
Towards Agent-based Agile Approach for Game

Development Methodology

Rula Al-azawi Aladdin Ayesh Mohaned AI. Obaidy

Gulf College, Oman

Email:rula@gulfcollegeoman.com

DMU University, Leicester, UK

Email:aayesh@dmu.ac.uk

Gulf College, Oman

Email:mohaned@gulfcollegeoman.com

Abstract-Game development is very complex and the success
of the game is based on the game development methods. The
purpose of this paper is to investigate on the existing game de­
velopment methods and provide an upcoming game development
method that is based on predictive and adaptive development
models. A critical analysis to Agile method which are mostly used
in modern game development methods is presented. We identified
the weakness of Agile game development and solve it by creating
a cooperation with Agent Oriented Software Engineering (AOSE)
to introduce a new hybrid methodology named as Agent Agile
Game Development Methodology (AAGDM) that combines both
predictive and adaptive models.

I. INTRODUCTION

Game creation nowadays is an incredibly complex task,
much harder than someone might initially imagine. The in­
creased complexity is combined with the multidisciplinary
nature of the process of game development which includes
art, sound, gameplay, control systems, artificial intelligence
and human factors, among many others. The interact with
the traditional software development creates a scenario which
also increases this complexity. In this connection we need
a methodology for taking into account software engineering
expertise in the field of games.
As we know, the gaming industry is very powerful in the
entertainment industry, having billions of dollars in profit and
creating trillions of hours of fun [1].
Through the process of researching, a number of development
models has been used. This paper focused on two archetypical
development models, the predictive and the adaptive models
[2].
The 'Waterfull' model is influenced by predictive develop­
ment models while 'Agile' model is influenced by adaptive
development models. Both of which are explained further
in section 3. Each technique has diverse characteristics and
features that differentiate it from other processes. Processed
can be classified as either a heavyweight or a lightweight
method. The heavyweight method includes traditional methods
like waterfall model. In contrast, the lightweight methods are
also known as Agile methods [3].
It is important to have formal understanding of game devel­
opment process, and how we could create a formal game
development methodology that will be generic for many game
genders. This paper is structured as follows: section 2 presents
an overview of the current game development methodology;
section 3 explains the archetypical development methodology
such as Agile methodology and AOSE; section 4 explains the
critical analysis of the problems in current game development
methodologies; section 5 presents the new game development

methodology AAGDM which solved the problems from sec­
tion 3; section 6 presents a critical evaluation of the AAGDM;
and section 7 presents conclusion and future works.

II. CURRENT GAME DEVELOPMENT METHODOLOGIES

Game development has evolved to have large projects
employing hundreds of people and development time measured
in years. Unlike most other software application domains,
game development presents unique challenges that stem from
multiple disciplines which contribute to games. A major issue
against the game development industries is that many compa­
nies adopt a poor methodology for game creation[4].
There are many methodologies available in traditional sys­
tems and software development. Some of these methodologies
include Waterfull, Incremental and Spiral. Each of them are
structured as a linear or iterative and sometimes hybrid of both
and are usually used in game development methodology.
Most of the linear manner methodologies are classified as
predictive even if it contains some iteration but it usually
follows sequence phases such as waterfull methodology. While
prototyping involves breaching the system into small segments.
Furthermore, it involves the user in the process.
The Spiral methodology combines the linear and iterative
framework. Spiral development breaks the projects into num­
ber of cycles, all of which follow a set of increasingly larger
steps.
AAGDM is a hybrid between predictive model using AOSE
methodology and adaptive model using Agile methodology.

III. ARCHETY PICAL DEVELOPMENT METHODOLOGIES

Through the research of game development methodology,
we have two archetypical development methodology predictive
and adaptive.
This section will answer the following questions: what are
predictive and adaptive methodologies, how we could choose
between them in game design development process and finally
how we could combine components from different variety of
game design and integrated into standard game development
methodology which needs to be generic and suitable for
different game genres.
The majority of methodologies taken and used by game
developers can be described as predictive, comprehensively
planning as a separate task prior to actual development; or
adaptive, using multiple iterations and prototypes to shape a
game and its design based on feedback and analysis [2].
In general the predictive models would be preferable when we
have clear goal and the customer requirements are clear and

978-1-4799-3351-8/14/$31.00 ©2014 IEEE

complete and the specific structure of the game must withheld
at all costs, allowing for a definite vision of the final product
to be established long before it takes a playable form as shown
in Figure l.
Regarding adaptive models which encourage the change in the

Fig. 1. Predictive development methodology

customer requirements and customers allowed to add new goal
or new requirement even in the late stage of games change and
thus will not affect the game plan. Furthermore the customer
allows to give direct response to its development process and
the lessons learned within as shown in Figure 2. We will take

Refine & Polish

\ ---- /

EJ
Fig. 2. Adaptive development methodology

AOSE methodology as an example of predictive methodology
and Agile as an example of adaptive methodology.

A. AOSE Methodologies

The relationship between games and AOSE is clear given
that software agent or intelligent agents are used as virtual
players or actors in many computer games and simulations.
The development process is very close to the process of game
development[5].
There are several methodologies in AOSE. Each one has
its own life cycle. However, some of them are precise only
analysis and design such as Gaia, while others cover complete
life cycle such as Trops, MaSE and Prometheus as shown in
Figure 3.
Within the last few years, with the increase in complex­
ity of projects associated with software engineering, many
AOSE methodologies have been proposed for development

purposes[6]. Nowadays, intelligent agent-based systems are be­
ing applied in many domains, including robotics, networking,
security, traffic control, games and commerce [7].
The goal when evaluating AOSE methodologies is to discover
the most convincing methodology for adaption to game de­
velopment and incorporation of modifications. AI-Azawi et
al [7] focus on comparing different AOSE methodologies
from the perspective of the game development domain. The
results of their experiment were summarized to select the
MaSE as a methodology to be adopted as a game development
methodology.
We have selected the MaSE methodology to be adapted for
game development methodology for the following reasons:

1) MaSE has a full life cycle. [8].
2) MaSE is influenced by the software engineering root.
3) MaSE is perceived as significant by the agent com­

munity [9].
4) MaSE has been selected by [7] as the game develop­

ment methodology.
5) MaSE has been selected according to many refer­

ences such as [10] as a methodology for robotics,
which is similar to the game area.

6) MaSE has defined the goal at the first stage and each
goal has to be associated with its role, which is an
important feature of game development.

1 (Prometheus , 0
• (MaSE [b...-
., ... FI ============�O . .

MESSAGE/UML
.

Gaia

AUML 0:
Fig. 3. AOSE life cycle coverage

1) MaSE Methodology: MaSE stands for Multi-Agent
Systems Engineering. It is a complete life cycle methodology
to help the developer work with a multi-agent system from the
start to the end. This means that it describes the process which
guides a system developer from an initial system specification
to system implementation. In each step, related models are
created. Models in one step produce outputs which become
inputs to the next step that supports traceability of the models
across all of the steps. Furthermore there is possibility for free
access between components in each phase.[ll]. The goal of
MaSE is to guide the system developer from the initial system
specification to system implementation[10].

B. Agile Methodology

Agile methodology is based on implementation over doc­
umentation with customer collaboration and has the ability to
solve problem and change with agility.
As use of Agile development grew, a number of different
methodologies surfaced. Some were derived from Agile, others
were systems that had been in use but never fully defined or
applied to software development. One such method was Scrum
[12].

The main characteristics of Agile methodologies are: customer
cooperation, simplicity, individual, interaction, adaptive ness
and being incremental. These characteristics are important to
understand an approach to game development based on an
Agile methodology. [13].
The Agile methodology as mentioned earlier is an iterative
and incremental approach and it achieves the quality and
productivity through iterations. Each iterations of sprint phase
includes a software development team working through a full
software development cycle including planning, requirements
analysis, design, coding, unit testing, and acceptance testing
as shown in Figure 4 which was adapted from [14] and [15].

I�I
1
i

Fig. 4. Agile methodology diagram

The Agile phase approach diagram which is used by Keith
[16] as shown in Figure 5 shows that Agile methodology
is based on iterations that could start new iteration before
completing the previous iteration. The Agile methodology

�
Ph:ue� 1 2 3 " 5 6

Fig. 5. Agile phases approach

has been discussed the use and application through iterative
development framework named Scurm [16]. The Scurm game
development method is an Agile process which manages game
development using iterative and incremental approaches which
are the life of the game project. It works in game development
methodology by breaking down the process of creating game
into series of tasks named "sprints". To facilitate the work with
sprints, the game developers break up the game into groups of
related tasks or features that must be written in the product
backlog. As mentioned in Figure 5, every two to four weeks
at the end of sprint phase, the whole teams met to discuss
the current state of games to improve version of game to the
stakeholders, and to select new tasks from backlog.
According to Keith [16], the Agile game development with
Scurm could be labeled as iterative and adaptive model.

IV. CRITICAL ANALYSIS OF CURRENT GAME

DEVELOPMENT METHODOLOGIES

A vast majority of the problems facing the game industry
and development are deep seated in the very production
methodology that is employed. Teams of approximately 100
people are still using methodologies developed for a time when
ten people were considered a bloated team [12].
Games and software engineering have important things they
can learn from one another and mostly they share the same

methodology and same problems. The game contains a con­
fluence of interesting properties, such as emergence, real time
interaction and challenge components that create a new field
of study [l7]. The software engineering has much to help the
game industry to solve problems. The unique aspect of game
which is not available in traditional software development is
the requirement for game to be 'fun' which has no metric to
apply; it is purely subjective.
There are specific features of game development that have
been found to prevent the success of great games. The major
problems that arise are in the areas of project management.
The use of methodology focuses on game development and
takes into account the project management concept to help
avoid management problems.
After a survey of the current game development methodology
problems, we would highlight the main problems found in the
literature:

• Schedule problems: According to Flynt et al [18],
a key reason for a project being delivered behind
schedule is that no target was established. Likewise,
problems may occur when a deadline estimate does
not include the time needed for cOlmnunication, lacks
documentation or emergent requirements that may
alter the system architecture and thereby cause serious
problems. Furthermore, delay can be caused by a
multidisciplinary approach. Since it is essential to
include input from different teams, delays may occur.
A task involves a series of risks that imply underes­
timates, causing cumulative schedule delays. Flynt et
al [18] report that developers recurrently fail in their
estimates due to lack of historical data to assist them
in determining a realistic time frame to carry out a
task [19].

• Crunch Time problems: In the game industry, crunch
time is a term usually used for the period of work
when overload may happen; usually it happens in
final weeks before the validation phase or deadline
for project delivery.
In this period of time, the developer may work in
excess of 12 hours a day and take from 6 to 7 days
to complete unfinished tasks. In the game industry,
crunch time is a fact of life [19].

• Scope and feature creep problems: Feature creep
is a term used in the game industry when a new
functionality is added during the development phase to
increase project scope and change schedule time [19].
Any new functionality should be evaluated carefully.
Any unmanaged feature creep can lead to increased er­
ror, possible defects and increased chances of failure.
However, some feature creep is unavoidable, since it
adds fun to the game [4].
The biggest reason for game project imperfection is
failure to accurately establish project scope.
Risk management helps the project manager to under­
stand the changes to a plan and the potential costs in
time and money.
Project scope will never be a true reflection of the
required effort, due to the iterative and exploratory
nature of game development; however, it can be an
effective guide when predicting success, such as when

discussing milestones, time lines, and budget [4].

• Technology problems: All games are technology
dependent. Technological components generate risks
for game projects that can require greater effort and
a high investment of time. According to Gershenfeld
et al [20],technology risks are generally high when a
team works on a new platform because of two risks.
The first risk is that the developer has not worked
with the technology before. The second risk is that
frequently the related hardware contains problems.

• Documentation problems: Lack of documentation is
a conunon source of additional problems. The docu­
mentation can be valuable in reducing feature creep.
Having a finite amount of documentation is useful
when game developers work on difficult projects, as
this helps to obtain a good estimate for project scope
and schedule. Usually, GDD generates a lot of uncer­
tainty around a games goal and solution requirements
[21].

• Collaboration and Team Management problems:
One of the main problems when creating games
is the communication between teams. The teams in
games include people with distinct profiles, such as
developers, plastic artists, musicians, scriptwriters and
designers. Different teams need to collaborate and
explain their work and instructions to others.

• Training problems: One of the biggest problems
in Agile game development especially and generally
in game development methodology is new employee
training.

• Linear process problems: Game development is not
a linear process [18]. Iteration is the life of game
development. Game developers use Waterfall method­
ology with enhancements, by adding iteration to the
methodology.

Petrillo et [19] present in Figure 6 the histogram of occurrence
of problems in decreasing sequences.
From the previous study, we can observe that most traditional
software problems are the same as game development prob­
lems. In the following section, we propose game development
methodology that resolves most of the previous problems.

V. AGENT-AGILE GAME DEVELOPMENT METHODOLOGY

(AAGDM)

AAGDM methodology has attempted to provide an adap­
tive and predictive development lifecycle. Sometimes a com­
bination of those models maybe more suitable [15].
Agile methodology is usually used to deal with dynamic
changes in requirement specification by the customer, customer
involvement in the development phases. For the flexibility in
adding new requirements even before game release which does
not add extreme cost to the project, Agile game development
methodology will be adapted to suggested game development
methodology as adaptive model.
AOSE provides such intelligence through agents. Agent may
perform the tasks individually. In complex and distributed
system, Agents can be used to monitor the interaction among
components and to interact as human interaction. The MaSE
used in the Sprint phase is at the core of the AAGDM. Each

Unreal IF ambitious scope

Feature creep

CUt-.u features

DeSign problems

Delay or optimistic sched�e

Techoologlcal problems

crunch 11mB 45,. ..

laf:k of Documentation

ComnUlication problems

Tools problems

Test Problems

Loss of Prof83Slllf1llJs

Over Oudget

10

Occurrence found

12 14

Fig. 6. Occurrence of problems in current Game Development
Methodology

iteration includes analysis, design, implementation, testing and
evaluation of MaSE as shown in Figure 7.
The reason to adapt MaSE is that it is the core of Agile,
because in complex systems and distributed systems such as
games, it is difficult to trace a single point of control, since
the objects are distributed [15].
Figure 7 illustrates the suggested game development method­
ology which we name as Agile-Agent Game Development
Methodology (AAGDM).

UecessaryScurrn meeting

Splint
Ba(kl� Sprint Phase

Fig. 7. Agent-Agile game development methodology diagram

VI. CRITICAL ANALYSIS OF AAGDM

The creation of GDD is an important step in preproduction
phase in the game, being responsible for guiding the projects
scope and effect to development and testing phases. There is no
standard way to build GDD, but it must have a comprehensive
description of the game in all its aspects and describes the

objects and characters in the game. This affects how their
interaction, role and behavior in the game. The GDD will
change many times and will add extra requirements but we
should evaluate the risks of changes if the deadlines can still be
met. Later, GDD will be translated to a Product Backlog in the
production phase. For small games, it may be optional which
translates the requirements directly as a Product Backlog.
This may save time from the team as they go faster to the
production, but may also increase risks of feature creep or it
may not become an entertaining game.
If GDD is designed carefully, the project manager can plan
the iteration of sprint backlog so that the game is playable at
the end of each iteration. This has several benefits. For one,
testers can check the game for errors in a playable state which
mimics what the end-user would encounter. Having a playable
game as early as possible helps the team to see the potential of
the end product, and it could be beneficial in game publication
before final release.
It is a need to think to get a better approach. Keith [16] suggest
that at the end of sprint, we could start new sprint even if there
is still work that are still under development. The goal is to
achieve a continuous flow in the content of creation as shown
in Figure 5 which is the core concept in AAGDM.
The second step in AAGDM and the same with Agile method­
ology is Sprint backlog. The GDD should be transferred to
Sprint backlog.
At each iteration in the game life cycle, the most important
backlog should be started first and then divided into smaller
pieces.
The last step which is the core of AAGDM is Sprint phase.
This phase deals with MaSE to cover the sub-phases of
AAGDM instead of dealing with standard waterfull life cycle
that has been used in Agile game development methodology.
The purpose of working this way is to show customers the
value of a feature every two to four weeks, show how it
improves sprint-by-sprint and at the same time acquire doc­
umentation that will be useful in the evaluation or creation of
the new game version.
When AAGDM uses Agile concepts, we improved the quality
and efficiency of large and complex games projects. Further­
more, it strengthens the communication between the developer
and the end user.
The management is important in game industry. Poor man­
agement can negatively affect the best of teams. While the
complexity in game and number of teams increases good
communication in a company is necessary for success. Agile
methodology usually depends on daily Scurm meeting to get
good communication, but in many times there is no need to
discuss daily because it is only a waste of time for the teams.
AAGDM is an iterative methodology that focuses on delivery
features. The AAGDM has the ability to start dealing with
new features before completing a current feature. In this case,
game development duration will be reduced because there is
time wasted on waiting.
In the planning part, the customer and developer usually
cooperate to select new features. Then new features add to the
sprint backlog to discuss if the features have highest priority.
The effort of using only AOSE will mostly be expended on
the preparation of the documentation, as shown in Figure 8
[22]. AAGDM reduces documentation by creating Game de­
velopment documents and dividing these into sprint. AAGDM
prefer software development over documentation. The game

documentation is important and required in the analysis and
design phases because we need those details to maintain games
or to create new versions of the game.

Fig. 8. Duration for AOSE

In AASDM, we suggested the meeting is not necessary in
daily basis to save time. It should only be done when important
issues arise from the multidisciplinary teams such as artists,
musicians, developer and clients. Furthermore, the group may
have sub-group such as AI team or a textures team because
AAGDM requires the creation of functional unit combinations
of specialties. An example would be a unit composed of two
programmers, a texture artist, and an animator. Combining
groups enhances conununication across disciplines. Bringing
the diverse groups together enhance understanding and com­
munication between teams [4].
Regarding project scope and feature creep, we have many
situations in the game industry that show the many features dis­
covered during game development. These features can transfer
into success in a game.
AAGDM is not a linear process, it is an iterative process. Thus,
if an interesting feature is discovered, it must be analyzed in
terms of its risk and, if viable, it should be added to the project
schedule [19].
In Figure 9, we noticed that the cost of change in traditional
software increased in terms of late project deliver. In Agile
delays can increase also, but these would normally be towards
the end of the project [23], where it becomes necessary to
pursue a better approach.

Keith [16] suggests that at the end of sprint, there is still
work that may be under development. The goal is to achieve a
continuous flow in the content of creation as shown in Figure
5 which is a core concept in AAGDM.

VII. CONCLUSION AND FUTURE WORK

In this paper, we dealt with current trends of software
engineering methodologies and we found that sometimes a
combination of those models may be more suitable.
AAGDM combines agile methodology that meets the dy­
namic requirements of the customer with AOSE which is

4l
�
c
..

.c
<>

....
o

t;:
o

U

Cost of change over tim e

Tim�

- Tra dit ional

- Agile

Fig. 9. cost of change over time

a rapidly development area of research designed to support
development of complex and distributed system in open and
dynamic environments with the use of intelligent component.
Game development methodology worked better when we used
iterative methodology because it allowed to have the features
ready and to discover and work the fun of the games easier.
Our AAGDM solved the most of the previous problems in
game development by considering being suitable for searcher
and professional in the industry.
Future work in this line of research includes evaluating the
performance of AAGDM. Overall, predictive models would be
preferable when there is a pre-defined customer expectation
or specific structure. The game must withhold at all costs,
allowing for a definite vision of the final product to be
established long before it takes a playable form. Adaptive
models encourage change and thus they do not usually allow
for all aspects of a game to be planned in unison, seeking
to allow a games final project to be a direct response to its
development process and the lessons learnt within [2].
Ideally, the type of hybrid development methodology approach
which we already defined in AAGDM is recommended for
use by independent game developers. This possesses a mix
of characteristics that would sit somewhere between those of
a predictive or adaptive approach to be generic methodology
useful for small or large game projects.
Since there are few academic studies on game development
generally and on Agile and AOSE methodologies, this work
opens up perspectives for future research.

REFERENCES

[1] F. Petrillo and M. Pi menta, "Is agility out there?: agile practices in game
development;' SIGDOC '10 Proceedings of the 28th ACM International
Coriference on Design of Communication, pp. 9-15, 2010.

[2] L. Hunt, "Predictive and adaptive game development a practical appli­
cation of development models to the independent video game industry,"
Master's thesis, School of Communications and Arts, 20 II.

[3] C. Raghaw, V Sharma, and R. Singh, "An Experimental based Study on
Challenges of Game Development with Scrum using Agile," Interna­
tional Journal of Advanced Research in Computer Science and Software
Engineering, vol. 2, no. 9, pp. 255-261, 2012.

[4] c. Kanode and H. Haddad, "Software Engineering Challenges in Game
Development," in lriformation Technology New Generations 2009 ITNG

09 Sixth International Conference on. IEEE Computer Society, 2009,
pp. 260-265.

[5] Gomez-Rodriguez, A. and Gonzalez-Moreno, J.C. and Ramos­
Valcarcel, D. and Vazquez-Lopez, L, "Modeling serious
games using AOSE methodologies," in 11 th International
Coriference on Intelligent Systems Design and Appli-
cations (ISDA), 2011, pp. 53-58. [Online]. Available:
http://ieeexplore.ieee.orglxpls/abs_all.jsp?arnumber=6121630

[6] O. Akbari, "A survey of agent-oriented software engineering
paradigm: Towards its industrial acceptance," Journal of Computer
Engineering Research, vol. 1, pp. 14-28, 2010. [Online]. Available:
http://www.academicjournals.orglJCERJPDF/Pdf2010/AprillAkbari.pdf

[7] R. Al-Azawi, A. Ayesh, I. Kenny, and K. AL-Masruria, "Towards
an aose: Game development methodology," in Distributed Computing
and Artificial Intelligence. 10th International Coriference. Advances in
Intelligent and Soft-Computing series of Springer, May 2013.

[8] J. Sudeikat and L. Braubach, "Evaluation of agent oriented software
methodologies examination of the gap between modeling and platform,"
in Agent-Oriented Software Engineering, P. Giorgini, f. P. M uller, and
1. Odell. Eds. Lecture Notes in Computer Science, vol. 3382. Berlin,
Germany: Springer Verlag, 2005, pp. 126-141.

[9] Dam, K and Winikoff , M, "Comparing agent-oriented methodologies,"
in Proceedings of the Fifth International Bi-Conference Workshop on
Agent-Oriented Iriformation Systems (AAMAS)., vol. 3030. Melbourn,
Australia.: Lecture Notes in Computer Science; Springer Berlin I
Heidelberg, 2004, pp. 78-93.

[10] S. DeLoach, E. T. Matson, and Y. Li., "Applying agent oriented software
engineering to cooperative robotics," in the The 15th International
FLAIRS Conference (FLAIRS 2002), Pensacola, Florida" May 2002,
pp. 391-396.

[11] S. DeLoach, "Multiagent systems engineering of organization-based
multi agent systems," in SELMAS 05: Proceedings of The 4th Interna­
tional Workshop on Software Engineering for Large-Scale Multi-Agent
Systems. New York, NY, USA: ACM., July 2005, pp. 1-7.

[12] R. McGuire, "Paper burns: Game design with agile methodologies,"
Gamasutra: The Art and Business of Making Games., pp. 1-7, 2006.

[13] A. Godoy and E. Barbosa, "Game-Scrum: An Approach to Agile Game
Development," in Proceedings of SBGames 2010 Computing, l. S. F.
SC, Ed., November 8th-10th 2010, pp. 292-295.

[14] H. Takeuchi and l. Nonaka, "The new product development game," in
Harvard Business Review, January- February 1986, pp. 137-146.

[15] M.Nachamai, M.Senthil, and VTapaska, "Enacted software develop­
ment process based on agile and agent," International fournal of
Engineering Science and Technology ([JEST), vol. 3, no. 11, pp. 8019-
8029, November 2011.

[16] C. Keith, Agile game development with Scrum. Addison-Wesley
Signature Series, 2010.

[17] c. Lewis and J. Whitehead, "The whats and the whys of games and
software engineering," in Proceedings of the 1st International Workshop
on Games and Software Engineering, GAS '11. New York, New York,
USA: ACM Press, May 2011, pp. 1-4.

[18] J. Flynt and O. Salem, Software Engineering for Game Developers,
illustrated, Ed. Course Technology Ptr, November 2005.

[19] F. Petrillo and M. Pimenta, "Houston, we have a problem . . . : a survey
of actual problems in computer games development," in In SAC08:
Proceedings of the 2008 ACM symposium on Applied computing.
ACM, 2008, pp. 707-711.

[20] M. L. A. Gershenfeld and C. Barajas .. Game plan: the insiders guide to
breaking in and succeeding in the computer and video game business.
St. Martins Griffin Press,New York, 2003.

[21] R. Kortmann and C. Harteveld, "Agile game development: lessons
learned from software engineering," in Proceedings of the 40th con­
ference of the international simulation and gaming association, 2009.

[22] M.Nachamai, M.Senthil, and VTapaska, "Enacted software develop­
ment process based on agile and agent," International Journal of
Engineering Science and Technology ([JEST). vol. 3. no. 11, pp. 8019-
8029, November 2011.

[23] V Szalvay, "An Introduction to Agile Software Development," Danube
Technologies, Inc., Bellevue, WA, no. November, 2004.

