

Software Engineering Challenges in Game Development

Christopher M. Kanode and Hisham M. Haddad
Computer Science Department

Kennesaw State University
Kennesaw, GA 30144

Abstract
In Software Engineering (SE), video game development is
unique yet similar to other software endeavors. It is unique
in that it combines the work of teams covering multiple
disciplines (art, music, acting, programming, etc.), and
that engaging game play is sought after through the use of
prototypes and iterations. With that, game development is
faced with challenges that can be addressed using
traditional SE practices. The industry needs to adopt
sound SE practices for their distinct needs such as
managing multimedia assets and finding the “fun” in
game play. The industry must take on the challenges by
evolving SE methods to meet their needs. This work
investigates these challenges and highlights engineering
practices to mitigate these challenges.

Keyword: challenges, diverse assets, process, project
management, project scope, publishing.

1. Introduction

“At their best, video games stimulate a state of flow in
the player, engendering concentration so intense that their
perception of time and sense of self become distorted or
forgotten.” Callele et al [3]. Successful video games are
more than software. A game should enthrall a user. A
game that can capture our full attention is one that
development companies hope to produce. Out of hundreds
of projects, only a few make it into the hands of the
consumer. Even then, success is not guaranteed. Games
that make it to the store shelf can still fail from flawed
code or a lack of entertainment value. The potentially
“fun” game that has a beautiful story line and art or has an
engaging interface will achieve fame or notoriety based on
its software foundation. The video game is a synthesis of
code, images, music, and acting that come together into a
form of entertainment.

Video games have evolved to be large projects
employing hundreds of people and development time
measured in years. Unlike most other software application
domains, game development presents unique challenges
that stem from the multiple disciplines that contribute to
the video game. The project combines all of these assets
into one application. The work by these multi–disciplinary
teams complicates the development process and project
management. In addition, game developers must search for

engaging game play through the use of prototypes and
iterations (finding the “fun”).

The video game industry is in need of sound
engineering practices to fit their distinct characteristics:
multimedia asset management and engaging game play.
As games become more complex, and consumer
expectations go higher, the video game industry must face
the challenges by evolving SE methods to meet their
needs. There are many ways for game developers to
improve their processes. A rigorous, yet flexible,
application of proven SE processes and practices can be
applied to video game development in order to better
manage the projects and to reduce risks. This work
investigates current practice of game development for its
unique challenges and the sound SE practices that can
help developers mitigate these challenges.

2. Overview of Game Development

A common assumption is that game development
industry uses the waterfall model. Based on research, this
assumption may be incorrect or at least technically it may
be a waterfall model but with modifications. To
paraphrase Electronics Arts veteran and Emergent VP
David Gregory, it is an accepted practice in the games
industry to create iterations of software in order to
progress towards achieving engaging game play [7].
Clinton Keith, another industry veteran, stated that,
approximately a decade after the game industry crash in
the mid-1980s, the hardware for gaming increased in
power, games took longer to produce and cost more.
According to him, informal incremental and iterative
development broke down. In reaction, the industry
introduced traditional methods of which the waterfall
model was the most common [8]. The incremental model
would fit much better, as it is a combination of waterfall
with iterations. And add in prototyping, since game
developers must often experiment to find the “fun”
element.

A major issue leveled against the games industry is
that most adopt a poor methodology for software creation.
Petrillo et al refers to data collected by the Standish
Group. Only 16% of projects are actually completed on
time and on budget. Clearly, there is a problem. Based on
the statistics gathered by Petrillo et al [10] of completed
games, the errors with the greatest occurrence (over the

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.74

260

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.74

260

50% mark) fall roughly under project management,
requirements engineering, and risk management.

Prototyping and iterations are, perhaps, inescapable in
video game development due to the indefinable nature of
creating a “fun” game. Prototyping should primarily be
done in the preproduction stage in order to define what the
game is. Requirements engineering should take place at the
end of preproduction, once the game designers have found
the type of game that is to be created. Gathering all the
needed requirements will cut down on the number of
iterations needed, and mitigate the late addition of features
(feature creep). Once the preproduction phase has been
completed, the project manager would take the game
design document, and formulate a project scope. The
manager should take into account a certain percentage of
feature creep.

Game developers need to adopt SE practices to
address the challenges they face. They need to evolve SE
methods and processes to meet their unique needs and to
improve game development practices. Adoption and
adaptation of SE practices are paramount to the future of
the industry, especially in light of rising development costs
and a shrinking number of publishers.

3. Challenges in Game Development

The challenges that face game development industry
are not insurmountable. Many of their problems have been
solved in the software industry. As with most issues, the
problems must be recognized and understood. Upon
gaining insight, management must expend the effort to
correct existing problems. Companies may experience
brief lulls in productivity, but in the long term, the benefits
will outweigh the initial investment in addressing current
challenges.

A video game application differs from general
software by the preproduction stage and through its
extensive use and integration of multimedia assets.
Preproduction is a type of requirements gathering from the
“customer” (game designers), except that the game
designers are creating prototypes and laying out a creative
vision of the game. The primary purpose of preproduction
is to develop the Game Design Document (GDD) in which
the game is described. The descriptions can be
storyboards, concept artwork, paper prototypes, software
prototypes, and much more. Paul Miller [9] contends that
preproduction for a great product involves a multitude of
prototyping. Successful preproduction (probably a rare
occurrence) defines an exciting and absorbing game. Great
preproduction reduces the need to find that elusive element
of “fun” during the production stage, and allows the team
to focus on implementing the game, rather than
experimenting with it.

3.1 Diverse Assets

Diverse assets such as 3D models, textures,
animations, sound, music, dialog, video and other
resources are integrated by the development pipeline into a

final product. The multimedia is created by specialists
who work in tandem with the programmers whom create
the code framework into which all assets fit. The code
framework spans over multiple types of software (tools,
plug-ins, compression algorithms, runtime components,
etc.). A video game project may use software engines for
physics and game runtime. During development,
specialized tools or plug-ins may be coded to allow
animators to integrate models from third party software
into the game, and level designers to create the playing
field. It is a multi-disciplinary undertaking to produce a
game, and is becoming increasingly difficult to manage.
Unlike other application domains, the diversity of these
assets in game development presents a challenge to
building quality game applications.

Players desire more content; content is becoming
more complex; and team members require more tools to
create and transform content [7]. These factors add
additional overhead to the tasks that the project manager
must handle. The creation of an efficient pipeline to
handle the assets of a video game project is essential and
could be a major project in itself.

3.2 Project Scope

The scale of a video game can be massive. The
following example is taken from a postmortem of
BioShock [6]. The game took three years to develop, and
was scoped to be about two years – approximately 50%
longer to develop. At its peak, the companies employed
93 in-house developers, 30 contractors, and 8 on-site
publisher testers. The companies produced 3,775 files for
the game, wrote 758,903 lines of native C++ code, and
187,114 lines of script code. The teams were located on
three different continents: North America, Australia, and
China. Coordinating across multiple geographies is a
major task in itself. This is listed by David Gregory
addressing problems in iterating rapidly [7].

A major failing in the industry is a poorly established
project scope which is further compounded by feature
creep (adding new functionalities during development that
increase the project’s size) [10]. Developing a clear, well-
formed project scope can only help the overall project. It
needs to be developed with a measure of commonsense
and risk aversion. Targets must be established and
requirements gathered. Requirements engineering has
been shown to be invaluable through accumulated
evidence and experience, yet many projects fail due to the
lack of requirements gathering [3]. Feature creep is a high
risk endeavor. Any new functionality should be evaluated
carefully. Unmanaged feature creep will lead to missed
deadlines and increased errors, defects and the chance of
failure. Some level of feature creep is inevitable since it
can be tied to game play, and game play must be fun. The
goal is to evaluate unplanned features based on the
potential expense (time, coding, errors, etc.) against added
value to game play. Every unplanned feature has potential
to derail a project from its timeline.

261261

A project scope is not meant to quell creativity, nor
should it be followed dogmatically. It is a tool with which
to estimate the time and resources needed to bring its
project to a successful conclusion. When properly created,
it can help the team develop more realistic schedules and
timelines. By the iterative nature of video games, a
“perfect” project scope will never be achieved, but it is the
goal of the manager to develop a solid scope that will help
guide the project to its conclusion.

3.3 Game Publishing

In general, bringing a video game to market involves a
game development company convincing a game publisher
to back them financially. Keith summed it up that game
developers create the games, and the publishers pay for
development, then market, mass produce, and distribute
the games [8]. A common method for catching a
publisher’s eye is to show a demo of the game showcasing
its concept and design. For example, 2K
Boston/Australia’s BioShock project was signed after a
graphics demo ran on GameSpot (www.gamespot.com) as
an exclusive feature [6]. The process can occur in reverse.
A game publisher may have video game rights to a movie,
for example, and sought out a development company to
take on the work.

In most cases, if not all, contracts are drawn up for the
project. The contracts generally have a schedule of
deliverables which is used to deliver payments to the game
developers. Missed deliverables can cause fines to be
levied against the game developers. Publishers expect
milestones to be made, and publishers are becoming
increasingly risk averse due to rising costs and diminishing
returns [11].

The game development industry has to deal with new
technology on a regular basis, and more often than the rest
of the software industry. As customers, publishers may
want developers to take advantage of a new hardware (a
video card, for example) or build the game for a new
platform [4]. There are risks involved when using new
technology (learning curves and potential hardware
problems) [10]. Publishers are also driven by the market in
their requests for added features or functionality [4]. A hit
game of the same genre by a rival may motivate the
publisher to request changes to the project. The market is
very competitive and is driven by consumer trends.
Publishers must respond faster to these market trends than
the majority of the software industry.

3.4 Project Management

As with all industries, management is important. Poor
management can negatively affect even the best of teams,
whereas excellent management can make a mediocre team
outstanding. As video games increase in complexity, the
number of team members increases, and that places a
strain on management capabilities. Good communication
in a company is necessary for success. Sometimes,
management’s lack of information prevents them from
identifying problem areas [7]. Companies need to invest in

grooming good managers. Some managers have been
promoted through the ranks, and are often lacking in
managerial skills. Just as training is important for a
development team, managerial training is also vital.
Callele et al [3] points out that from their analysis of
postmortems, a large percentage of internal problems
were related to classic project management issues.
Furthermore, internal issues were the predominant cause
of project calamity.

Paul Miller [9] talked of best practices in light of
Scrum methodology. His point was to emphasis that there
are existing best practices learned through experience, and
that managers should not ignore those regardless of the
methodology. To generalize his conclusions about Scrum,
software processes are simply tools in the project
manager’s toolbox. One must learn to use the proper tool
for the job at hand.

The management of a game development project
involves the oversight of multidisciplinary teams which
include non-programming positions such as artists and
musicians to name a few. These teams produce non-code
assets that must be integrated into the game pipeline
properly. These assets are very important to the success of
a game. And programmers must create the software tools
to integrate the assets.

3.5 Team Organization

Team organization varies from company to company.
Teams are often segregated by specialty, such as a
programming group and a design group. Groups may
have sub-groups such as an AI team or a textures team. A
common organization method is for each group to have a
lead whom is an experienced employee in their area.
Companies that have been implementing Agile methods
have broken down the traditional groups to create
functional units that are combinations of specialties. An
example would be a unit composed of two programmers,
a texture artist, and an animator. Combining groups does
seem to enhance communication across disciplines.
Bringing the diverse groups together can enhance
understanding and communication between teams, and
communication has been a failing point in many
organizations.

Team organization does vary according to company
culture. However, Petrillo et al do point out that the
multidisciplinary teams often split between “artists” and
“programmers” [10]. This division can have an effect on
communication between the teams. Keith [8] stated that
before his company adopted agile methodologies, the
project workforce was split into groups of programmers,
designers, and artists. Sharing of knowledge in the groups
was a benefit, but caused increased overhead for
communicating effectively between the teams. Based on
the type of work involved, it does seem logical that the
teams would be composed of members of similar skills.
Unfortunately, indications point towards causing an “us
versus them” mentality.

262262

3.6 Development Process
The over-arching phases of game development are

preproduction, production, and testing. Preproduction
entails the conception of a game, and the GDD. By the end
of preproduction, the GDD should be finished, though it
will be continuously updated during the other phases. This
is the phase where the game designers and developers do
game prototyping in order to find the fun element of a
game. If this can be accomplished, then production will go
smoother. Actions in preproduction determine
requirements and affect production.

Production is where the majority of assets are created,
including code. This phase is the one most fraught with
problems. A poor GDD affects project scope which affects
production negatively. Feature creep happens at this stage,
and can cause delays. A poorly managed production phase
results in delays, missed milestones, errors, and defects. In
production, the developers often create prototypes,
iterations and/or increments of the game. Changes in
prototypes or iterations of the game can cause drastic
changes to the GDD. Unmanaged changes (or poorly
managed ones) can cause widespread problems affecting
functionality, scheduling, resources, and more.

The testing phase is usually the last before the game
goes “gold” (handed off to the publisher for production
and distribution). The testing phase involves stressing the
game under play conditions. The testers, not only look for
defects, but push the game to the limits (game options set
to maximum resolution, textures, etc.). These phases are
more involved than what is stated. The production phase
does include planning and testing, and other activities that
can be found the preproduction and testing phases.
Looking at the phases in a broad view, they do seem to fit
a waterfall model, though the activities in production break
the model with the occurrence of iterations and increments.

The challenge that rises to the top is the translation of
preproduction work to the production phase. The
preproduction phase produces the GDD, and there are
often problems translating this document into a project
plan. The GDD contains stated requirements and unstated
ones. The project manager must be prepared for such
challenges.

Agile Methodologies: High Moon Studios adopted
Agile methods sometime before November 2008 based on
the article written by the chief technology officer, Clinton
Keith [8]. One could assume that the company used the
waterfall model, since they wanted to switch back to
iterative and incremental development. The company
adopted Scrum initially and saw improvements in
productivity and morale. The company took an intelligent
view on using Scrum. They would only modify a practice
once they fully understood its use. Keith goes on to state
that the programming team adopted Extreme
Programming, and gained significant benefits. High Moon
Studios has two major titles out which are indicative of
their continued success. The question remains on whether
they were on time and under budget.

Based on industry news from the site,
Gamasutra.com, there are a few companies that use Agile
or Agile-like methods. Crystal Dynamics whom made
Tomb Raider: Anniversary employs Agile and Agile-like
processes [5]. Even though details are lacking, the
interview implies that the methods have benefited the
company. Disney-owned Black Rock used aspects of
Agile for projects that came out in 2006 and 2007, and
fully embraced Agile for their latest, well-received Pure
racing game [13]. Avent of Black Rock felt that it made
the people happier and more productive. Again, details
are scarce on what methods were implemented and how.

3.7 Third-Party Technology

Due to rising costs, increasing complexity, and higher
consumer expectations, game developers are beginning to
use more components from third parties [1]. There are
software companies that create software engines (physics
engines, game engines, AI, etc.) and components for
gaming, but do not produce games of their own. The
successful companies have solid software that aids the
game developers in the creation of their games. Game
developers can lower costs by using third-party
technology. Two examples of games using third-party
engines are Prince of Persia 3D and BioShock.

Red Orb Entertainment’s Prince of Persia 3D
employed several such technologies [1]. The developers
chose Numerical Design’s NetImmerse 3D for their game
engine. This cuts down on development time, cost and
resources. An added benefit is that the engine allowed for
faster creation of prototypes [2]. For character animation,
they used an animation package, Motion Factory’s
Motivate character animation environment. This enabled
them to insert characters quickly into their 3D
environments.

2K Boston/Australia’s BioShock game made use of a
couple of engines. Their game engine used a modified
version of Epic’s Unreal engine. They also made use of
the Havok physics engine by Havok. By using these
engines, they did not have to code solutions in-house.

There are issues to deal with when selecting third-
party technology. Game engines are specific to a style of
game (example, a flight simulator engine would not be a
good choice for a role playing game) [2]. For the game,
BioShock, the team chose the Unreal engine because the
programmers had previous experience with it. The
disadvantage was that the tool was slower for them to use
[6]. Depending on the game engine, projects produced
using it could be too similar to one another. Games using
the old Doom engine looked and played like the game,
Doom [2].

4. Learning from Software Engineering

Video game development process can improve and
companies are beginning to recognize the need for
change. Project managers need to look carefully at their
current processes and identify what development process

263263

works and what doesn’t. They need to understand their
own organization first. Without a good understanding,
project managers cannot make the proper decisions in
regards to a methodology that will work for their teams
and organization. To use a cliché, there are no silver
bullets to solve the problems. Even so, there are plenty of
proven methods.

4.1 Process Improvement

For large projects, the spiral process model may work
well. It can allow for iterating a game from low fidelity to
high fidelity which is recommended by Miller [9]. Using
this model, the project manager would develop a series of
tasks derived from the GDD. The project manager should
consult with all those involved to gather feedback on what
should be developed and when. Requirements engineering
is very important in transitioning the preproduction work
(the GDD) to the production stage. The manager must
clarify all requirements that the game designers have stated
or implied in the GDD. By applying requirements
engineering, the project manager can reduce errors due to
miscommunication with the customers (the designers).
Risk management is also an important element due to the
common occurrence of feature creep. A certain measure of
feature creep may be unavoidable, and can contribute to
the success of a game, but there needs to be a measure of
control in place. Late-addition features need to be carefully
evaluated before inclusion as to how much value would the
feature add.

If approached carefully, the project manager can plan
the cycles of the spiral model so that the game is playable
at the end of each cycle. This has several benefits. For one,
testers can check the game for errors in a playable state
which mimics what the end-user would encounter. Having
a playable game as early as possible helps the team to see
the potential of the end product, and the project manager
could build in time for game exploration, especially if the
project is large. With a playable game early on, and it
being developed from low fidelity to high fidelity, the
team can adapt to changes in the design a little faster, and
can respond efficiently to a tightened deadline.

Scrum is similar to the spiral model in that it produces
incremental iterations of the software. Its strength is to
have the goal of having usable software at the end of every
cycle. High Moon Studios adopted Scrum and XP [8], and
found that it worked well for their teams. Clinton Keith of
High Moon Studios stated that the teams sought to
understand the methodologies first in implementation,
before adapting them to fit their game development
process. It is very important to understand these tools.

Another interesting approach would be to combine
methods. Using lightweight agile methods during
preproduction could be advantageous in exploring game
playability and user interaction. In production, the team
would use the more formal spiral process model which
requires more structure, because the majority of
experimentation has been completed. The point is that
there is much experimentation and creativity during

preproduction stages, and agile methods could work well
and not stymie the creative spirit of the endeavor.
Schofield, a proponent of XP in game development,
beliefs that XP can help the designer to find engaging
game play and fun features quicker [12]. This would
certainly be beneficial in the preproduction stage where
the game’s design is laid out.

4.2 Project Scope

The problems with project scope often go back to the
translation of the game design document to a project plan.
Petrillo et al discovered that 75% of the projects reported
problems with unreal or ambitious scopes [10].
Requirements engineering can help gather the stated and
unstated requirements for the project. Involving the leads
from the different teams (art, design, programming, etc)
will help identify if the plan is realistic. Risk management
helps the project manager understand changes to the plan
and the potential cost in time and money. The project
scope will never be a true reflection of the required effort
due to the iterative and exploratory nature of game
development, but it can be an effective guide in predicting
success when discussing milestones, timelines, and
budget.

4.3 Management and Team Organization

Good management is an issue in almost every
industry, if not all. There are people whom are gifted
managers and others that simply are not. But good
management skills can be learned. An investment in
training can help an organization improve the quality of
their managers which is a key to success. Management
should have the necessary skills to evaluate potential
methods for their teams. To paraphrase Paul Miller [9],
there is no value in practicing a method just for the
method’s sake. The manager must understand a method in
order to understand its potential value.

People working in game development are from a
variety of backgrounds and have different talents. These
differences can create communication divides among the
teams. In addition, there is a Machiavellian attitude
among controlling seniors [10]. Those attitudes can only
add to the poor communication already present. The best
that management can do is to emphasize that everyone is
important to the project. Video game projects are group
projects. An individual or a small team may have
developed the creative vision for the game, but it requires
a strong effort from everyone. Part of this is a question of
morale. Happy people do better work, and people that feel
needed are often happier.

Table 1: Challenges and SE Practices.
Challenge Software Engineering Practices

Diverse
Assets

Optimize tools and pipeline for integrating
assets into the game.

264264

Project Scope

Apply requirements engineering and risk
management when translating the GDD to
the project scope. Consult with the teams
involved so that the project scope is
realistic. Consider time needed for game
exploration and feature creep.

Game
Publishing

Develop deeper communications between
the publisher and the development house.
Publishers need to be clear with their
requirements. Developers need to keep the
publisher informed of project progress.

Project
Management

Invest in managerial training with an
emphasis on project management practices.

Team
Organization

Evaluate potential process methods based on
team organization and corporate culture.
Encourage an attitude of the team as a whole
and less importance on individuals.

Development
Process

Understand current process and the
problems with it. Identify processes that will
benefit the project.

Third-Party
Technology

Apply risk management to selection of
third-party technology in order to identify
which, if any, components would work best
for the current project, and for future
projects.

5. Conclusion

Game development has unique characteristics that
represent challenges to this industry. Applying SE
principles and sound practices can help overcome these
challenges. Development companies must invest in
adopting proven methods, found in traditional SE, to fit
with the peculiarities of game development such as the
management of multimedia assets and the need for game
play exploration. Many issues in video game development
point to project management. Development companies
need to invest in grooming skilled management through
training (not only managing people, but teaching solid
project management skills).

Agile methods could be applied to preproduction to
allow for faster game exploration through the use of
prototypes during this stage. The manager must apply
requirements engineering to gather all requirements from
the design and determine a feasible project scope through
the consultation of teams involved. The project manager
must also use risk management to handle feature creep and
changing requirements. A more traditional process such as
the spiral process model is recommended for the
production stage, especially since most of the
experimentation of game play should be completed during
preproduction.

Game development projects generate large amounts of
assets as players have come to expect greater amounts of
content. The developers must optimize their tools and
pipeline for the management of these assets. The teams,
themselves, are composed of people with diverse
backgrounds and skills. The teams need to be encouraged
to work together, and to realize that all members are
important for the success of the project. And as projects

have grown larger, projects have required the usage of
third-party technology. Components must be evaluated
properly, best tool must be selected for the job, and
previous experience should not be the lone deciding factor
in the selection of third-party technology.

6. References

[1] J. Abouaf, "Adventure Game Tools Get Smarter-"Prince

of Persia 3D"," IEEE Computer Graphics and
Applications, vol. 19, no. 4, pp. 4-5, Jul/Aug, 1999.

[2] L. Bishop, D. Eberly, T. Whitted, M. Finch, M. Shantz,
"Designing a PC Game Engine," IEEE Computer
Graphics and Applications, vol. 18, no. 1, pp. 46-53,
Jan., 1998.

[3] D. Callele, E. Neufeld, K. Schneider, "Requirements
Engineering and the Creative Process in the Video
Game Industry," Requirements Engineering, IEEE
International Conference on, vol. 0, no. 0, pp. 240-252,
13th IEEE International Requirements Engineering
Conference (RE'05), 2005.

[4] T. Demarchy, Extreme Game Development: Right on
Time, Every Time, http://www.gamasutra.com/
resource_guide/20030714/ demachy_01.shtml

[5] J. Dobson, Industry News: Q&A: Crystal Dynamics’
LaMer On 10 Years of Tomb Raiding,
http://www.gamasutra.com/php-
bin/news_index.php?story=14172

[6] A. Finly, Postmortem: 2K Boston/2K Australia’s
BioShock, http://www.gamasutra.com/view/
feature/3774/postmortem_2k_boston2k_.php

[7] D. Gregory, Building a Mindset for Rapid Iteration Part
1: The Problem,
http://www.gamasutra.com/view/feature/3645/

[8] C. Keith,November 2006. Get in the Game: What others
can learn from game developers. Better Software
Magazine. http://www.agilegamedevelopment.com
/articles_&_presentations.htm

[9] P. Miller, Top 10 Pitfalls Using Scrum Methodology for
Video Game Development, http://www.gamasutra.com/
view/feature/3724/

[10] F. Petrillo, M. Pimenta, F. Trindade, and C. Dietrich,
“Houston, we have a problem..: a survey of actual
problems in computer games development”,
Proceedings of the 2008 ACM Symposium on Applied
Computing, Fortaleza, Ceara, Brazil, March 16 - 20,
2008, SAC '08. ACM, New York, NY, pp707-711.

[11] J. Rocca, H. Howie, S. Meretzky, J. Minton, K. Quirk,
and T. Rosenthal-Newsom, “In the trenches: game
developers and the quest for innovation”, Proceedings
of the 2006 ACM SIGGRAPH Symposium on
Videogames, Boston, Massachusetts, July 30 - 31, 2006,
Sandbox '06. ACM, New York, NY, pp9-11.

[12] B. Schofield, Embracing Fun: Why Extreme
Programming is Great for Game Development,
http://www.gamasutra.com/features/20070301/
schofield_01.shtml

[13] B. Sheffied, L. Alexander, Industry News: Q&A: Black
Rock Tricks Out, Gets Agile With Pure,
http://www.gamasutra.com/php-
bin/news_index.php?story=20336

265265

