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Lately the topic of multi-objective transportation network optimization has received increased attention
in the research literature. The use of multi-objective transportation network optimization has led to a
more accurate and realistic solution in comparison to scenarios where only a single objective is consid-
ered. The aim of this work is to identify the most promising multi-objective optimization technique for
use in solving real-world transportation network optimization problems. We start by reviewing the state
of the art in multi-objective optimization and identify four generic strategies, which are referred to as
goal synthesis, superposition, incremental solving and exploration. We then implement and test seven
instances of these four strategies. From the literature, the preferred approach lies in the combination
of goals into a single optimization model (a.k.a. goal synthesis). Despite its popularity as a multi-objective
optimization method and in the context of our problem domain, the experimental results achieved by
this method resulted in poor quality solutions when compared to the other strategies. This was particu-
larly noticeable in the case of the superposition method which significantly outperformed goal synthesis.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

When optimizing transportation networks, several criteria can
be used as the optimization goal, criteria such as the shortest dis-
tance traveled minimum inventory, minimum transportation cost
and highest network resilience. In the case of industry based appli-
cations, it is often advantageous to simultaneously consider several
of these goals with a view to developing a model that more accu-
rately represents the operation of the actual business. Defining a
mathematical model that incorporates the perspective of more
than one criterion in itself is not a simple task and often involves
the definition of complex non-linear models. Moreover, the goals
of such criteria may well be mutually exclusive and result in the
definition of a multi-goal model that is not or not always achiev-
able in practice.

A simple way to handle the multi-objective optimization prob-
lem is to construct a composite objective function that is the
weighted sum of the conflicting objectives (Aslam & Ng, 2010). In
the literature this technique is also referred to as the preference-
based strategy and is the approach most often adopted by academic
studies. The preference-based strategy is a trade-off that reduces a
multi-goal approach to a single-goal optimization problem. How-
ever, in reality as a solution this trade-off has proved to be very
sensitive to the relative preferences assigned to the goals (Aslam
& Ng, 2010) and in practice it is difficult for practitioners, even
those familiar with the problem domain to precisely and accu-
rately select such weightings (Konak, Coit, & Smith, 2006).

As part of this work, we identify the principal alternative meth-
ods for use in multi-objective optimization when applied to the
solution of real-world transportation network optimization prob-
lems. The work reported here is an extension to previously work
Veluscek et al. (2014). The problem models and the data sets have
been defined in collaboration with a world leading manufacturer of
construction and mining equipment and represent a snapshot of
the day-to-day complexities and operational challenges faced by
our industrial partners business. The aim of this work is to identify
and test those multi-objective optimization techniques that better
address the complexities of such operating environments.

In the following sections, we identify four generic strategies
used to optimize multi-goal problem scenarios and formally pres-
ent seven implementations of these strategies. The methods have
been designed and implemented with a view to solving the trans-
portation network optimization problem reported in Veluscek
et al. (2014).

In Sections 2 and 3 we present the background to this work and
introduce previously work on multi-goal optimization. In Section 4
we formally describe the methods used to combine single-goal
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optimization problems. In Section 5 we present the outcome of the
numerical experiments undertaken to verify and test the effective-
ness of the proposed methods.
2. Context and motivations

A robust solution to the multi-goal optimization problem is of
particular interest to real-world applications where several optimi-
zation objectives are commonly involved. Multi-goal problems usu-
ally do not have a single ‘best’ solution, but are characterized by a set
of solutions that are superior to others when considering all objec-
tives (Alaya, Solnon, & Ghedira, 2007). This set is referred to as the
Pareto set or as the non-dominated solution (Alaya et al., 2007). This
multiplicity of solutions can be explained by the fact that individual
objectives are often in conflict (Alaya et al., 2007). For example,
Altiparmak, Gen, Lin, and Paksoy (2006) defined three objectives
for the transportation network optimization problem: the total cost,
the total satisfied customer demand and the equity of the capacity
utilization ratio for each production source. The authors then imple-
ment a genetic algorithm to find the set of Pareto-optimal solutions.
A similar example is presented in Yagmahan and Yenisey (2008) for
the flow shop scheduling problem. The multi-objective function in
this instance consists of minimizing the distance between the val-
ues of all the single-objective functions.

In our experience, most of the solutions proposed for multi-
objective optimization problems are either specific to the kind of
problem or to the kind of technique used to determine the optimal
solution. We have identified four generic solution strategies that in
general are used to solve multi-objective optimization problems.

The first strategy is called Goal Synthesis and requires the def-
inition of a mathematical model which includes all the single-goal
problems. This category is also referred to as the preference-based
strategy (Aslam & Ng, 2010). The model defines one search space
which is a sub-space of the intersection of the single-goal problem
search spaces. The best composite solution is then sought on this
space along one path. The solution found is feasible for each sin-
gle-goal problem separately, but it is not necessarily the optimal
one. Applying this strategy is no different from solving any other
optimization problem: firstly a mathematical model is defined
and then an optimal solution is sought using an appropriate opti-
mization algorithm. However, there is no guarantee that the inter-
section of the single-goal problems exists or that the definition of
such a multi-goal model is even possible.

The second strategy is called Superposition and in contrast to
the previous method does not require the definition of a multi-
objective problem model. Firstly, a solution is computed for each
of the single-goal problems and then a combination of them are
taken as the multi-goal solution. The applicability of this strategy
relies on the definition of a combination operator. Again it is pos-
sible that the combination of the single-goal solutions is empty
and a feasible solution does not exist. Das and Dennis (1998)
designed a method based on this strategy to solve generic non-lin-
ear multi-objective optimization problems.

The third strategy is called Incremental Solving. Here each sin-
gle-goal problem is solved sequentially in accordance with a pre-
defined order, and the starting exploration point of the ith
problem is the solution or stopping point of the ði� 1Þth problem.
The solution for the multi-goal problem depends on the order used
to solve the single-goal problems. Boudahri, Sari, Maliki, and
Bennekrouf (2011) adopted this strategy to optimize an agricul-
tural products supply chain.

The final strategy is called Exploration and is based on a ‘brute
force’ approach. Firstly, a large number of feasible solutions are
generated for each single-goal problem and then the multi-goal
solution is taken as the solution that represents the ‘best’ compro-
mise for the set of single-goal problems. Applying this strategy
should always lead to a solution, provided a feasible solution exists
for at least one of the single-goal problems. In common with many
brute force approaches the cost of producing a quality solution is
computational expensive. Bevilacqua et al. (2012) adopted this
strategy to solve a generic distribution network and employed a
genetic algorithm to improve the generation of solutions.

Aslam and Ng (2010) and Ogunbanwo et al. (2014) provide
extensive reviews of the work undertaken for the problem of trans-
portation network optimization. We have analyzed the works pre-
sented in such reviews and have categorized the reported methods
with respect to those developed to solve multi-objective optimiza-
tion problems. Table 1 and Fig. 1 show the results of that analysis.
We can clearly see that in recent years the Goal Synthesis strategy
is the dominant method used. Nevertheless, despite its popularity
we will show that it may not necessarily be the best choice when
solving real-world transportation network optimization problems.

As will be discussed in the following sections, the method used
in this work to solve our specific real-world optimization problem
is the Ant Colony System algorithm (Dorigo & Gambardella, 1997).
García-Martínez, Cordón, and Herrera (2007) analyzed several ant
colony optimization variants for multi-goal optimization and pre-
sented a taxonomy for them. The authors also performed an empir-
ical analysis for the travel salesman problem and compared their
results with two other well-known multi-objective genetic algo-
rithms. It is worth noting that a prerequisite of such analysis is
to define a multi-goal model to generate the Pareto optimal fron-
tier. Once again, the authors proposed a model that simultaneously
considers all optimization goals (i.e. goal synthesis). This indicates
a preference for the goal synthesis strategy over the use of
alternatives.
3. Transportation network optimization

A transportation network optimization problem may be express
in terms of a minimization objective function, a set of variables and
a set of constraints over these variables, regardless of the goal type
(functions having to be maximized may be multiplied by �1).
Given a vector of variables x 2 Rn and a vector of cost coefficients
c 2 Rn, a transportation network optimization problem may be
defined as:

v ¼min cT xjAx ¼ b ^ x P o
� �

ð1Þ

where A 2 Rm�x is a matrix of coefficients, b 2 Rm is a vector of coef-
ficients and v 2 Rn is a vector of assignments for the variables x
such that the value of the objective function cT x is minimum. The
matrix A and the vector b define the constraints over the decision
variables x and define the problem search space. Therefore, a trans-
portation network optimization problem is defined by the tuple
lp :¼ ðx; c;A; b; vÞ. A multi-goal optimization problem is a set of
tuples representing single-goal optimization problems:

LPðx;A; bÞ ¼ x; c;A; b;vð Þj9c 2 Rjxj ^ 9v 2 Rjxj
� �

; ð2Þ

where the vector of variables x 2 Rn and the set of coefficients A and
b are the same for all the single-goal problems.

In a transportation network optimization problem, the variables
x define the number of products to send on a given network route.
The coefficients c usually depend on the goal and are typically
information associated with a given route on the network (e.g. hav-
ing to optimize for minimum transportation cost, ci 2 c is the cost
to send products via route i). Typically the constraints defined by A
and b are the constraints placed on production capacity and cus-
tomer demand. The solution v is a distribution plan for the
network.



Table 1
Objectives investigated and strategies used in existing approaches for solving several multi-objective optimization problems in the area of operations research.

Author (year) Multi-objective
method

Description

Altiparmak et al. (2006) GS TNO for minimum transit time and minimum transportation costs
Bevilacqua et al. (2012) EX TNO for minimum transit time and minimum transportation costs
Boudahri et al. (2011) IS TNO for minimum traveled distance and minimum transportation costs
Cardona-Valdés, Álvarez, and

Ozdemir (2011)
GS TNO for minimum transit time and minimum transportation costs

Che and Chiang (2010) GS TNO for minimum transit time, minimum transportation costs, and maximum product quality
Che (2012) GS TNO for minimum transit time and minimum transportation costs
Chen, Yuan, and Lee (2007) GS TNO for minimum transit time and minimum transportation costs
Cintron, Ravindran, and Ventura

(2010)
GS TNO for minimum traveled distance, minimum transportation costs, maximum service level, and maximum

product quality
Ding, Benyoucef, and Xie (2004) GS TNO for minimum transit time and minimum transportation costs
Ding, Benyoucef, and Xie (2009) GS TNO for maximum service level and minimum transportation costs
Ghoseiri and Nadjari (2010) GS TNO for minimum traveled distance and minimum transportation costs
Huang, Li, and Wang (2011) GS TNO for minimum transportation costs and maximum network resilience
Kamali, Fatemi Ghomi, and Jolai

(2011)
GS TNO for minimum transportation costs and maximum service level

Liang (2008) GS TNO for minimum traveled distance, minimum transit time, and minimum transportation costs
Lin and Wang (2008) GS TNO for minimum transit time, minimum transportation costs, and maximum service level
Sadjady and Davoudpour (2012) GS TNO for minimum traveled distance, minimum transportation costs, and minimum transit time
Utama, Djatna, Hambali,

Marimin, and D. (2011)
GS TNO for minimum traveled distance, minimum transportation costs, maximum service level, maximum product

quality, and minimum environmental impact
Wang (2009) GS TNO for minimum transportation costs and maximum network resilience
Yeh and Chuang (2011) GS TNO for minimum transportation costs, minimum transit time, minimum environmental impact, and maximum

product quality
Chen and Lee (2004) GS TNO for minimum transportation costs, maximum service level, and maximum network resilience
Sabri and Beamon (2000) IS TNO for minimum traveled distance, minimum transportation costs, maximum network resilience, maximum

service level and maximum product quality
Joines, King, Kay, and Gupta

(2002)
GS TNO for minimum transportation costs and maximum service level

Wang, Lai, and Shi (2011) GS TNO for minimum transportation costs and minimum environmental impact
Torabi and Hassini (2008) GS TNO for minimum transportation costs and maximum product quality
Amid, Ghodsypour, and O’Brien

(2011)
GS Multi-goal supplier selection optimization

Wang, Huang, and Dismukes
(2004)

GS + SP Multi-goal supplier selection optimization. GS is used to have a MO model and SP to determine the weights

Weber and Current (1993) GS Multi-goal supplier selection optimization
Liu, Ding, and Lall (2000) GS Multi-goal supplier selection optimization with goal synthesis for combination of 23 goals/factors
Kumar, Vrat, and Shankar

(2004)
GS Multi-goal supplier selection optimization

Leung, Tsang, Ng, and Wu
(2007)

GS Trade-off between robustness and effectiveness of solution for multi-site production planning optimization
problem

Yıldız (2009) EX Hybrid hill climbing optimization for manufacturing optimization with goals of minimizing the mass of the brake
and minimizing the stopping time

Chaharsooghi and Meimand
Kermani (2008)

GS + EX Efficient multi-goal ACO for multi-objective resource allocation problem. GS is used to have a MO model and EX to
efficiently explore the Pareto optimal frontier

McMullen and Tarasewich
(2006)

GS + EX Assembly line balancing optimization for the goals of crew size optimization, system utilization, jobs scheduling,
and system design costs. GS is used to have a MO model and EX to efficiently explore the Pareto optimal frontier

Das and Dennis (1998) SP New multi-purpose method for generating the Pareto optimal points

TNO is transportation network optimization, MO is multi-objective, GS is goal synthesis, EX is exploration, IS is incremental solving, SP is superposition, and ACO is ant colony
optimization.
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4. Composite goal methods

We now present and describe seven different LPðx;A; bÞ means
to solve the multi-objective optimization problem. These methods
are a formalization of the four generic strategies described above in
Section 2.

Given a vector of variables x 2 Rn, a vector of coefficients b 2 Rm

and a coefficient matrix A 2 Rm�n, let S :¼ ðx; a; b; Þ be the tuple
defining the problem search space. Recall from Eq. (2) that
LPðx;A; bÞ is the set of single-goal problems or the multi-goal opti-
mization problem to be solved. The set LP is defined in Section 3.
For simplicity, whenever there is no ambiguity, we take LP to be
a synonym for LPðx;A; bÞ.

Let us define the projection operators on the search space S and
on a given optimization problem lp 2 LP as pxðSÞ ¼ x;
pAðSÞ ¼ A;pbðSÞ ¼ b;pcðlpÞ ¼ c and pv ðlpÞ ¼ v .
In order to improve readability, whenever there is no ambigu-
ity, we write x;A and b instead of pxðSÞ;pAðSÞ and pbðSÞ respec-
tively. Similarly, we write cj and v j instead of pcðlpjÞ and pv ðlpjÞ.

The proposed methods require a function to solve the optimiza-
tion problem. Here we use the ant colony optimization algorithm
described in Dorigo and Gambardella (1997). The methods defined
below in Sections 4.1–4.6 are completely independent of this
choice. The method defined in Section 4.7 is a specialization of
the Ant Colony Optimization algorithm for solving multi-goal
problems and it is used solely for the purpose of comparison.

Let ACS be the function representing the ant colony solver
ACS : LP ! Rn;

lp # v ;
ð3Þ

where lp 2 LP is the optimization problem to be solved and v 2 Rn is
a feasible solution to the problem lp. The specific details of how to
find this solution are not relevant to the purpose of this work.



Fig. 1. Summary of the multi-objective strategies presented in Table 1 for solving
multi-objective transportation network optimization problems.
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In several of the methods described below, a reduction function
is employed to narrow the problem search space, given a partial
solution. Given an optimization problem lpj 2 LP, the reduction
function is defined as:

red : Rn ! Rm;

v j # b� A � v j:
ð4Þ

Application of the reduction function has the effect of reducing
the production capacity and the customer demand by the amount
of product already sent through the network.

The performance of a solution is the value of the objective func-
tion and is defined as the sum of the values of the vector v
weighted by the cost coefficients c. Given an optimization problem
lpj 2 LP, let p be the function that measures the performance of a
solution:

p : Rn � Rn ! R;

v j; cj#
Xn

i¼1

v j
i � c

j
i:

ð5Þ
4.1. D-Unification (DU)

The first method is based on the goal synthesis strategy. The first
step consists of finding a solution for each single-goal problem.
This provides an estimation of the optimal solution for each of
the single-goal problem. We then define a new optimization prob-
lem, whose goal is to minimize the difference between the current
solution and the worst performing single-goal solution. Let ofdiff be
the objective function of such a problem:

ofdiff ðxÞ ¼ min
lpj2LP
ðjp v j; cj
� �

� p x; cj
� �

j=pðv j; cjÞÞ; ð6Þ

where x are the variables of the optimization problem.
The new optimization problem is defined as:

lpdiff :¼min fofdiff ðxÞjAx ¼ b ^ x P 0g: ð7Þ
Solving the optimization problem lpdiff causes the solver to walk
through the solution space along the intersection of the solution
surfaces. Algorithm 1 shows the pseudo code for the above
procedure.

Algorithm 1: Pseudo code for the procedure D-Unification

Algorithm ‘‘D-Unification’’
Require: Set of optimization problems LP, Problem space S
1. for all lpj 2 LP do . Solve each single-goal problem

2. v j  ACSðlpjÞ
3. end for
4. . An estimation of the optimal solution for each single-

goal problem is established

5. vD  ACS lpdiff

� �

6. return vD
4.2. Weighted Frontier Walk (WFW)

The second method is also based on the goal synthesis strategy
and involves the definition of a multi-goal problem whose objec-
tive function consists of a weighted combination of the single-goal
problems. Let w 2 RjLPj be a vector of weights, where each weight is
associated with a single-goal problem of the set LP. Let ofwfw be the
objective function of such a problem:

ofwfwðxÞ ¼ min
lpj2LP

wj � jp v j; cj
� �

� p x; cjÞj=pðv j; cj
� �� �

: ð8Þ

The objective function ofwfw is similar to the objective function
defined for the D-Unification method in Section 4.1. In scenarios
where the weights w are all equal, then this method is equivalent
to the D-Unification method described in the previous section (see
Section 4.1).

The new multi-goal optimization problem is defined as:

lpwfw :¼minfofwfwðxÞjAx ¼ b ^ x � 0g: ð9Þ

Algorithm 2 shows the pseudo code for the above procedure.

Algorithm 2: Pseudo code for the procedure Weighted Frontier
Walk

Algorithm ‘‘Weighted Frontier Walk’’
Require: Set of optimization problems LP, Problem space S,

Vector of weights w
1. for all lpj 2 LP do . Solve each single-goal problem

2. v j  ACSðlpjÞ
3. end for
4. . An estimation of the optimal solution for each single-

goal problem is established
5. vwfw  ACSðlpwfwÞ
6. return vwfw
4.3. Iterative Superposition (IS)

The third method is based on the idea of superposition. A com-
plete solution is first required for each of the single-goal problems
and then the solution to the multi-goal problem is taken as combi-
nation of them. The combination is computed as the minimum
intersection of the distribution plans. Let v int be the result of the
minimum intersection of the distribution plans. Each element
v int

i 2 v int is defined as:
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v int
i ¼ min

lpj2LP
ðv j

iÞ: ð10Þ

The vector result of the minimum intersection is then used to
reduce the problem space of each single-goal problem, by applying
the reduction function defined above in Eq. (4).

It is unlikely that the first solution will satisfy all the required
demands. As such the solution for the multi-goal problem is initial-
ized as a vector of zeros of dimension jxj ¼ n;vmg ¼ 0n, and the
intersection is added at each step vmg ¼ vmg þ v int .

The procedure is repeated until such time as the demands are
satisfied; a solution in the reduced space is computed for each sin-
gle-goal problem, and the solution to the multi-goal problem is
once again the minimum intersection. The pseudo code for this
procedure is shown in Algorithm 3.

During the first step of the procedure, a complete solution is
found for each single-goal problem. The solution to the multi-goal
problem is then generated from the individual single-goal problem
solutions. Uniformly from each single-goal solution v j, we itera-
tively take the best elements of v j and add them to the multi-goal
solution vmg , until such time as all demands are satisfied. It should
be noted that the possibility exists such that the intersection of the
solutions is empty i.e. v int ¼ 0; in such instances the reduction
function will not modify the search space and the procedure itself
may not converge.

Algorithm 3: Pseudo code for the procedure Iterative
Superposition

Algorithm ‘‘Iterative Superposition’’
Require: Set of optimization problems LP, Problem space S
1. . Initialize multi-goal solution to zero
2. vmg  0n

3. repeat
4. for all lpj 2 LP do . Solve each single-goal problem

5. v j  ACSðlpjÞ
6. end for
7. . Compute solutions intersection

8. for all v j
i 2 v j do

9. v int
i  minlpj2LPðv j

iÞ
10. end for
11. . Reduce the problem space
12. b red v int

� �
13. . Add the intersection to the multi-goal solution
14. vmg  vmg þ v int

15. if v int ¼ 0 then . The intersection is null
16. Complete vmg with the best elements from v j8lpj 2 LP
17. end if
18. until all demands are satisfied
19. return vmg
4.4. Incremental Solving via Tuning (IT)

The fourth method is based on the incremental solving strategy.
The procedure starts by solving one of the single-goal problems
and then iteratively adjusts the solution to increase its perfor-
mance according to the remaining single-goal problems. The solu-
tion is adjusted by eliminating elements, the X elements that have
the greatest negative impact on the current problem solution are
eliminated, where X 2 R and X 6 jxj. Once every single-goal prob-
lem has been considered, the problem space is reduced and the
process is repeated until such time as all demand is satisfied.

Let ni be the function used to find an element in a given vector
v 2 Rn that has the greatest negative impact on the performance of
a given optimization problem lp 2 LP.
ni : Rn � LP ! Nþ;

v; lp #
P

argmaxi2½0;jv j�pðv � I vj j � v i
� �

0; vj j½ �;i;pcðlpÞÞ:
ð11Þ

The pseudo code for this procedure is shown in Algorithm 4.
The method requires that a single-goal optimization problem is

set as the starting point and the results are dependent on the order
in which single-goal problems are solved. It follows that the proce-
dure should be run on all possible single-goal problem orderings as
part of a complete analysis.

Algorithm 4: Pseudo code for the procedure Incremental
Solving via Tuning

Algorithm ‘‘Incremental Solving via Tuning’’
Require: Set of optimization problems LP, Problem space S,

Number of elements to neglect X, Starting optimization
problem lpj 2 LP

1. . Initialize multi-goal solution to zero
2. vmg  0n

3. repeat

4. v j  ACS lpj

� �

5. . Adjust the solution by removing the X elements with
greatest negative impact on the remaining single-goal
problems

6. for i 0 to X=ð LPj j � 1Þ do
7. for all lpk 2 LP n lpj do

8. v j
ni v j;lpkð Þ  0

9. end for
10. end for
11. b red v j

� �

12. vmg  vmg þ v j

13. until all demands are satisfied
14. return vmg
4.5. Incremental Solving via Retention (IR)

The fifth method is based on the incremental solving strategy
and in reality is a variation on the Incremental Solving via Tuning
method described in the Section 4.4. Again the procedure consists
of solving each single-goal problem in sequence, but on this occa-
sion rather than eliminating the elements with the greatest nega-
tive impact on the performance of the remaining problems, on this
occasion the Y elements that have contribute the most to the per-
formance of the current problem are retained, where Y 2 R and
Y 6 jxj.

Let hi be the function used to find the element of a given vector
v 2 Rn that has the greatest positive impact on the performance of
the given optimization problem lp 2 LP.

hi : Rn � LP ! Nþ;

v ; lp #
X

argmaxi2½0;jvj�ðv i � pcðlpÞð ÞiÞ:
ð12Þ

The pseudo code for this procedure is shown in Algorithm 5.
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Algorithm 5: Pseudo code for the procedure Incremental
Solving via Retention

Algorithm ‘‘Incremental Solving via Retention’’
Require: Set of optimization problems LP, Problem space S,

Number of elements to retain Y
1. . Initialize multi-goal solution to zero
2. vmg  0n

3. . Initialize counter of remaining elements that may be
retained

4. r  n
5. repeat
6. for all lpj 2 LP do . Sequentially solve for each single-

goal problem

7. v j  ACS lpj

� �

8. if r � Y then . All elements have to be retained
9. return vmg þ v j

10. end if
11. . Adjust the solution by retaining the Y elements with

greatest positive impact on the current single-goal problem
12. vk  0n

13. for i 0 to Y do

14. vk
hiðv j�vk ;lpjÞ

 v j
hi v j�vk ;lpjð Þ

15. end for
16. r  r � Y
17. b red vk

� �

18. vmg  vmg þ vk

19. end for
20. until all demands are satisfied
21. return vmg
4.6. Taguchi QLF-based Approach

The idea behind the sixth method originates from the theory of
Robust Engineering and Taguchi’s Quality Loss Function (QLF)
(Taguchi, Elsayed, & Hsiang, 1988) and can be classified as a goal
synthesis based strategy. Taguchi’s quality loss function encodes a
penalty term for deviations from a particular target. Here we define
a loss function L for each single-goal problem lp 2 LP, in the form
of:

Llp : R! R;

t0 # k t0 � tð Þ2;
ð13Þ

where t 2 R is the value of the target solution for the problem
lp; t0 2 R is the evaluation for another proposed design and k 2 R
is the loss coefficient in terms of deviation from the target metric.
The function computes the penalty, the loss for deviating from the
target. Given an optimization problem lp 2 LP, the value of t is an
estimation of the optimum solution to the problem, which may
be computed by applying the Ant Colony Solver ACS:

t ¼ p ACS lpð Þ;pc lpð Þð Þ: ð14Þ

We may now define a new multi-goal optimization problem
based on the loss function L. Let ofqlf be the objective function of
such a problem:

ofqlf ðxÞ ¼
X

lpj2LP

Llpj
ðpðx;pcðlpjÞÞÞ: ð15Þ

The new multi-goal problem consists of minimizing the total
deviation loss from the best known solutions of the single-goal
problems:
lpqlf :¼minfofqlf ðxÞjAx ¼ b ^ x P 0g: ð16Þ

The pseudo code for this procedure is shown in Algorithm 6.

Algorithm 6: Pseudo code for the procedure Taguchi QLF-based
Approach

Algorithm ‘‘Taguchi QLF-based Approach’’
Require: Set of optimization problems LP, Problem space S
1. for all lpj 2 LP do . Solve each single-goal problem

2. v j  ACSðlpjÞ
3. end for
4. . An estimation of the optimal solution for each single-

goal problem is established
5. vqlf  ACSðlpqlf Þ
6. return vqlf
4.7. ACO-specific Multi-goal Method

The last and final method differs from those previously
described in that it is specific to the Ant Colony Optimization algo-
rithm; the main idea here is to improve the global pheromone
updating strategy in order to simultaneously consider more than
one goal. Given a solution generated by the solver, the level of
pheromone deposited is increased in accordance with the perfor-
mance improvement in each single-goal problem. A generated
solution receives a full pheromone update if and only if it is an
improved solution for each of the single-goal problems. The
method may be classified as belonging to the goal synthesis cate-
gory, despite the fact that it does not formally involve the defini-
tion of a multi-goal problem. This classification as goal synthesis
is justified on the basis that the method employs exploration of
the search space by taking into account more than one goal at a
time as it walks along the intersection of the single-goal problem
spaces.

As stated in Dorigo and Gambardella (1997), the original global
pheromone rule is defined as follow:

sðr; sÞ ¼ ð1� qÞ � sðr; sÞ þ q � Dsðr; sÞ; ð17Þ

where ðr; sÞ is an edge of the ant tour or a route in the network,
sðr; sÞ is the pheromone value deposited on the edge, q is the decay
parameter q 2 ½0;1�, and Dsðr; sÞ is a measure of the improvement in
the solution.

Given a solution v 2 Rn for the problem lp 2 LP, let d be the
function to measure the increase applied to the pheromone
level:

d : Rn ! R; v #
X
lp2LP

1
jLPj �

pðv;pcðlpÞÞ
pðv�;pcðlpÞÞ

����
����; ð18Þ

where v� 2 Rn is the best known solution for the problem lp. The
improved pheromone update strategy maybe stated as:

sðr; sÞ ¼ ðð1� qÞ � sðr; sÞ þ q � Dsðr; sÞÞ � dðvÞ: ð19Þ

Let ACSmo be the variant of the Ant Colony Optimization algo-
rithm based on such a global pheromone update strategy.

The pseudo code for this procedure is shown in Algorithm 7.
The procedure requires selecting a single-goal problem lpk 2 LP

to be used by the solver as the main problem to solve. The advan-
tage of using a single-goal problem instead of defining a multi-goal
one is that the procedure should find a feasible solution for lpk even
if the intersection of the single-goal problem search spaces is
empty. Although it is not unreasonable to expect that the solution
will be strongly influenced by the goal of the problem lpk.



Table 2
Ant Colony System set of parameters for all tested
problem instances. These parameters are from the
original definition of the Ant Colony System in Dorigo,
Maniezzo, and Colorni (1996).

Parameter Value

Number of ants 20
Maximum N	 of iterations 1000
Pheromone evaporation rate (q) 0.1
Weight on pheromone information (a) 1
Weight on heuristic information (b) 20
Exploitation to exploration ratio (Q0) 0.9
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Algorithm 7: Pseudo code for the procedure ACO-specific
Multi-goal Method

Algorithm ‘‘ACO-specific Multi-goal Method’’
Require: Set of optimization problems LP, Problem space S,

Single-goal problem used by the ACSmo variant lpk 2 LP
1. for all lpj 2 LP do . Solve each single-goal problem

2. v j  ACSðlpjÞ
3. end for
4. . An estimation of the optimal solution for each single-

goal problem is established
5. vmo  ACSmoðlpkÞ
6. return vmo
5. Experiments
Each of the proposed methods has been tested on a set of 4 sin-
gle-goal optimization problems: for maximum profit, for minimum
transportation cost, for minimum transit and inventory time, and
for maximum network resilience. The mathematical definition of
the problems are taken from Veluscek et al. (2014). The profit max-
imization problem has been extended to consider inventory policy
and stochastic variability in transportation costs (see Bravo and
Vidal (2013) for examples of models that consider inventory policy
and stochastic variability). As in Veluscek et al. (2014), the data
sets were provided by a real-world manufacturing company with
a worldwide dealership network and an active interest in logistics
optimization. The company provided the transportation network
map, demand data for 432 dealers in the period from January
2010 to December 2011, and data relating to the manufacturing
costs, production capacities and regional sale prices.

The problem complexity is quite significant due to the fact that
the underlying transportation network is made up of 8 production
facilities, 432 dealer locations and 48 shipping ports. The network
representation is a four layer graph where:

1. The production facilities are connected both to the outbound
shipping ports and the dealer locations;

2. At the outbound shipping ports it is possible to send product to
the set of inbound shipping ports;

3. And the inbound shipping ports are connected to the dealer
locations.

This network design resulted in almost 8 million potential
routes between production facilities and dealer locations.

The single-goal problems have first been solved to define a
baseline against which the performance of the proposed composite
goal methods can be compared. The solutions produced by the
methods have been evaluated according to the single-goal objec-
tives. Table 3 shows the percent difference between the perfor-
mance of the single-goal problems and the performance of the
combination methods. The incremental methods (Sections 4.4
and 4.5) have been run on all the possible orders of the single-goal
problems and the method Weighted Frontier Walk (Section 4.2)
has been run on a set of 16 weight combinations.

As discussed the method used to solve the optimization prob-
lems is the Ant Colony System algorithm from Dorigo and
Gambardella (1997), with Vogel’s Approximation Method of Allo-
cation as described in Samuel and Venkatachalapathy (2011) being
used to establish the starting solution. The parameters used for the
test cases are reported in Table 2. Table 3 shows the runtime
results for the experiments. This particular implementation of
the Ant Colony System has been successfully deployed on the pro-
duction line of Caterpillar Inc. for 4 out 16 planned products.
When comparing optimization methods for multi-goal prob-
lems, it is usually difficult to rank one approach over another in
absolute terms. Ideally, we want a method that produces a solution
with same performance as those produced when optimizing for
each single goal, but in practice this is difficult to achieve. The
results not only depend on the definition of the multi-goal method,
but also on the properties of the single-goal problems. For exam-
ple, problems might conflict or be mutually exclusive.

In the case of transportation network optimization, one com-
mon denominator could be profit: most of the metrics such as
transportation time and network resilience can be monetized.
However, in real business environments profit alone may not
always be the dominant factor, distribution plans that yield lower
profit, but offer greater value with respect to other metrics may be
preferred. For instance, resilience implies risk, some companies are
more averse to risk taking than the impact on profit alone would
imply. Total inventory carrying costs equate to cash flow and/or
funds tied up in the business that cannot otherwise be invested
elsewhere; when trading volumes are low cash flow may become
more important than pure profit.

However, one possible evaluation scenario would be to calcu-
late the relative performance of methods by ranking each method
by goal and then combine the ranked position of a method on each
goal by summing its position on the different goals. Table 4 shows
the result of the ranking procedure.

From Table 4, we can observed that methods based on the
incremental solving strategy (i.e. Incremental Solving by Tuning
4.4 and Incremental Solving by Retention 4.5) are positioned in
the top ranking. While a ranking approach is appropriate in creat-
ing a discrete ordering, it does not necessarily convey information
about the relative relationships between the experiments/goals.

Fig. 2 shows an alternative visual representation of the data
from Table 3. From Fig. 2, we can see that there is no consistent dif-
ference between the methods that belong to the same generic
strategy (as defined in Section 2). For instance, methods based on
goal synthesis, such as Weighted Frontier Walk, Delta-Unification,
Taguchi QLF-based and ACO-specific all produce distribution plans
with similar performances on the single-goal problems (i.e. very
low difference for profit, slightly higher for resilience and higher
still for time). Similarly for methods based on incremental solving
strategy, such as Incremental Solving by Tuning and Incremental
Solving by Retention have produce distribution plans whose perfor-
mance is dependent on the order in which the single-goal prob-
lems have been solved. In that the first single-goal problem to be
solved has greatest influence on the overall solution. For example,
by taking the Incremental Solving by Tuning method and running it
in the order Resilience-Time-Profit produces a distribution plan
that is not dissimilar to the performance produced for the order
Resilience-Profit-Time, but is completely different from that pro-
duced for the order Time-Resilience-Profit.

Arguably the Iterative Superposition method is the best one. The
distribution plan found performs well for each single-goal problem



Table 3
Percentage difference between single-goal problems and composite goal methods performances.

Profit (%) Time (%) Cost (%) Resilience (%) Running time (s)

WFW 52-87-62-35 1.56 156.62 1.57 4.89 1008
WFW 1-14-36-84 1.62 173.94 1.64 5.05 1022
WFW 74-92-43-81 2.08 191.25 2.17 5.05 1022
WFW 94-97-33-25 1.65 159.74 1.68 5.22 1008
WFW 0-92-11-50 1.49 165.82 1.49 5.24 1022
WFW 63-28-60-2 1.45 166.37 1.45 5.37 1022
WFW 2-28-32-7 1.81 180.15 1.86 4.42 1022
WFW 54-88-21-57 1.59 159.68 1.60 5.06 1008
WFW 59-54-86-77 2.08 149.90 2.16 4.09 1022
WFW 92-5-11-64 1.48 164.61 1.48 5.20 1022
WFW 69-85-60-0 1.45 156.10 1.44 5.20 1022
WFW 22-94-90-56 1.90 175.05 1.96 4.70 1022
WFW 29-50-31-2 1.52 175.51 1.53 5.11 1022
WFW 57-40-75-28 1.48 177.30 1.48 4.83 1008
WFW 1-31-7-75 1.89 164.00 1.95 4.56 1022
WFW 100-100-100-100 1.46 160.06 1.46 5.22 1022
Taguchi QLF 5.21 193.63 100.98 4.24 3234
IS 37.34 1.92 42.28 1.86 616
IT T-P-R-C 36.99 1.56 41.88 1.67 924
IT C-R-P-T 1.01 128.43 1.05 5.83 910
IT C-R-T-P 1.01 128.43 1.05 5.83 910
IT C-P-R-T 1.01 128.22 1.05 5.83 910
IT C-P-T-R 1.01 128.22 1.05 5.83 924
IT C-T-R-P 1.01 128.43 1.05 5.83 910
IT C-T-P-R 1.01 128.22 1.05 5.83 308
IT R-C-P-T 49.16 353.93 55.72 2.36 308
IT R-C-T-P 49.00 363.48 55.53 2.51 322
IT R-P-C-T 51.56 389.74 58.45 3.25 308
IT R-P-T-C 49.38 359.98 55.97 2.90 308
IT R-T-C-P 50.33 383.10 57.06 2.74 308
IT R-T-P-C 49.12 364.35 55.67 2.65 910
IT P-C-R-T 1.04 117.83 1.11 5.89 924
IT P-C-T-R 1.04 117.83 1.11 5.89 910
IT P-R-C-T 1.04 117.83 1.11 5.89 910
IT P-R-T-C 1.03 118.73 1.10 5.39 910
IT P-T-C-R 1.03 118.73 1.10 5.39 924
IT P-T-R-C 1.03 118.73 1.10 5.39 616
IT T-C-R-P 36.70 1.04 41.55 1.24 630
IT T-C-P-R 36.70 1.04 41.55 1.24 616
IT T-R-C-P 36.70 1.04 41.55 1.24 630
IT T-R-P-C 36.99 1.56 41.88 1.67 616
IT T-P-C-R 36.99 1.56 41.88 1.67 5684
IR T-P-R-C 24.86 88.69 28.08 1.71 6356
IR C-R-P-T 9.85 154.35 11.00 3.48 6076
IR C-R-T-P 5.13 161.40 5.63 2.53 6398
IR C-P-R-T 7.44 158.35 8.26 2.68 6468
IR C-P-T-R 6.81 146.43 7.54 2.89 6300
IR C-T-R-P 10.01 158.84 11.19 1.51 6412
IR C-T-P-R 6.64 146.32 7.36 2.80 5236
IR R-C-P-T 14.73 151.08 16.55 3.79 5138
IR R-C-T-P 16.43 150.41 18.49 3.04 5208
IR R-P-C-T 14.79 145.78 16.63 3.16 5152
IR R-P-T-C 14.20 135.92 15.95 2.76 5096
IR R-T-C-P 15.26 145.97 17.16 3.27 5068
IR R-T-P-C 13.94 157.32 15.65 2.87 5544
IR P-C-R-T 2.05 120.04 2.13 4.83 5782
IR P-C-T-R 2.00 119.60 2.08 4.75 5418
IR P-R-C-T 2.36 122.07 2.48 4.92 5362
IR P-R-T-C 2.38 119.70 2.51 4.73 5544
IR P-T-C-R 1.89 118.72 1.94 4.79 5446
IR P-T-R-C 2.31 118.91 2.42 4.52 5754
IR T-C-R-P 26.60 78.76 30.06 1.20 5838
IR T-C-P-R 24.78 65.05 27.99 1.15 5558
IR T-R-C-P 26.24 85.80 29.64 1.47 5474
IR T-R-P-C 24.64 88.11 27.83 1.48 5810
IR T-P-C-R 24.47 89.50 27.63 1.14 6358
ACO-Specific 3.01 183.73 3.22 5.70 3234
DU 1.30 167.10 1.28 5.78 840

WFW a–b–c–d stands for Weighted Frontier Walk and a, b, c, and d are the percentage weights assigned to the single goals. IT g1–g2–g3–g4 and IR g1–g2–g3–g4 stand for
Incremental Solving via Tuning and Incremental Solving via Retention respectively and g1–g2–g3–g4 defines the order used to solve the single goal problems. P stands for
maximum profit, T stands for minimum transit time, R stands for highest resilience, and C stands for minimum transportation cost.
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Table 4
Composite goal methods ranking.
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Fig. 2. Visual representation of percentage difference between single-goal problems and composite goal methods performances for the original problem.
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Fig. 3. Visual representation of percentage difference between single-goal problems and composite goal methods performances. The problem is randomly generated
according to a normal distribution with mean and standard deviation as in the original data set.

3862 M. Veluscek et al. / Expert Systems with Applications 42 (2015) 3852–3867



Fig. 4. Visual representation of percentage difference between single-goal problems and composite goal methods performances. The problem is randomly generated where
the figures are an interval between 0 and an upper limit which is a random increase over the maximum value in the original data, according to a negative exponential
distribution.
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Fig. 5. Heuristic information matrix for the problem of minimization of transpor-
tation cost for all possible routes from sources to destinations. The color scale goes
from green as most profitable route to red as least profitable route. Gray routes are
non-connected routes. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6. Heuristic information matrix for the problem of minimization of traveled
time for all possible routes from sources to destinations. The color scale goes from
green as most profitable route to red as least profitable route. Gray routes are non-
connected routes. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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(where all the percent differences are below 40%) and the gap that
exists between single-goal performances is not as large in compar-
ison to the other methods. On occasions, the Incremental Solving
by Tuning and Incremental Solving by Retention methods produce
similar results, but they exhibit the drawback of having a depen-
dency on the order used to solve the single-goal problems and
on the number of elements to be eliminated or retained.

The methods described in this paper also have been tested on
two randomly generated problems. In both instances, the number
of dealers, production facilities and shipping ports is the same as in
the original problem; it is only the demand figures, the production
capacities, the transportation times and costs and the sale prices
that have been randomly generated. In the first problem, the fig-
ures have been generated according to a normal distribution with
the same mean and standard deviation as in the original data set
(e.g. the demand figures have the same mean and standard devia-
tion as those found in the original problem). The figures for the sec-
ond problem are randomly generated in an interval between 0 and
an upper limit which is a random increase over the maximum
value in the original data, according to a negative exponential
distribution.

Figs. 3 and 4 show the percent difference between the perfor-
mance of the single-goal problems and the performance of the
combination methods for the two randomly generated problems.
Fig. 3 shows the percentage difference for the first randomly gen-
erated problem, whereas Fig. 4 shows them for the second.

The Iterative Superposition method has again proved to have
the best performance for both randomly generated problems.

The network used for testing presents a very large number of
possible paths. However, Caterpillar’s business is characterized
by having a relative low monthly demand for any given type of
product. On average, over a period of 24 months, 12% of all possible
routes are used each month to satisfy the demand (see Fig. 9). It is
reasonable to expect that due to the large number of possible
routes, the problem of maximizing the network resilience is the
easiest to solve. The demand may be spread evenly on the network.
Moreover, solution for the problems of profit maximization and
transportation costs minimization may be expected to overlap as
they involve similar economic aspects. This may not be the case
for the problem of traveled time minimization. It is possible that
even the most expensive production source may be chosen to sat-
isfy a portion of the demand, provided the production facility is
closely located in proximity to the dealers. Since we consider ocean
lane discounts for lanes with high shipping commitments, the
most expensive production source is unlikely to be considered
for both the profit maximization and costs minimization goals.
The solver would choose an inexpensive production facility, even
if its location is not the closet to the dealership, thereby increasing
transportation cost.

The results from running the multi-goal optimization methods
on the three datasets confirm these expectations. All solutions
had low differences with respect to resilience, for profit maximiza-
tion and cost minimization the differences were similar. The qual-
ity of the solution in term of time minimization is inversely
proportional to the goals for profit maximization and cost
minimization.

As previously discussed, the Iterative Superposition strategy
was shown to be the only method capable of finding high quality
solutions for all four goals simultaneously, and independently of
the initial configuration. One of the main differences between the
four multi-goal strategies relates to the information used to find
a combined solution. The goal synthesis strategy only uses the heu-
ristic information from the set of single-goal problems; the solu-
tion is a combination of this heuristic information. In this
context, the heuristic information refers to the information held
on the routes in the network which guides the solver in building
the distribution plan. For instance, if the goal is to maximize the
profit arising from a distribution plan, then the heuristic informa-
tion is most likely to be the transportation cost for the given routes.
Figs. 5 and 6 show the heuristic information matrix associated with
the distribution network for the problems of cost minimization and
traveled time minimization respectively.

The incremental strategy makes use of heuristic information
combined with a partial distribution plan that is optimal for one
of the single-goal problems. Figs. 7 and 8 show a visualization of
the distribution plan for the problems of cost minimization and
traveled time minimization respectively. Recall that the incremen-
tal strategy consists of building a solution for one objective, retain-



Fig. 9. Mean percentage of used paths against all available paths for all data sets
and for all single-goal problems. The data are averaged through a period of
12 months, which each month presents a different dealer demand.

Fig. 7. Distribution plan for the problem of transportation cost minimization. The
color scale goes from green as route with only one machine sent through, to red for
highly used routes. Gray routes are not used. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Distribution plan for the problem of traveled time minimization. The color
scale goes from green as route with only one machine sent through, to red for highly
used routes. Gray routes are not used. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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ing or removing part of it, and then solving the remaining part in
accordance with the next objective.

Whereas the superposition strategy makes only use of the opti-
mal solution for each of the single-goal problems, the solution con-
sists of finding the best solution for each single-goal problem
separately, and then using the optimal distribution plans to build
a solution for the multi-goal problem. Having the optimal solu-
tions, then the complete heuristic information matrices may
appear to be ‘noisy’ and it stands to reason that combining such
solutions may for the majority of cases be the better approach.
From a search space perspective, a strategy that works with opti-
mal solutions as its inputs can be expected to produce a multi-goal
solution that is closer to all single-goal ones. When starting from
the intersection of the heuristic information matrices there is no
guaranties that the solution which is the closest to all the single-
goal ones will be the one resulting from the intersection of the
search spaces and could be significantly different from the search
spaces of the single-goal problems.

Future work may consist of a theoretical and formal analysis of
the different characteristics and behaviors of the discussed strate-
gies to confirm the previous hypothesis.
6. Discussions and future research

The motivation and rational for undertaking this work was to
highlight and provide a better understanding of the body of work
in the literature relating to multi-goal analysis of transportation
network optimization. Clearly from the review undertaken it was
evident that more work could be done to enhance knowledge
and foster understanding in certain areas of the topic.

Firstly, the literature review of work relating to multi-goal opti-
mization could be extended. While the current problem focuses on
transportation network optimization, it is apparent that such work
is applicable to and could be extended into others areas of opera-
tional research. This would provide an opportunity to better under-
stand which multi-goal optimization methods are preferred and
why. It is possible that the current bias towards one specific
method for multi-goal optimization is the result of existing soft-
ware availability. If the current generations of optimization tools
do not provide implementation that address multi-goal strategies,
practically it is advantageous to adopt the goal synthesis approach
and define a multi-goal model, which may be the input to the opti-
mization tool. As future work, the literature could be extended to
include information relating to optimization tool implementations
and their capabilities.

Moreover, the methods presented here should be tested using a
different optimization algorithm and on a differing dataset. While
the Ant Colony System (ACS) is a very well established and
accepted optimization algorithm, there remains the possibility that
our results could be biased by undefined behaviors particular to
the ACS algorithm. While testing the hypothesis on two randomly
generated problems strengthens the result, it would nevertheless
be interesting to test the outcomes on independent datasets, or
even a different problem.

Finally, a theoretical analysis of the different characteristics and
behaviors that pertain to the discussed strategies is needed to bet-
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ter understand the reasons why and under what circumstances
some strategies consistently perform better than others.
7. Conclusion

The aim of this work was to identify the most promising multi-
objective optimization techniques available for solving real-world
‘industrial’ transportation network optimization problems. We
have reviewed the state of art for multi-objective optimization
and have identified four generic strategies, which we refer to as
goal synthesis, superposition, incremental solving and exploration.
We have implemented seven instances of these four strategies.
The preferred approach from analysis and review of the current lit-
erature would appear to be the construction of a model that com-
bines single optimization goals. However, our experiment using
goal combination methods produced low quality solutions in com-
parison to those produced by other strategies. In particular, the
superposition strategy proved to be the most promising solution
found, performing well across all single-goal problems and having
the additional advantage that it is not dependent on the solution
ordering or on the weightings assigned to individual single
objectives.

The work presented here has aided in the development of a
more accurate optimization model for the business of our indus-
trial partner and has helped in the identification of optimization
methods that are capable of producing high quality distribution
plans. This work will serve as a reference on multi-objective meth-
ods for real-world ‘industrial’ transportation network optimization
problems.
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