼
Z L

0

Z Rout

Ri

2p � R � ðH � HiÞ � dR � dX ; ð9Þ

where H ¼ CT þ S stands for the total enthalpy at the con-
trol volume. The left side of the equation represents the
thermal energy supplied by the heat transfer fluid whereas
the right side of the equation represents the thermal stored
energy in the PCM and finned tube. The difference between
the two sides is found to be less than 2% by Erek et al. [12].

4. Artificial neural network (ANN) approach

In the ANN approach, neuron is a basic processor in
neural networks. Each neuron has one output, based on
the situation of the neuron activation, and can receive
many inputs from other neurons. Artificial neurons are
modeled as a multi-input non-linear process with weighted
interconnections. The back-propagation algorithm is con-
sidered to be the most suitable method for training multi-
layer feed-forward networks as suggested by many [25–
28] and summarized as follows:

1. Present a training pattern and propagate it through the

network to obtain the outputs.
2. Initialization: Initialize all weights to small random val-

ues and threshold values. Set all weights and threshold
to small random values. Usually the training sets are nor-
malized to the values between �0.9 and 0.9 during
processing.
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Fig. 3. A three-layer feed-forward back-propagation neural network for
heat transfer analysis.
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3. Calculate the net input to the jth node in the hidden
layer

netj ¼
Xn

i¼1

wijxi � hj; ð10Þ

where i is the input node, j hidden layer node, x is the
input, wij weights value connection from the ith input
node to the jth hidden layer node and hj is the threshold
between the input and hidden layers.

4. Calculate the output of the jth node in the hidden layer:

hj ¼ fh

Xn

i¼1

wijxi � hj

 !
; ð11Þ

fhðxÞ ¼
1

1þ e�khx
; ð12Þ

where hj is the vector of hidden-layer neurons, fh( ) is a
logistic sigmoid activation function from input layer to
hidden layer, and kh is variable which controls the slope
of the sigmoidal function.

5. Calculate the net input to the kth node in the hidden
layer:

netk ¼
X

j

wkjxj � hk; ð13Þ

where k is represents the output layer, wkj is the weights
connection from the jth hidden layer node to the kth
output layer and hk is the threshold connecting the hid-
den and output layers.

6. Calculate the output of the kth node in the output layer:

yk ¼ fk

X
j

wkjxj � hk

 !
; ð14Þ

fkðxÞ ¼
1

1þ e�kk x
; ð15Þ

where yk is the output of output-layer neurons, fk( ) is a
logistic sigmoid activation function from hidden layer to
output layer and kk is variable which controls the slope
of the sigmoid functional.

7. Calculate errors: The output layer the errors between the
target and the observed output is:

dk ¼ �ðdk � ykÞf 0k
f 0k ¼ ykð1� ykÞ for sigmoid function;

ð16Þ

where dk is the vector of errors for each output neuron
and dk is the target activation of output layer. dk de-
pends only on the error ðdk � ykÞ and f 0k is the local slope
of the node activation function for output nodes. The
hidden layer error becomes

dj ¼ f 0h
Pn
k¼1

wkjdk

f 0h ¼ hjð1� hjÞ for sigmoid function;

ð17Þ

where dj is the vector of errors for each hidden layer
neuron. dj is a weighted sum of the all nodes and f 0h is
the local slope of the node activation function for hid-
den nodes.

8. Adjust the weights and thresholds in the output layer:

wðtþ1Þ
kj ¼ wðtÞkj þ adkhj þ g wðtÞkj � wðt�1Þ

kj

� 	
; ð18Þ

htþ1
K ¼ hðtÞK þ adk; ð19Þ

where a is the learning rate, g is the momentum factor
and t is time period. The learning rate and the momen-
tum factor are used to allow the previous weight change
to influence the weight change in this time period, t.
These calculation steps repeat until the output layer er-
ror is within desired tolerance for each pattern and
neuron.

5. Results and discussion

The feed-forward neural network has become the most
popular among the various types of a neural network for
various applications, and the back-propagation network
is the most common technique for feed forward neural net-
work since there is a mathematically strict learning scheme
to train the network and guarantee mapping between
inputs and outputs. In this study, an ANN modeling for
prediction of the amount of heat transfers in heat storage
through PCM around the finned tube is performed. In this
regard, a feed-forward back-propagation is used for the
training and learning processes. A computer code in
the C++ programming language is developed to solve
the ANN model algorithm. Neural networks need a range
of input and output values which should be between 0.1
and 0.9 to the restriction of sigmoid function. Experimental
data and required data are normalized in order to use the
values in this study through

Actual data�Minimum data

Maximum data�Minimum data
� ðHigh data� Low dataÞ þ Low data; ð20Þ

where minimum refers to the annual minimum data value,
maximum to the annual maximum data value, high to the



Table 2
Prediction errors associated with the ANN configuration for stored
thermal energy in the learning process

# of neurons in hidden layer AMRE (%) STD (%) R2

8 6.7181 7.8695 0.9917
13 6.6384 7.7835 0.9919
18 6.6562 8.0609 0.9918
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maximum normalized data value = 0.9, and low to the
minimum normalized data value to be 0.1 as commonly
preferred, e.g., [29].

A three-layer feed-forward back-propagation neural net-
work for heat storage is performed as shown Fig. 3. There
Total Stored Ther
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and time. The output term was the stored thermal energy.
The weights, biases and hidden node numbers are altered
to minimize the error between the output values and the cur-
rent data. In order to obtain the least error convergence, the
configurations of the ANN are set by selecting the number of
hidden layers and nodes, and the learning rate and momen-
tum coefficient. The 240 cases formed out of experimental
data set are divided two data set groups, such as that first
data group consists of 200 sets to be used for trainings of
the network (83% of all data) and the other data group has
40 cases to be used to verify of the ANN model that selected
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Table 3
Total stored energy values predicted by the ANN model and numerical model at various experimental conditions for tube type 2

Experimental conditions (Reynolds
number, inlet temperature and time)

Total stored energy (kJ/m)

Experimental
results

Numerical model ANN Model

Results AMRE (%) STD R2 Results AMRE (%) STD R2

Re = 500
�10 �C 30 min 184.72 183.13 0.86 0.02646 0.9999 174.93 5.30 0.00477 0.9972

60 min 348.28 349.15 0.25 0.02442 1.0000 326.61 6.22 0.00624 0.9961
90 min 496.21 505.22 1.82 0.02157 0.9997 454.48 8.41 0.00975 0.9929

120 min 644.92 654.10 1.42 0.02229 0.9998 557.67 13.53 0.01795 0.9817
�15 �C 30 min 281.03 267.98 4.64 0.03336 0.9978 255.76 8.99 0.01068 0.9919

60 min 533.82 506.09 5.19 0.03437 0.9973 468.27 12.28 0.01595 0.9849
90 min 770.76 727.77 5.58 0.03507 0.9969 650.29 15.63 0.02131 0.9756

120 min 971.42 938.28 3.41 0.03111 0.9988 796.08 18.05 0.02519 0.9674
�20 �C 30 min 346.69 340.94 1.66 0.02791 0.9997 328.45 5.26 0.00471 0.9972

60 min 664.86 639.45 3.82 0.03186 0.9985 607.28 8.66 0.01015 0.9925
90 min 928.16 915.99 1.31 0.02728 0.9998 866.35 6.66 0.00695 0.9956

120 min 1187.49 1178.18 0.78 0.02632 0.9999 1092.37 8.01 0.00911 0.9936

Re = 1000
�15 �C 30 min 275.53 321.12 16.54 0.00532 0.9726 279.67 1.50 0.00612 0.9998

60 min 531.71 597.38 12.35 0.00233 0.9847 515.91 2.97 0.00104 0.9991
90 min 762.73 850.74 11.54 0.00382 0.9867 719.56 5.66 0.00535 0.9968

120 min 966.93 1089.26 12.65 0.00179 0.9840 886.39 8.33 0.00962 0.9931

Re = 2000
�15 �C 30 min 312.89 372.40 19.02 0.00984 0.9638 334.69 6.97 0.01488 0.9951

60 min 590.57 682.67 15.60 0.00359 0.9757 609.05 3.13 0.00873 0.9990
90 min 843.77 963.42 14.18 0.00101 0.9799 850.18 0.76 0.00493 0.9999

120 min 1063.06 1225.94 15.32 0.00309 0.9765 1053.49 0.90 0.00227 0.9999

Re = 3000
�15 �C 30 min 416.75 478.83 14.90 0.00231 0.9778 397.67 4.58 0.00362 0.9979

60 min 730.25 831.83 13.91 0.00051 0.9806 698.33 4.37 0.00328 0.9981
90 min 1018.75 1139.24 11.83 0.00329 0.9860 965.57 5.22 0.00464 0.9973

120 min 1281.75 1421.37 10.89 0.00500 0.9881 1195.62 6.72 0.00705 0.9955

Re = 5000
�10 �C 30 min 319.40 461.56 44.51 0.05638 0.8019 357.72 12.00 0.02293 0.9856

60 min 570.66 770.15 34.96 0.03894 0.8778 620.70 8.77 0.01776 0.9923
90 min 789.07 1035.13 31.18 0.03205 0.9028 849.99 7.72 0.01608 0.9940

120 min 984.29 1272.47 29.28 0.02857 0.9143 1054.57 7.14 0.01515 0.9949
�15 �C 30 min 472.04 619.36 31.21 0.03209 0.9026 486.44 3.05 0.00860 0.9991

60 min 818.17 1030.59 25.96 0.02252 0.9326 831.43 1.62 0.00631 0.9997
90 min 1132.52 1380.66 21.91 0.01512 0.9520 1132.18 0.03 0.00367 1.0000

120 min 1402.43 1699.08 21.15 0.01373 0.9553 1389.67 0.91 0.00226 0.9999
�20 �C 30 min 608.69 752.89 23.69 0.01837 0.9439 613.74 0.83 0.00504 0.9999

60 min 1035.99 1246.88 20.36 0.01228 0.9586 1050.49 1.40 0.00596 0.9998
90 min 1423.98 1671.69 17.40 0.00687 0.9697 1436.37 0.87 0.00511 0.9999

120 min 1758.65 2057.08 16.97 0.00610 0.9712 1741.06 1.00 0.00211 0.9999

Re = 7000
�15 �C 30 min 553.10 688.11 24.41 0.01968 0.9404 578.88 4.66 0.01118 0.9978

60 min 927.21 1121.72 20.98 0.01342 0.9560 956.41 3.15 0.00876 0.9990
90 min 1254.21 1488.61 18.69 0.00924 0.9651 1275.41 1.69 0.00642 0.9997

120 min 1548.99 1821.52 17.59 0.00724 0.9690 1543.57 0.35 0.00315 1.0000

Average 14.99 0.01791 0.9664 5.58 0.00887 0.9950
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randomly 2nd of tube type from the experimental tubes. The
learning process is performed using 1st, 3rd, 4th, 5th, 6th, 7th
and bare types of tube as shown in Table 1.

The ANN model is now utilized for stored thermal
energy by using the four inputs, one output and three dif-
ferent nodes which are 8, 13 and 18 in the hidden layer. In
the algorithm, the learning rates and momentum coeffi-
cients are 0.6 for learning processes, in which 400000
iterations are used to obtain good fits. The three
error measuring parameters used to compare the perfor-
mance of the various ANN configurations as consistent
with [30].

The performance of various ANN configurations is
compared using the absolute mean relative error (AMRE),
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the standard deviations in the relative (STD) errors and the
absolute fraction of variance (R2) in Table 2 through the
following equations:

AMRE ¼ 1

n

Xn

i¼1

ABSðBÞ; ð21Þ

STD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 B� B
� �2

n� 1

s
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R2 ¼ 1�
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Fig. 6. Comparison of the results of the ANN model with numerical model
temperature of HTF of �15 �C.
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Fig. 7. Comparison of the results of the ANN model with numerical model
temperature of HTF of �15 �C.
where yi is the prediction value, ai is the experimental value,
n is the number of data values and B ¼ ðyi � aiÞ=ai.

Also, Table 2 lists the associated prediction errors, the
absolute mean relative error (AMRE), the standard devia-
tions in the relative (STD) errors and the absolute fraction
of variance R2 with ANN configurations for stored thermal
energy in the learning process including of 200 experimen-
tal data for training data set. The 13 nodes of hidden con-
figuration appeared to be the best selection due to the
results of prediction errors from Table 2. Fig. 4 shows a
plot of the predicted versus desired output values of the
e (min)
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results and experimental data at Re = 500, 1000 and 2000 and an inlet
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Fluid inlet temperature = -15 oC

Re =3000

Re =5000

Re =7000

results and experimental data at Re = 3000, 5000 and 7000 and an inlet



Table 4
Comparison of average AMREs between the ANN approach and the
numerical model for the tube type 2 at different Reynolds number at an
inlet temperature HTF of �15 �C

Average AMRE (%) Reynolds number

500 1000 2000 3000 5000 7000

ANN model 13.74 4.62 2.94 5.22 1.40 2.46
Numerical model 4.71 13.27 16.03 12.88 25.06 20.42
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stored thermal energy using the optimal neural network in
the learning process.
Tim
20 40 60

T
ot

al
 S

to
re

d 
E

ne
rg

y 
(k

J/
m

)

0

500

1000

1500

2000

Re=500, Experiment

Re=500, ANN model
Re=500, Numerical model
Re=5000, Experiment

Re=5000, ANN model

Re=5000, numerical modell
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Fig. 9. Comparison of the results of the ANN model with numerical model res
of HTF of �10 �C.
The network performance with various neuron numbers
in the hidden layer is presented in Fig. 5. As seen in the fig-
ure, the optimum neurons numbers are 13 neurons in the
hidden layer for 400000 iteration cycles. The ANN results
are then compared with the experimental and numerical
results for total stored thermal energy in the tube type-2
for various experimental conditions in Table 3. For com-
parison purposes of ANN model and the numerical model,
13 of hidden number, 0.6 of the learning rates and momen-
tum coefficients are used in the model. The results of this
using the absolute mean relative error (AMRE), the stan-
dard deviations in the relative (STD) errors and the abso-
e (min) 
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lute fraction of variance R2 are employed for comparing
each other. The ANN model has an average AMRE of
5.58%, an average STD of 0.00887 and an average R2 of
0.9950, respectively while the numerical one has the values
of 14.99%, 0.01791 and 0.9664 for the same parameters.
Table 5
Total stored energy values predicted by both linear and polynomial (non-linea

Experimental conditions
(Reynolds number,
inlet temperature and time)

Total stored energy (kJ/m)

Linear equationa

Results AMRE (%) STD

Re = 500
�10 �C 30 min 36.94 80.00 0.13106

60 min 318.71 8.49 0.01655
90 min 600.48 21.01 0.03069

120 min 882.26 36.80 0.05597
�15 �C 30 min 278.38 0.94 0.00446

60 min 560.15 4.93 0.00494
90 min 841.92 9.23 0.01183

120 min 1123.70 15.68 0.02215
�20 �C 30 min 519.82 49.94 0.07701

60 min 801.59 20.57 0.02998
90 min 1083.36 16.72 0.02382

120 min 1365.14 14.96 0.02100

Re = 1000
�15 �C 30 min 326.68 18.56 0.02677

60 min 608.45 14.43 0.02016
90 min 890.22 16.72 0.02381

120 min 1172.00 21.21 0.03100

Re = 2000
�15 �C 30 min 423.28 35.28 0.05354

60 min 705.05 19.39 0.02809
90 min 986.82 16.95 0.02419

120 min 1268.60 19.33 0.02800

Re = 3000
�15 �C 30 min 519.88 24.74 0.03667

60 min 801.65 9.78 0.01270
90 min 1083.42 6.35 0.00721

120 min 1365.20 6.51 0.00747

Re = 5000
�10 �C 30 min 471.64 47.67 0.07337

60 min 753.41 32.03 0.04833
90 min 1035.18 31.19 0.04699

120 min 1316.96 33.80 0.05116
�15 �C 30 min 713.08 51.06 0.07881

60 min 994.85 21.59 0.03162
90 min 1276.62 12.72 0.01742

120 min 1558.40 11.12 0.01485
�20 �C 30 min 954.52 56.81 0.08802

60 min 1236.29 19.33 0.02800
90 min 1518.06 6.61 0.00762

120 min 1799.84 2.34 0.00079

Re = 7000
�15 �C 30 min 906.28 63.85 0.09929

60 min 1188.05 28.13 0.04209
90 min 1469.82 17.19 0.02457

120 min 1751.60 13.08 0.01799

Average 23.43 0.03500

a Linear equation; Qstored = �1054.3570 + 0.0966Re + 9.3924Time � 8.288
b Polynominal equation (non-linear); Qstored = �151.9903 + 0.0968Re + 0.0
The comparisons between the ANN model and the
numerical model along with the experimental data for
the total stored thermal energy at Re = 500, 1000 and
2000 are shown in Fig. 6, for the Re values of 3000,
5000 and 7000 in Fig. 7 at an inlet temperature of
r) equations at various experimental conditions for tube type 2

Polynomial equationb

R2 Results AMRE (%) STD R2

0.3600 174.93 80.17 0.13011 0.3573
0.9928 326.61 42.90 0.07043 0.8160
0.9558 454.48 5.43 0.01043 0.9971
0.8646 557.67 31.46 0.04865 0.9010
0.9999 255.76 31.27 0.05181 0.9022
0.9976 468.27 33.43 0.05526 0.8883
0.9915 650.29 18.81 0.03185 0.9646
0.9754 796.08 3.39 0.00369 0.9989
0.7506 328.45 43.62 0.06812 0.8097
0.9577 607.28 0.70 0.00286 1.0000
0.9720 866.35 0.26 0.00132 1.0000
0.9776 1092.37 10.24 0.01467 0.9895

0.9655 279.67 12.33 0.02149 0.9848
0.9792 515.91 24.06 0.04026 0.9421
0.9721 719.56 11.61 0.02032 0.9865
0.9550 886.39 8.88 0.01248 0.9921

0.8755 334.69 8.14 0.01130 0.9934
0.9624 609.05 15.23 0.02613 0.9768
0.9713 850.18 8.62 0.01554 0.9926
0.9626 1053.49 8.14 0.01130 0.9934

0.9388 397.67 4.42 0.00534 0.9980
0.9904 698.33 18.19 0.03086 0.9669
0.9960 965.57 14.82 0.02546 0.9781
0.9958 1195.62 2.76 0.00615 0.9992

0.7728 357.72 47.87 0.07491 0.7709
0.8974 620.70 11.19 0.01618 0.9875
0.9027 849.99 14.68 0.02177 0.9784
0.8858 1054.57 30.40 0.04694 0.9076
0.7393 486.44 33.21 0.05144 0.8897
0.9534 831.43 3.32 0.00705 0.9989
0.9838 1132.18 6.28 0.01179 0.9961
0.9876 1389.67 2.68 0.00255 0.9993
0.6772 613.74 53.37 0.08373 0.7151
0.9626 1050.49 5.78 0.00751 0.9967
0.9956 1436.37 4.06 0.00823 0.9984
0.9995 1741.06 0.79 0.00300 0.9999

0.5923 578.88 48.69 0.07623 0.7629
0.9209 956.41 6.20 0.00818 0.9962
0.9704 1275.41 0.07 0.00163 1.0000
0.9829 1543.57 5.46 0.00701 0.9970

0.9146 17.82 0.02868 0.9356

8Temperature + 1687.3365Area.
601Time2 � 0.0659Temperature3 + 27374.7856Area4.



Fig. 10. Comparison of ANN approach, numerical model and linear and polynomial equations with experimental data at various Reynolds number and
time.
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�15 �C. In these figures, the ANN prediction has an aver-
age AMRE of 13.74, compared to the numerical model
prediction with 4.71, in comparison with experimental
results for a laminar flow regime at Re = 500. Table 4
also shows the average AMRE values for comparison
purposes between the ANN and the numerical model
for the tube type-2 at different Reynolds number at
�15 �C of inlet HTF. It basically shows that the ANN
gives better results and agreement in comparison with
the experimental data since one key reason for this is that
ANN uses some experimental data. Also the comparison
between the ANN model and the numerical model along
with the experimental data for the total stored thermal
energy at Re = 500 and 5000 at �20 �C inlet temperature
of HTF in Fig. 8, and for an inlet temperature of HTF at
�10 �C in Fig. 9. Although these figures show that both
ANN and numerical model results are close to the exper-
imental data at Re = 500, the ANN approach provides
better agreement than the numerical model at Re = 5000
for both inlet temperatures of HTF.

It is important to note that the ANN can be considered
a powerful tool for heat transfer analysis during such two-
phase heat transfer processes due to costly and difficult
experimental works and measurements. So ANN can easily
overcome such problems using the available data for heat
transfer predictions.
Here, we validate the ANN model. Note that both linear
and polynominal (non-linear) equations are developed
through the SigmaPlot using over 240 experimental data
as training data for the model. The best fitting equations
in linear and non-linear forms are obtained as

� Qstored = �1054.3570 + 0.0966Re + 9.3924Time
� 8.2888Temperature + 1687.3365Area

� Qstored = �151.9903 + 0.0968Re + 0.0601Time2

� 0.0659Temperature3 + 27374.7856Area4

These equations are used to validate the ANN model for
the second tube as summarized in Table 5 and Fig. 10. These
clearly show that ANN provides better agreement, as
expected, with the experimental data. An uncertainty analy-
sis is included in training and test data groups for this study.

6. Conclusions

In this paper we have applied a feed-forward back-prop-
agation artificial neural network (ANN) algorithm for heat
transfer analysis of phase change process in a latent heat
thermal energy storage system with finned tube. We also
verify the present ANN model through comparisons with
the numerical results and experimental data and find out
that the ANN model provides better agreement for both
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laminar and turbulent flows in heat storage system with the
experimental data, compared to the numerical model
results, since the ANN model employs some experimental
data. Furthermore, the ANN model has an average AMRE
of 5.58 while numerical model ends up 14.99. The results
show that ANN approach appears to be promising tool
for thermal analysis of both latent and sensible thermal
energy storage systems.
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