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Abstract

This paper deals with the problem of designing the optimal structure of most
public service systems, which is often formulated as the p-median problem.
The real instances of these problems are characterized by a considerably big
number of possible service center locations, which can take the value of sev-
eral thousands. Current exact approaches must face up to a big demand
on computational time and they often fail when a large instance is being
solved. This paper is focused on the approximate approach based on specific
model reformulation. It uses the approximation of a common distance by
some pre-determined distances given by so-called dividing points. The de-
ployment of the dividing points influences the solution accuracy. To improve
this approach, we have developed the sequential method of dividing points
deployment. Hereby, we study the accuracy of the suggested method using
the upper and lower distance approximations in comparison to the saved
computational time.
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1. Introduction

Public service systems play an important role in satisfaction of public
demand for more secure life. The family of the public systems [1] includes
medical emergency system [2, 3], fire-brigade deployment, system of police
stations, public administration system [4] and many others. The quality of
the service provided by the system is influenced by more or less suitable de-
ployment of service centers, which serve individual communities situated at
dwelling places of the served geographical area. The objective of the public
service system design is to minimize total social costs, which are proportional
to the distances from serviced communities to the nearest source of provided
service. The mathematical model of the public service system design prob-
lem is often related to the p-median problem, which is formulated as the task
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of selection of at most p network nodes as service center locations, so that
the sum of the distances between each served community location and the
nearest located service center is minimal. When a real public service system
is projected, the designer must face up to many difficulties and limitations.
Besides the limited budget included into the problem formulation, they are
subject to lack of time to develop a specific sufficient software tool for ra-
tional system design. That is why a general commercial IP-solver or some
other ready-made software tool must be used to obtain a solution of the un-
derlying large p-median problem. As concerns usage of a general IP-solver,
the size of the solved integer programming problem must be taken into ac-
count. In the real problems, the number of serviced users takes the value of
several thousands, and the number of possible service center locations can
take this value as well [5]. The number of possible service center locations
seriously impacts the computational time and the memory of computer due
to used branch-and-bound method, which stores the unfathomed nodes of
the inspected searching tree for the further processing. That is why the di-
rect attempt at solving the problem described by a location-allocation model
often fails, when larger instances are solved by a commercial IP-solver [6].
Another way of the p-median problem representation consists in the radial
formulation either heterogeneous [7] or homogenous [8, 9]. This approach
avoids assigning individual users to a located service center, and thus only
information about the number of located centers in a given radius is dealt
with. The radial approach leads to the model similar to the set covering prob-
lem, which is easy to solve in comparison to the location-allocation problems.
Nevertheless, even if the radial model is used to obtain the exact optimal so-
lution of a large instance by a commercial IP-solver, the memory and time
limits can be exceeded.

In this paper, we suggest an approximate approach based on the radial
problem formulation. The approximate approach can be easily implemented
within a commercial IP-solver and it enables a trade-off between computa-
tional time and computer memory demands and accuracy of the resulting
solution, what can considerably help to solve the designer?s time-table dif-
ficulties. Contrary to heuristics [10–13], the suggested approach provides a
lower bound of the optimal solution together with the resulting feasible so-
lution and its objective function value representing the upper bound of the
unknown optimal solution. In addition, the suggested approximate approach
enables to control the gap between both bounds, which is the substantial
difference between the suggested approach and common approximate algo-
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rithms, where performance ratio is usually fixed [14]. The mentioned trade-off
between time and accuracy consists in a reduction of the set of all distance
values among possible center locations and user locations. The process of
reduction is performed sequentially in several phases, where the current set
of relevant distance values is selected from the preceding set according to
a weight, which represents a current distance relevance. At the beginning
of the reduction process, the relevance is initialized by an anticipated fre-
quency of the distance values in the unknown optimal solution. Each next
phase improves the relevance estimation gained through the previous phase.
The reduction process is used not only for obtaining a good solution of the
problem, but also for gaining a lower bound of the unknown optimal solution.

The remainder of this paper follows the below-mentioned scheme. Sec-
tion 2 contains the location-allocation formulation of the p-median problem.
Section 3 comprises the approximate approach based on a given sequence of
dividing points, where a covering model is used to obtain both lower and
upper bound of the optimal solution value together with a near-optimal so-
lution. Section 4 presents the determination of dividing points, which enable
to minimize the estimated deviation of the upper and lower bounds from the
optimal solution value. Section 5 introduces a sequential approach, which ad-
justs the distances between the dividing points and improves the solution of
the original problem step-by-step. Section 6 reports on performed numerical
experiments and gives the information about the efficiency of the suggested
approach.

2. Exact Approach to the p-Median Problem

To describe the p-median problem on a network, we denote a set of ser-
viced nodes by J , similarly, we denote a set of possible service center locations
by I. Here, we use only the formulation of the p-median problem, where at
most p locations from the set I should be determined so that the sum of
the network distances from each element of J to the nearest located service
center is minimal. The network distance between the possible location i from
I and the users location j from J is denoted as dij. The basic decisions in
any solving process of the p-median problem concern the location of service
centers at the network nodes from the set I. The p-median problem can be
modeled by linear constraints and objective functions using zero-one vari-
ables yi ∈ {0, 1} for i ∈ I, where the variable yi takes the value of 1, if a
service center should be located at the place i from I and it takes the value
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of 0 otherwise. In addition, the further defined allocation variables are used.
The allocation variables zij ∈ {0, 1} for each i ∈ I and j ∈ J are introduced
to assign the users location j to the possible location i by the value of one.
Then the location-allocation model can be formulated as follows:

Minimize
∑
i∈I

∑
j∈J

dijzij (1)

Subject to :
∑
i∈I

zij = 1 for j ∈ J (2)

zij ≤ yi for i ∈ I and j ∈ J (3)

∑
i∈I

yi ≤ p (4)

zij ∈ {0, 1} for i ∈ I and j ∈ J (5)

yi ∈ {0, 1} for i ∈ I (6)

In the above model, the allocation constraints (2) ensure that each users
location is assigned to exactly one possible service center location. Link-up
constraints (3) enable to assign a users location j to a possible location i only
if the service center is located at this location, and constraint (4) bounds the
number of located service centers. The problem described by the terms (1)
- (6) can be rewritten into a form acceptable by the modeler of integrated
optimization environment, and solved by the associated IP-solver. Due to
the huge number of allocation variables zij, a commercial software usually
fails when a very large instance of the problem (1) - (6) is being solved.

3. Radial Formulation of the p-Median Problem for Lower and
Upper Bounds

The radial formulation of the p-median problem has appeared in two
different versions. One of them [7] is based on the systems of radii, where each
users location has their unique system, and an individual radius corresponds
with some concrete distance between the users location and some possible
location of a service center. Our approach is based on the second version
[8], where the range of all considered distances is partitioned by so-called
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dividing points, and an individual radius corresponds with the position of
a dividing point. In this version, the same system of radii is applied to
each users location. In the radial formulation, we use the above-introduced
notation. As above, the variable yi ∈ {0, 1} models the decision of service
center location at the place i ∈ I.

Presented approximate approach is based on the relaxation of the assign-
ment of a service center to a system user [6]. Information about the number of
service centers located in a given radius from the given users location is used
instead of formalized knowledge of the nearest located service center. We use
the fact that there is only a finite number of various distance values in the
matrix {dij} which can enter the optimal solution of the associated p-median
problem. Note that none of the largest, second largest and so on to p − 1
largest distances from given users location j to the set of all possible locations
can be contained in any optimal solution. Let the mentioned set of m + 1
different distance values form an increasing sequence d0 < d1 < · · · < dm.
Without loss of generality, we can assume that d0 is equal to zero; in the op-
posite case, we can reduce each item of the matrix subtracting the minimal
value. To obtain the upper approximation of the original objective function
value, the range [d0, dm] is partitioned into v + 1 zones. The zones are sep-
arated by a finite ascending sequence of the dividing points D1, D2, . . . , Dv,
which are chosen from the values d1 < d2 < · · · < dm−1. Let us denote
D0 = d0 and Dv+1 = dm. Then the zone s corresponds with the interval
(Ds, Ds+1] for s = 0, . . . , v. The length of the s-th interval is denoted by es.

In addition to the location variables yi, the auxiliary zero-one variables
xjs for s = 0, . . . , v are introduced. The variable xjs takes the value of 1, if the
distance of the users location j ∈ J from the nearest located service center is
greater than Ds, and this variable takes the value of 0 otherwise. Then the
expression e0xj0 + e1xj1 + · · · + evxjv constitutes the upper approximation
of the distance dj∗ from the users location j to the nearest located service
center. If the distance dj∗ belongs to the interval (Ds, Ds+1], it is estimated
by the upper bound Ds+1.

Similarly to the covering model, we introduce a zero-one constant as
ij for

each triple [i, j, s] ∈ I × J × {0, . . . , v}. The constant as
ij is equal to 1, if

the distance dij between the users location j and the possible service center
location i is less than or equal to Ds, otherwise as

ij is equal to 0. Then the
covering-type model can be formulated as follows:
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Figure 1: Upper approximation of dj∗ using zone widths es and auxiliary variables xjs.
The upper approximation of dj∗ is denoted by thick dotted line at the top of figure.

Minimize
∑
j∈J

v∑
s=0

esxjs (7)

Subject to : xjs +
∑
i∈I

as
ijyi ≥ 1 for j ∈ J and s = 0, . . . , v (8)

∑
i∈I

yi ≤ p (9)

xjs ≥ 0 for j ∈ J and s = 0, . . . , v (10)

yi ∈ {0, 1} for i ∈ I (11)

Objective function (7) gives the upper bound of the sum of the original
distances from user locations to the located service centers. Constraints (8)
ensure that the variables xjs are allowed to take the value of 0, if there is at
least one center located in the radius Ds from the user location j. As the
minimization process applied on (7) pushes all included variables xjs down
to the zero value and each of these variables is limited from below either by
the value of one or by the value of zero according to (8), the variable xjs

can get only one of these values unless obligatory 0-1 constraints must be
included into the model. Constraint (9) limits the number of located service
centers by the integer p.

To obtain a lower bound of the original problem optimal solution, we can
either use the above found dividing points and the associated zone widths,
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and express the lower bound of dj∗ as e0xj1 +e1xj2 + · · ·+ev−1xjv, or suggest
a tighter lower bound in the following way.

We realize that the interval (Ds, Ds+1] given by a pair of successive
dividing points contains a portion of successive elements of the sequence
d0 < d1 < · · · < dm. Let us denote these elements from the interval
(Ds, Ds+1] as D1

s , D
2
s , . . . , D

v(s)
s , where D1

s < D2
s < · · · < D

v(s)
s . These el-

ements are strictly greater than Ds and less than or equal to Ds+1. If the
distance dj∗ between a user location and a possible service center location
belongs to the interval (Ds, Ds+1], then the lower and upper bounds of dj∗ are
D1

s and Ds+1 respectively and the maximal deviation of dj∗ from the lower
estimation is Ds+1 −D1

s . As the variable xjs from the model (7) - (11) takes
the value of 1, if the distance of the user location j ∈ J from the nearest
located service center is greater than Ds and this variable takes the value of
0 otherwise, we can replace the zone coefficients es with the coefficients es,
where e0 = D1

0 − D0 and es = D1
s+1 − D1

s for s = 1, . . . , v.

Figure 2: Lower approximation of dj∗ using zone widths es and auxiliary variables xjs.
The lower approximation of dj∗ is denoted by thick dotted line at the top of figure.

Then the expression e0xj0 + e1xj1 + · · · + evxjv constitutes the lower ap-
proximation of dj∗, which corresponds to the distance of the node j from the
nearest located service center. Then, the optimal objective function value of
the following problem gives the lower bound of the objective function value
of the original problem [15].

Minimize
∑
j∈J

v∑
s=0

esxjs (12)

Subject to : (8) − (11)
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Having solved both problems, i.e. (7) - (11) and (12), (8) - (11), the
better of two obtained solutions concerning the original objective function
value (13) gives the resulting solution of this approach, and the optimal value
of (12) gives the lower bound of the unknown optimal solution.∑

j∈J

min {dij : i ∈ I, yi = 1} (13)

4. Optimal Deployment of Dividing Points

Obviously, the number v of the dividing points D1, D2, . . . , Dv influences
the size of the covering model (7) - (11) as concerns either the number of the
variables xjs or the number of the constraints (8). That is why the number
v must be kept in a mediate extent to achieve the resulting solution quickly
enough. On the other hand, the smaller the number of dividing points is,
the bigger inaccuracy afflicts the approximate solution. Let us focus now on
the problem of the efficient deployment of the given number of the dividing
points in the set of the values d0 < d1 < · · · < dm. As before, let us denote
D0 = d0 and Dv+1 = dm. Let the value dh have the frequency Nh of its
occurrence in the matrix {dij}.

We start from the hypothesis that the distance dh from the sequence
d0 < d1 < · · · < dm occurs in the resulting solution nh times, and that is why
the deviation of this distance from its approximation encumbers the total
deviation proportionally to nh, where nh ≤ Nh.

When the distance d from a users location to the nearest located service
center is estimated by some upper estimation, the nearest bigger dividing
point Ds+1 is used. The dividing point serves as the upper estimation for each
distance of the sequence d0 < d1 < · · · < dm which belongs to the interval
(Ds, Ds+1]. It means that if the estimated distance is dh, then the deviation
from the upper bound is Ds+1 − dh. If nh is the anticipated frequency of the
distance dh in the unknown optimal solution, then the difference Ds+1 − dh

encumbers the resulting deviation nh times. Hence, the contribution of dh

estimation to the total deviation is nh(Ds+1 − dh). After these preliminaries,
we determine the dividing point deployment so that the total deviation of
the upper approximation from the unknown optimal solution is minimal. We
introduce zero-one variables uht for each possible position t of the dividing
point dt(t = 1 . . .m) and for each possible position h of the preceding value
dh(h = 0 . . . t). If the distance dh belongs to the interval ending by the
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dividing point dt, then the variable uht takes the value of 1, otherwise 0. If
utt is equal to one, then the distance dt corresponds with the dividing point.

Minimize

m∑
t=1

t∑
h=1

(dt − dh)nhuht (14)

Subject to : u(h−1)t ≤ uht for t = 2, . . . ,m and h = 2, . . . , t (15)

m∑
t=h

uht = 1 for h = 1, . . . , m (16)

m−1∑
t=1

utt = v (17)

uht ∈ {0, 1} for t = 1, . . . , m and h = 1, . . . , t (18)

In the above model, link-up constraints (15) ensure that the distance dh−1

belongs to the interval ending with dt only if each other distance between dh−1

and dt belongs to this interval. Constraints (16) assure that each distance dh

belongs to some interval, and constraint (17) enables only the number v of
dividing points. After the problem (14) - (18) is solved, the nonzero values
of utt indicate the distances dt which correspond to the dividing points.

Similar approach can be applied to obtain the efficient deployment of
the dividing points to determine a good lower bound of the optimal solution
of the original problem [15]. Nevertheless, several differences in the way
of approximation must be taken into account. When the lower bound is
computed, the expression e0xj0 + e1xj1 + · · · + evxjv is used as the lower
approximation of dj∗. Here e0 = D1

0−D0 and es = D1
s+1−D1

s for s = 1, . . . , v.
It follows that if the distance dj∗ belongs to the interval (Ds, Ds+1], the
lower estimation of dj∗ is not Ds, but D1

s , which is the smallest value of
the sequence which belongs to the interval. The value D1

s is the following
element to the dividing point Ds concerning the sequence. It means that if the
estimated distance is dh, then the deviation from the lower bound is dh−D1

s .
If nh is the anticipated frequency of the distance dh in the unknown optimal
solution, then the difference dh − D1

s encumbers the resulting deviation nh

times. Hence, the contribution of dh estimation to the total deviation is
nh(dh − D1

s). After these preliminaries, we determine the dividing point
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deployment so that the total deviation of the lower approximation from the
unknown optimal solution is minimal. We introduce the zero-one variables
wth for each possible position t of the dividing point dt and its successor
dt+1(t = 0 . . . m− 1) and for each possible position h of the succeeding value
dh(h = t . . .m). If the distance dh belongs to the interval starting with
the dividing point dt, then the decision variable wth takes the value of 1,
otherwise 0. If wtt is equal to one, then the distance dt corresponds to the
dividing point. If wth = 1 for t < h, then dh+1 is estimated by dt+1, which
corresponds to D1

s for some s.

Minimize

m−1∑
t=0

m−1∑
h=t

(dh+1 − dt+1)nh+1wth (19)

Subject to : wt(h+1) ≤ wth for t = 0, . . . , m − 1 and h = t, . . . , m − 1
(20)

h∑
t=0

wth = 1 for h = 0, . . . , m − 1 (21)

m−1∑
t=1

wtt = v (22)

wth ∈ {0, 1} for t = 0, . . . , m − 1 and h = t, . . . , m (23)

Similarly to the previous model, link-up constraints (20) ensure that the
distance dh+1 can belong to the interval starting with dt only if each distance
between dh+1 and dt belongs to this interval. Constraints (21) assure that
each distance dh belongs to some interval, and the constraint (22) enables
that only v dividing points will be chosen. After the problem (19) - (23) is
solved, the nonzero values of wtt indicate the distances dt which correspond
to the dividing points for the lower bounding process.

5. Sequential Improving of Distance Relevancies

The static approach to the dividing points determination comes from the
hypothesis that the frequencies nh of dh in the unknown optimal solution may
be proportional to Nh, and they decrease for longer distances. To formalize
this hypothesis, the following expression was used [6]:
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nh = Nhe
−dh

T (24)

In the expression (24), T is a positive shaping parameter and Nh is the
mentioned occurrence frequency, where only the |I|−p+1 smallest distances
of each column of the matrix {dij} are considered. After the anticipated
frequencies nh had been determined, the models (14) - (18) and (19) - (23)
were used to obtain the series of the dividing points for the upper and lower
bound respectively. Then the models (7) - (11) and (12), (8) - (11) were
used to obtain the upper and lower bounds, and also the associated resulting
solution of the original problem.

To the contrary with the static approach, the presented sequential im-
provement of the relevancies nh is based on the idea of making the estima-
tion of the individual distance dh relevance more accurate [16]. The distance
relevance here also means a measure of our expectation that this distance
value is the distance between a users location and the nearest located ser-
vice center, but this estimation is improved step-by-step by the following
algorithm, which can be used either for the lower or upper bound determi-
nation. The input of the algorithm consists of the matrix {dij}, sequence
d0 < d1 < · · · < dm and the associated sequence of the frequencies Nh for
h = 0 . . .m, and the number p of centers which are to be located. Further
parameters T and v of the algorithm must be given, where T is the shaping
parameter and v is the number of dividing points. Determination of suitable
settings of the parameter T was studied in [17] and it was found that the
value of 1 is the most suitable one.

The sequential algorithm

Step 1: Determine the initial values of the relevancies nh according to (24).

Step 2: Compute the sequence of the dividing points D1 . . . Dv by the
model (14) - (18).

Step 3: Using the sequence of the dividing points, determine the constants
as

ij and es and solve the covering problem (7) - (11) to the opti-
mality, to obtain the optimal values of the location variables y.
Determine the value of the original objective function according
to (13) and update the best found solution.

Step 4: If the stopping rule is met, terminate, otherwise go to Step 5.

Step 5: Determine the set I1 of the active rows according to I1 = {i ∈ I :
yi = 1}. Update the relevancies nh so that each column of the
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matrix {dij} is processed, and only minimal value over the active
rows is included into the set of the relevant distances and their
occurrence frequencies. Go to Step 2.

The above algorithm can be easily converted to the lower bound algorithm
by replacing the model (14) - (18) in Step 2 by the model (19) - (23), and by
replacing the model (7) - (11)) in Step 3 with the model (12), (8) - (11).

The effectiveness of suggested algorithm and the time necessary to find
the resulting solution depend on the criteria of terminating the iteration
process. The easiest way consists of the basic condition that the computing
process is to be stopped whenever no better solution of the original problem is
obtained. Since the sequential method may perform too many iterations with
very little improvement of the objective function value, we suggest limiting
the number of the performed iterations. In the following section, we study
some additional rules that make the algorithm less time-consuming.

The above algorithm starts with an initial relevance estimation described
in the previous section, and computes relevancies nh in accordance to the hy-
pothesis formalized by the expression (24). Having obtained the first optimal
solution of the covering model following the dividing points deployed accord-
ing to the initial relevancies, the algorithm updates the relevancies. For this
purpose, a set of active matrix rows is defined so that the i-th row of the
matrix {dij} is denoted as active, if the location variable yi of the problem
(7) - (11) is equal to one. Then each column j of this matrix is processed,
the minimal value over the active rows is included into the set of the relevant
distances, and the associated frequency is increased. Thus a new sequence
of the distance frequencies nk is obtained. These new frequencies are used
in the next iteration of the algorithm. This process can be repeated as long
as better solution of the original problem keeps being obtained, or until the
used stopping criterion is met.

6. Computational Study

6.1. Preliminary Numerical Experiments

We performed a sequence of numerical experiments to test the effective-
ness of suggested sequential method. When the upper distance approxima-
tion was used, the following stopping criteria were applied: the iteration
process was terminated if either ten iterations had been performed, or no
improvement in the actual iteration had been achieved. Furthermore, one
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additional rule was defined. The computational process was stopped when
the number of the distances dh with nh > 0 had decreased below the number
of the dividing points v.

All experiments were performed using the optimization software XPRESS-
IVE 1.17.12. The associated code was run on a personal computer equipped
with the Intel Core 2 6700 processor with the parameters: 2.66 GHz and
3 GB RAM. The solved instances of the problem were obtained from the
OR − Lib set of the p-median benchmarks [18]. To make the results more
comparable, we have changed some instances in the maximal number of the
located service centers p, and grouped the problems by the number of possi-
ble service center locations |I|. This way, we obtained 9 sets of benchmarks,
where the number of possible service center locations varied from 100 to 900
by hundreds. Each set of the test problems consists of 6 different instances,
where the ratio of |I| to p equals 2, 3, 4, 5, 10 and 20 respectively. Since the
approximate approach is dedicated to large p-median instances, we decided
to enlarge the set of test problems by using the data from the road network
of Slovakia. According to the previous principle, we kept increasing the num-
ber |I| from 1000 by hundreds up to 1200, when the exact approach based
on the location-allocation model failed due to lack of disposable computer
memory. The sequential approach was tested on even larger instances. Of
course, it is not standard to compare exact and heuristic methods, but the
exact solution was used here to evaluate the accuracy of the solution obtained
by the sequential covering approach. To obtain the exact solution, we used
common optimization environment XPRESS-IVE, which was used also for
the approximate sequential method.

An individual experiment was organized so that the number v of the di-
viding points was set to 20. Since this is an important parameter of our
approach, we have studied also the accuracy sensitivity on the number of
dividing points. Our findings are summarized in the following subsection
together with the reasons for using just 20 dividing points. The initial se-
quence of the dividing points was obtained according to the model (14) - (18)
or (19) - (23), where the relevance nh of each distance dh was computed in
accordance to the formula (24) for T = 1. The obtained results for the up-
per distance approximation are shown below. Time comparison of the exact
and sequential approximate approach is shown in the Figure 3. The solved
instances are grouped by the number of possible service center locations |I|.
There are two columns with the average computational time for each size of
the set I represented by 6 different instances. Each column represents one
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solving method. The achieved results are interesting from various points of
view. As it is shown, the exact location-allocation approach failed in large
instances due to enormous demands on the memory capacity, but our sug-
gested sequential approach based on the radial formulation can overcome this
weakness thanks to lower number of variables and simpler model structure.
Furthermore, the average computational time of the sequential method does
not grow with increasing size of solved instance as rapidly as in the location-
allocation approach. This feature plays a very important role. It destines
the sequential method for solving large problem instances.

Figure 3: Time comparison of the exact location-allocation approach to the sequential
method with the upper distance approximation

The sequential covering approach with the upper distance approximation
was compared to the exact method based on the location-allocation formu-
lation also from the viewpoint of the solution accuracy. Everywhere it was
possible, the exact solution obtained by the location-allocation model (1) -
(6) was used to evaluate the quality of the result provided by the sequential
method. Generally, the quality of the approximate solution is evaluated by
so-called gapBFSE, which is defined as follows: Let ES denote the objective
function value of the exact solution obtained as the result of the model (1) -
(6). If BFS (Best Found Solution) denotes the real objective function value
of the approximate solution computed according to the formula (13), then
the gapBFSE expresses the difference between the best found solution and the
exact one in percentage of the exact solution. Its value is defined by (25).

gapBFSE =
|BFS − ES|

ES
∗ 100 (25)
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The associated results of numerical experiments are given in Table 1,
which contains the average and the maximal value of gapBFSE for each size
of the set I represented by 6 different instances.

|I| 100 200 300 400 500 600 700 800 900 1000 1100

Maximal gapBF SE 0.74 0.57 0.30 0.40 4.46 0.58 4.05 0.24 0.56 0.26 0.00

Average gapBF SE 0.24 0.23 0.13 0.11 0.78 0.13 0.73 0.06 0.10 0.04 0.00

Table 1: Accuracy of the solution obtained by the sequential approach
with upper distance approximation

The obtained results reported in Table 1 show that the sequential ap-
proach with the upper distance approximation provides very good accuracy
of the resulting solution mainly in cases of medium-sized p-median instances.
The results in Table 1 seemingly contradict to the common opinion that
the approximate method with limited number of dividing points must bring
worse results on the bigger problems. Nevertheless, the presented results
show that the size of the problem does not play so important role as other
characteristics of the network, especially the distance matrix. It is necessary
to realize, that the suggested approximate approach can reach the optimal
solution in the case, when the dividing points cover all distance values from
the sequence d0 < d1 < · · · < dm, which are contained in the optimal so-
lution. The proximity of the obtained solution to the optimal one depends
here more on the portion of distances covered by dividing points rather than
on the size of the matrix {dij}. The mentioned portion is influenced by spe-
cific of the network graph of the solved benchmark. We have to point out
that the problems from 100 to 900 possible service center locations originated
from the Beasleys benchmarks [18] and the last cases were derived from real
road network of Slovakia. This may explain the extremely small gap in the
columns 1100 and 1300. The average gaps for Beasleys benchmarks arise
randomly and obviously do not correlate with the size of the problem.

The main disadvantage of the upper distance approximation consists in
the fact that it is not possible to evaluate the solution accuracy in a general
case, because the exact solution is usually unknown and the upper bound
does not represent proper information to evaluate the quality of the ob-
tained result. Therefore we recommend the upper distance approximation
as a complement to the lower distance approximation. As we will show, the
lower distance approximation brings more interesting features mainly in cases
where there is no other possibility to evaluate the result accuracy.

When the lower distance approximation is employed, then the objective
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function value of the model (12), (8) - (11) gives the lower bound of the
unknown optimal solution. As before, we obtain here the corresponding real
objective function value according to the formula (13). Thus, we can evaluate
not only the result accuracy by gapBFSE, but we can also measure the quality
of the lower bound. Let the best lower bound be denoted as BLB. If we know
the exact solution ES, then we can compute the gapBLBE which expresses
the difference between the best lower bound BLB and the exact solution ES
in percentage of the exact solution. Its value is given by (26).

gapBLBE =
|BLB − ES|

ES
∗ 100 (26)

It is generally known that the location-allocation approach usually fails
when a very large p-median instance is being solved. If we wanted to evaluate
the quality of the sequential covering solution in a general case, it would not
be possible due to the fact that the optimal solution is unknown. Therefore,
we suggest measuring also the difference between the best lower bound BLB
and the best found solution BFS given by (13). Since BFS constitutes
the upper bound of the unknown optimal solution, the difference computed
according to (27) represents the maximal deviation of the covering solution
from the exact one. If the optimal solution is unknown, this is the only way
of evaluating the accuracy of the resulting approximate solution.

gapBLBBFS =
|BFS − BLB|

BFS
∗ 100 (27)

As concerns the computational time, the situation becomes a little bit
complicated in comparison to the presented preliminary experiments with
the upper distance approximation. As we have mentioned in previous sec-
tions, the suggested sequential approach may perform too many iterations
with very little improvement and thus the computational process may take
too long time. This phenomenon deserved further research [19], which was
focused on the possibility of an ”exchange” of the loss of accuracy for lower
computational time. The exchange follows the fact that the suggested se-
quential approach is accurate enough to admit a mild increase in the re-
sulting gap for improving the computational time. Possible modifications of
the sequential method are based on a deep analysis of the obtained results
and the whole sequential process. The analysis led to the conclusion that
the enormous time demands were required by the last iteration. In most
cases the optimal solution was found, and one additional iteration was per-
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formed with no improvement, so the computational process was stopped. If
the gapBLBBFS equals to zero, then it is obvious that no better solution can
be found, and no more iterations are needed. This observation plays an im-
portant role in modifying the stopping criteria. Generalization of this idea
consisted in a special adjustment of the stopping criterion, where reaching of
a tolerable deviation of the lower bound below given threshold in percentage
of the best found solution was taken as a complementary condition for the
loop termination. So, when the lower distance approximation was used, the
following stopping criteria were applied: the iteration process was terminated
if either ten iterations had been performed, or no improvement of the best
found solution in the actual iteration had been achieved or the gapBLBBFS

had dropped below given 2-percent threshold. Applying these rules, the con-
siderable reduction of the lower bound computational time was achieved at
the negligible decrease of the accuracy.

The associated testing was performed with the same pool of the bench-
marks as the preliminary experiments with the upper distance approxima-
tion. All numerical experiments were performed for 20 dividing points and
T = 1. The achieved results are plotted in the Table 2 and Figure 4. The
Table 2 contains the average gaps between the best found solution, the exact
one and also the evaluation of the result by gapBLBBFS. Each column corre-
sponds to the size of 6 benchmarks solved by the sequential approach with
lower distance approximation. The Figure 4 shows the time comparison of
the sequential approach to the location-allocation one.

|I| 100 300 500 600 700 800 900 1000 1100 1200 1300 1400

Average gapBF SE 0.82 0.33 0.09 0.12 0.02 0.06 0.03 0.11 0.00

Average gapBLBE 3.42 1.80 0.72 0.43 0.33 0.35 0.16 0.16 0.01

Average gapBLBBF S 4.20 2.12 0.80 0.55 0.36 0.41 0.20 0.26 0.17 0.16 0.24 0.13

Table 2: Accuracy of the solution obtained by the sequential approach
with lower distance approximation

The results reported in the Table 2 and also the time comparison prove,
that the suggested sequential approach provides very good accuracy of the
resulting solution. As we can see, the average gap does not exceed one
percent. Thus we can conclude, that presented approach is a suitable tool
for such instances, where the location-allocation approach fails. It provides
very good solution in a short time without the necessity of developing special
software tool. Concerning the solution accuracy, it must be noted, that the
quality of the result may be sensitive to the start-up settings, mainly to the

17



  

Figure 4: Time comparison of the exact location-allocation approach to the sequential
method with the lower distance approximation

value of parameter T . Therefore the initial phase of the sequential method
should become an interesting topic of future possible research in this area.
Another parameter, which can significantly influence the quality of the result,
is the number of dividing points. Therefore we focus on its suitable value in
the following subsection.

6.2. Accuracy sensitivity on the number of dividing pointss

This subsection is focused on the exploration of the solution accuracy
depending on the number of dividing points. It must be realized that the
number of zones used in the distance approximation does not influence only
the size of the radial model (7) - (11), but it directly affects the accuracy
of the result and also the computational time. To explore the accuracy
sensitivity on the number of dividing points v, we have suggested a set of
numerical experiments on medium-sized benchmarks used in the previous
computational study. For each size |I| of the set of possible service center
locations I, 6 different instances were solved. As described in the subsection
6.1, the instances differ in the value of parameter p, which defines the number
of located service centers. The number of dividing points was set to the value
5, 10, 15, 20 and 25 respectively. For each cardinality of the set I and each
number of dividing points v, the average gapBLBBFS was computed. The
value of mentioned gap is defined by (27). The achieved results are reported
in the following Table 3 and Table 4.

According to the reported results, it is obvious that the number of dividing
points v significantly influences the accuracy of the solution obtained by the
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sequential method. It can be noticed in the Table 3 that for v = 15, 20 the
values of gap drop below 1 percent, which represents satisfactory accuracy.
Contrary to the progress of gap, behavior of the computational time value
non-linearly grows with increasing number of dividing points v. On average,
we can state that the stronger slope of the dependency starts roughly above
the value v = 20.

|I|
Number of dividing points

v = 5 v = 10 v = 15 v = 20 v = 25

600 15.37 5.19 1.64 0.47 0.09

700 13.09 3.46 0.91 0.28 0.08

800 11.63 2.98 0.80 0.22 0.03

900 10.39 2.20 0.42 0.06 0.00

1000 7.90 1.36 0.33 0.06 0.01

1100 7.43 1.41 0.33 0.07 0.01

1200 6.71 1.31 0.29 0.08 0.01

1300 7.23 1.42 0.34 0.06 0.01

1400 7.28 1.48 0.45 0.09 0.02

1500 6.93 1.24 0.35 0.05 0.01

AVERAGE 9.40 2.20 0.59 0.14 0.03

Table 3: Table of average gaps in percent of the best found solution for
different number of dividing points

|I|
Number of dividing points

v = 5 v = 10 v = 15 v = 20 v = 25

600 3.85 13.90 7.61 5.16 12.31

700 4.83 19.20 8.62 28.76 45.30

800 3.46 10.03 5.36 17.02 32.71

900 3.32 22.99 11.41 60.23 58.64

1000 21.11 25.56 26.11 33.63 25.18

1100 24.70 22.58 27.62 33.82 91.34

1200 44.17 34.57 48.75 31.58 188.88

1300 64.90 58.61 103.19 82.28 233.59

1400 94.41 63.47 78.09 87.17 341.35

1500 127.35 132.18 107.91 113.00 161.23

AVERAGE 39.21 40.31 42.47 49.27 119.05

Table 4: Table of average computational times in seconds for different
number of dividing points

To analyze behavior of two dependencies, we computed ratio of compu-
tational time to gap to express the value of the one percent gap accuracy in
time units. We computed the average values for each number v of dividing
points, performed scaling of these results, named them as ”Scaled time/gap”
and plotted them in the Figure 5. Used scaling consists in linear mapping
of the obtained values to the interval [0, 10], where the lowest value of the
result corresponds with the value of 0 and the biggest result corresponds to
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the value of 10. The same scaling was applied on average gaps computed
separately for each number of dividing points and these values are plotted
also in the Figure 5.

Figure 5: Scaled values of average gap and the ratio of time to gap for different number
of dividing points.

Based on reported results we can confirm that the number of 20 divid-
ing points is a suitable choice of this parameter. It was shown that this
setting keeps the model of solved problems in tolerable size, which issues in
acceptable computational time of the method. Furthermore, the number of
20 dividing points proved to be suitable to achieve satisfactory accuracy.

6.3. Numerical Experiments with Medium and Large Instances

To test the effectiveness of the suggested approximate sequential approach
to the p-median problem, especially to verify the stopping rules for obtaining
the lower bound, we have suggested and realized another sequence of numer-
ical experiments. The solved instances of the problem were divided into two
sets. The first set of test problems originates from the Slovak road network
for the cardinality of I from 1500 to 2800 possible service center locations.
The cardinality of J is the same as the cardinality of I, and the maximal
number p of possible service center locations was set so that the ratio of |I|
to p equals 2, 3, 4, 5, 10 and 20 respectively. All instances were solved by
both sequential approaches (lower and upper distance approximation) and
the better solution concerning the objective function value (13) was taken
as the result. The associated average results are plotted in the Table 5 and
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Figure 6. All numerical experiments were performed for 20 dividing points
and T = 1.

Figure 6: Time comparison of the sequential methods with the upper and lower distance
approximation for large p-median instances

|I| 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800

gapBLBBF S 0.21 0.31 0.32 0.32 0.25 0.24 0.23 0.27 0.21 0.19 0.19 0.21 0.19 0.19

Table 5: Accuracy of the solution obtained by the sequential approach for
large p-median instances

The last set of numerical experiments was organized to verify the sug-
gested stopping criteria, and to show the effectiveness of the sequential
method on large instances. The input data were taken from the benchmarks
commonly used in available literature. Furthermore, the exact solution of
all benchmarks was given. This fact presents an important advantage for
evaluating the solution accuracy.

We have compared the efficiency of the sequential method (Approx.) us-
ing lower distance approximation, also with the state of the art for the p-
median problem that is given by Avella, Sassano and Vasilev [10]. Their
approach is denoted as AV S algorithm. Furthermore, we have compared
our results to the Zebra approach (Z-Enlarge-and-BRanch-Algorithm) by
Garćıa, Labbé and Maŕın [7]. Even if it is not standard to compare an ap-
proximate method to the exact one, the exact solution is used in our case
to evaluate the accuracy of the approximate one. Exact methods usually
spend the majority of computing time verifying the optimality of the solu-
tion, while approximate methods try to improve the solution as much as pos-
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sible. Particular exact results were taken from the literature. It is important
to note that the TSBLIB instances (available online: http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/) differ from the Slovak
road benchmarks in the size of dh sequence. These benchmarks contain
thousands of different values, while the Slovak p-median instances only hun-
dreds of different distances. If we had taken all possible distances dh into
consideration, the sequential approach would have been much time consum-
ing. Therefore, we reduced the set of the values so that we took the first 200
distances dh from the original sequence with their occurrence frequencies Nh

and the rest of the values were ranked into 100 values uniformly. The occur-
rence frequencies Nh for h ≥ 200 were set to the sum of Nr where dr ≥ dh

and dr < dh+1 in the original sequence. Thus a new set of 300 distances dh

with their occurrence frequencies Nh was obtained and used as the input of
the approximate sequential method. The zone coefficients es were computed
according to particular dividing points, where the distance D1

s for each zone
s was taken from the original sequence of the distances. The comparison of
the solving methods for the selected TSPLIB instances is shown in Table 3.
Each row of the table represents one solved instance of the p-median prob-
lem. The best upper bound is denoted as BUB, the best lower bound is
given in BLB columns, and the computational time in seconds is denoted
as Time. The symbol ∗ means that the computer ran out of memory while
solving the problem. When available, the best information up to that mo-
ment is shown. The instances with a small value of p (5, 10, 20) were solved
with T = 1000, and the instances with higher value of p were solved with
T = 1. The difference between the best lower bound and the best found
solution is expressed in the percentage of the best found solution, and this
value is denoted as GAP . The column GGAP (General GAP) is dedicated
to the difference between the best found Approx. solution and the optimal
one obtained by AV S algorithm expressed in the percentage of the optimal
solution. All experiments were performed using the optimization software
FICO XPRESS 7.3 (64-bit, release 2012). The associated code was run on a
PC equipped with the Intel Core i7 2630QM processor with the parameters:
2.0 GHz and 8 GB RAM.

The results of the numerical experiments prove the usefulness of the sug-
gested sequential approach. Even if the difference between the lower bound
and the exact solution is quite high in some instances, the covering solu-
tion is near to the optimal one. This fact makes the sequential approximate
approach very successful.
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  AV S Zebra Approx.
File |I| p

Time BUB Time BUB Time BLB BUB GAP GGAP

rl1304 1304 5 32 3099073 3579 3099073 43.49 2908780 3099253 6.15 0.01

rl1304 1304 10 1614 2134295 4015 2134295 117.73 1998600 2135714 6.42 0.07

rl1304 1304 20 22 1412108 170 1412108 45.07 1289580 1415218 8.88 0.22

rl1304 1304 50 14 795012 24 795012 126.04 674993 798756 15.49 0.47

rl1304 1304 200 16 268573 10 268573 4.2 256547 270343 5.1 0.66

rl1304 1304 300 18 177326 11 177326 6.52 169561 178090 4.79 0.43

rl1304 1304 400 14 128332 12 128332 4.47 125586 128552 2.31 0.17

rl1304 1304 500 20 97024 13 97024 4.16 96494 97066 0.59 0.04

fl1400 1400 5 45 174877 598 174877 21.71 141453 175741 19.51 0.49

fl1400 1400 10 33 100601 140 100601 27.82 84095 101478 17.13 0.87

fl1400 1400 20 24 57191 24 57191 30.64 50801 58584 13.29 2.44

u1432 1432 5 41 1210126 412 1210126 205.9 1179730 1210482 2.54 0.03

u1432 1432 10 26 849759 172 849759 147.4 834492 850300 1.86 0.06

u1432 1432 200 58 159887 22 159887 27.49 159887 159887 0 0.00

u1432 1432 300 43 123689 21 123689 24.55 123689 123689 0 0.00

u1432 1432 500 36 93200 10 93200 7.21 93200 93200 0 0.00

v1748 1748 5 59 4479421 3870* 4479421 45.9 4199630 4482483 6.31 0.07

v1748 1748 10 478 2983645 4245 2983645 74.37 2790800 2985774 6.53 0.07

v1748 1748 200 22 390350 20 390350 8.9 340493 428248 20.49 9.71

v1748 1748 300 24 286039 24 286039 3.41 262880 299649 12.27 4.76

v1748 1748 400 155 221526 22 221526 6.96 211006 229846 8.2 3.76

v1748 1748 500 74 176986 22 176986 9.05 171925 177229 2.99 0.14

d2103 2103 5 96 1005136 2872* 1005136 146.92 902993 1005201 10.17 0.01

d2103 2103 10 260 687321 3143 687321 233.98 595052 687891 13.5 0.08

d2103 2103 20 733 482926 1759 482926 988.04 448603 484660 7.44 0.36

d2103 2103 200 1828 117753 55 117753 46.96 116410 118620 1.86 0.74

d2103 2103 300 1133 90471 305 90471 30.45 89705 90537 0.92 0.07

d2103 2103 400 235 75356 8917 75356 40.84 75004 75368 0.48 0.02

pcb3038 3038 5 1114 1777835 109* 1777835 566.61 1625920 1779865 8.65 0.11

pcb3038 3038 10 134 1211704 64* 1211704 1102.6 1046490 1213089 13.73 0.11

pcb3038 3038 200 2562 237399 564 237399 279.31 227578 240569 5.4 1.34

pcb3038 3038 300 2977 186833 274 186833 169.78 180167 187162 3.74 0.18

pcb3038 3038 400 454 156276 106 156276 104.06 151232 156753 3.52 0.31

pcb3038 3038 500 704 134798 115 134798 106.84 130757 135435 3.45 0.47

Table 6: Comparison of the sequential approximate approach to other
solving methods for selected TSPLIB benchmarks
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7. Conclusions

We have presented a dynamic method for the approximate solving of large
p-median problem instances. The method is based on step-by-step improving
the anticipated distance relevance, and on the concept of the dividing points
which distinguish the suggested method from other approaches based on the
radial formulation of the p-median problem. Our suggested method proved
to be very efficient as far as the accuracy is concerned, when solving the
instance up to one thousand users locations or middle and larger instances
originated from real transportation networks.

The comparison of the suggested method to other approaches performed
with middle and large benchmarks shows that it can be taken as a compro-
mise approach enabling a trade-off between the accuracy and computational
time. It was found that in most cases the suggested method finishes its search
in smaller computational time than each of the compared methods, and, in
addition, the computational time was better in order in several cases. There-
fore, we can conclude that the proposed method is a suitable complement
to the state-of-the-art methods. The main contribution of the suggested
approach lies in its simple implementation without the necessity of program-
ming several algorithms. Just two different models are enough to obtain a
good solution in a short time. Furthermore, common optimization tools can
be used instead of special ones.

Further research connected with the suggested sequential approach will
be focused on the initial stage of the approach, where we found a possibility
of making the computational process more efficient by a suitable adjustment
of the mentioned parameter T or by the development of other forms of the
distance relevance estimation.
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Highlights

• We study the public service system design formulated as the p-median
problem.

• We focus on the approximate radial approach using dividing points.

• To improve the accuracy, a sequential method is introduced.

• Presented approach enables simple implementation in common optimiza-
tion software.

• The proposed method is a suitable complement to the state-of-the-art
methods.
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