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Abstract—Cloud storage services like Dropbox, Google Drive,
and OneDrive, to cite a few, are becoming an increasingly “vital”
tool in our everyday life. Unluckily, these services can incur large
network overhead in different usage scenarios. To reduce it, these
systems utilize several techniques like source-based deduplication,
chunking, delta compression, etc. One of these techniques is sync
deferment, which relies on the packing of updates to intentionally
defer the synchronization process for some time, and increase the
volume of useful data per overhead byte. The scientific literature
has shown this technique to be very helpful, though there are still
some limitations on current solutions. To resolve them, we present
here a new adaptive sync deferment method, that is comparable
to the current state of the art in terms of network overhead, but
is also able to minimize the file synchronization time up to12X.

Index Terms—Personal Cloud storage, file sync deferment.

I. I NTRODUCTION

A S a tool for personal storage and file synchronization,
cloud storage services like Dropbox, OneDrive or Google

Drive have become part of our everyday life. In these systems,
the process of synchronizing a file requires of several metadata
and data transfers between the cloud servers and the end user
devices. To reduce the network overhead, these services use a
suite of tools like delta compression, chunking, etc. [1], [2].

One of these optimizations, and the subject of this letter, is
sync deferment. Sync deferment consists of batching updates to
intentionally defer the sync process for some time. In this way,
the client can artificially increase the amount of useful data per
sync operation, and hence, diminish the network overhead [1].
This has proven to be very effective to cope with frequent file
modifications [3]. The authors of [1], however, discovered that
simple sync deferment based on static thresholds could be not
helpful. To wit, they found that by using afixedsync deferment
time (not tunable by the user), the network overhead could be
of several orders of magnitude larger than the amount of useful
data in some situations. To address this issue, they proposed an
adaptive sync deferment(ASD) technique that adjusts the sync
deferment time based on theinter-update time.

As a part of our ongoing process of implementing an open-
source cloud storage service based on [2], we carefully studied
the ASD algorithm, and found that in some cases, it may render
long synchronization delays. Such a finding spurred us to come
up with a novel deferment algorithm that we contribute here.
While it is comparable to ASD in terms of network overhead,
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its distinguishing feature is that it is also capable ofminimizing
the synchronization delay, up to12X compared with ASD. This
translates into a better user experience, and less conflicts. The
reason is that we study another dimension beyond inter-update
time: the data size of updates. Combining both metrics, we can
operate with the data rate instead, and adjust the deferral time
to the minimum necessary to presumably collect enough useful
data, and thus deliver a low network overhead.

II. BACKGROUND

A. Network overhead

Throughout the paper, we will utilize theTUE metric [1] to
quantify the network overhead.TUE stands forTraffic Usage
Efficiency, which is defined as:

TUE =
Total sync traffic
Data update size

,

where thedata update sizerefers to the size of the altered bits
in the update due to file creation, modification or removal. It
intuitively signals the network overhead from the user side.

B. Adaptive Sync Deferment

We describe theadaptive sync deferment(ASD) algorithm
presented in [1]. To the best of our knowledge, ASD is the only
algorithm in the literature thatadaptivelyadjusts the deferment
time. We briefly revisit it here. It works as follows:

Upon thei th update at timeti, the idea behind ASD is to
adaptively tune the sync deferment time windowTi, such that
if the next update falls within the rangeti to ti +Ti, then it is
deferred and marked as pending in the client. Otherwise, all the
pending updates are pushed to the cloud backend. Specifically,
Ti is tuned in an iterative manner as an EWMA (Exponentially
WeightedMoving Average) controller:

Ti = min ((1 − ω)Ti−1 + ω∆ti + ǫ,Tmax) , (1)

where∆ti is the inter-update time between the (i-1)th and the
i th data updates, andǫ ∈ (0,1.0) is a small constant that ensures
Ti to be slightly longer than∆ti in a small number of iteration
rounds.Tmax is a constant representing an upper bound onTi,
to prevent a largeTi from harming user experience due to long
sync delays.

By a simple inspection of (1), it is easy to see that ASD does
not account for the size of updates. It focus only on one single
dimension:inter-update time. Although this metric is sufficient
to reduce theTUE, it does not always minimize the sync delay.
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I II. RATE-BASED SYNC DEFERMENT

Although it has been seen in [1] that ASD outperforms sync
deferment algorithms based on static values (e.g., the number
of uncommitted bytes), it only considers an EWMA estimator
of the inter-update time as the deferment criteria. And hence, it
neglects an important dimension:the size of updates. TheTUE
metric, however, measures the traffic overhead. Consequently,
what should be key for a sync deferment scheme should be to
accumulate a sufficiently large number of unsynced bytes such
thatTUE was close to1, yet delivering a short synchornization
delay. With time alone, it is very difficult to achieve this, as we
demonstrate in the evaluation. It is also necessary to consider
the count of deferred bytes. Put another way, when the number
of deferred bytes guarantees a smallTUE, it does not yet make
sense to wait for a new update, but to trigger a sync operation
with the cloud backend as soon as possible.

A. Trade-off between TUE and synchronization time

It is clear that a sync deferment algorithm able to hold good
levels on both parameters is still missing. This task is not easy.
There is a trade-off between both parameters: when one tries
to minimize one dimension, the other can grow uncontrollably.

To better understand this, pretend now that the dimension to
optimize is the synchronization delay. Clearly, this will benefit
user experience, since any modification to a file will be quickly
propagated to the unsynced devices. However, it will impose a
huge overhead on the system, because the count of unsynced
bytes will be typically small. On the other hand, suppose now
that objective is to decrease the network overhead. This would
require deferring updates in order to transmit more useful bytes
per overhead byte. Depending on to what extent, however, the
synchronization delay could become intolerably long, and for
instance, preclude services such as collaborative file editing.

To give a sense of this trade-off, we investigated the impact
of sync deferment delay onTUE in Ubuntu One (UB1), a real
cloud storage service. Concretely, we randomly picked10, 000

client sessions from the publicly available trace [4]. Then, for
each client session, we recorded the resultingTUE obtained by
varying the sync deferment threshold from30 to 120 seconds.
The resultingTUE values were averaged to produce Fig. 1.

Since the UB1service shut down on July2014, we could not
use its desktop client to empirically measure theTUE. Instead,
to approximate the resultingTUE as a function of the amount
of deferred data, we performed a small measurement analysis
of Dropbox similar to that in [1]. The idea was pretty simple.
To approximate its realTUE, we measured the resultingTUE
when adding files of different sizes to the sync folder. To avoid
any bias, we used binary,non-compressiblefiles, ranging from
1 B to 100 MB, so that theTUE can be simply approximated
as the ratio between the monitored network traffic after every
file addition and the file size. Actually, we got similar results to
those listed in [1], [3], with aTUE of ≈ 37 for 1 KB files, and
of ≈ 1.1 for 100 MB files. As a result of this measurement, we
could return aTUE value for every potential size of deferred
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Fig. 1. TUE as a function of sync deferment time in UB1.

data by means of curve interpolation, and thus produce Fig. 1.
We also used the interpolatedTUE curve in our evaluation.1.

As can be seen in this figure, the longer the client waits to
send the pending updates to the cloud, the shorter the TUE is.
The important observation to be made is that deferring updates
too much is not of much utility. Beyond a certain point,TUE
does not reduce significantly. This suggests thatas soon as the
size of the deferred updates yields a small TUE, it is better off
to push them to the cloud.Almost surely, waiting for the next
update will bring no much benefit. ASD cannot exploit such a
trade-off well. For this reason, we devised the RSD algorithm.

B. TheRSD algorithm

Given a target network overheadTUE, our major objective
is to minimize the synchronization time. To this end, instead of
adapting the sync deferment time according to the inter-update
time as in ASD, we do so by turning attention onto theupdate
rate, defined asR= b/∆t, whereb is the total number of bytes
accumulated from local updates over certain time interval∆t.
By estimating the rateR, we can dynamically adjust the sync
deferment delay to the data generation rate of a user, so that it
can be shortened if it is expected that the targetedTUE will be
fulfilled soon according to the predicted rate. This is the reason
why our algorithm is calledrate-based sync deferment(RSD).

In practice, our scheme expresses the overhead objective as
the number of unsynced bytes necessary to accumulate in order
to yield an overhead equal or lower thanTUE. We denote this
quantity asBTUE . Note thatBTUE

= (Total sync traffic)/TUE.
To estimate the rate, RSD utilizes an EWMA predictor. This

means that upon thei th update, RSD estimates the current rate
Ri as an average between the value of the last estimationRi−1,
and the current observationbi/∆ti such that:

Ri = (1 − ω)Ri−i + ω
bi
∆ti
, (2)

where∆ti is the inter-update time between the (i-1)th and the
i th data updates,bi is the size of thei th update in bytes, andω
is the weighting factor that shapes its memory. With the value
of Ri at hand, then RSD calculates the sync deferment timeTi
asTi = B

TUE−BACC

Ri
, i.e., as the number of bytes still needed to

amass from future updates (BTUE−BACC) divided byRi, where
BACC is a byte counter that tracks the size of all updates since

1All the experiments in this letter were performed on a commodity machine:
Intel Core i5-4440 3.10GHz CPU,8 GB RAM, connected to a 1 GbE LAN.
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the last sync operation with the cloud backend. After syncing
the pending updates,BACC is always reset to0.

As in ASD, a sync operation is started with the cloud servers
when the next update falls outside the rangeti to ti +Ti. Also,
to ensure that updates do not remain unsynced for a long time,
RSD uses a timerT . WhenT expires, a new sync operation is
triggered, irrespective of whether the targetTUE is met or not.
Note that this is different from limiting the maximum allowed
value for each individualTi as in ASD. Indeed, ASD does not
ensure that the deferred updates are eventually applied. This is
easy to see by simply inspecting (1). If inter-update times were
always< Tmax (e.g., as a result of a frequent file modification),
ASD could defer the updates forever if EWMA converged to a
stationary value. In RSD, we addressed this issue from the start
by using an independent timer, which is re-programmed upon
the arrival of the first update after the last sync operation. The
complete pseud code is listed in Algorithm 1.

Algorithm 1 RSD algorithm
upon i th update happensdo

if BACC
= 0 then

set timerT to Tmax seconds
∆ti := ti − ti−1 ⊲ compute the inter-update time
Ri := (1 −ω)Ri−i +ω

bi

∆ti
⊲ update the EWMA estimator of

the rate
BACC := BACC

+ bi
if Ti−1 < ∆ti then

push the deferredBACC bytes to the cloud;BACC := 0

else
Ti := B

TUE−BACC

Ri

upon timer T expiresdo
push the deferredBACC bytes to the cloud;BACC := 0

C. Analytical Comparison:RSD vs. ASD

Here we compare analytically the performance of RSD with
ASD to better understand the benefits of sync deferment based
on the data generation rate. For this purpose, we will adopt the
“ X KB/X sec” pattern that was originally posited in [1], [5] to
validate ASD. As in [5], we will set the weight factorω = 1/2

to simplify our discussion. From the analysis in [5], it follows
easily the following corollary:

Corollary 1: Under the“X KB/X sec” pattern,ASD triggers
at most k= lg X + 1 data transfers to the cloud.

Indeed, it is easy to see that these data transfers occur at the
first k updates, i.e., while the value ofTi converges toX. From
that point onwards, (1) guarantees thatTi > X, for i > k2, and
hence, subsequent file updates may stay in pending state at the
desktop client for a long time, even forever, yielding very long
synchronization times.

With RSD, however, the value ofTi decreases progressively
towards0, to ensure that when the size of the deferred updates
reachesBTUE bytes, a sync operation with the cloud backend
is always started. This minimizes the synchronization time yet
delivering a smallTUE:

2Under the “X KB/X sec” pattern, the inter-update time is∆ti = X sec∀i.
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Fig. 2. ASD vs. RSD under a regular triangular pattern.

Theorem 1: Under the“X KB/X sec” pattern,RSD delivers
the minimum synchronization delay to satisfyTUE.

Proof: Let BTUE denote the number of bytes necessary
to accumulate to meet the objectiveTUE. To verify that RSD

minimizes the synchronization time, we must prove that there
is no data transfer to the cloud until the targetTUE is fulfilled.
First, we note that the observed rateri = X

X
= 1 for all updates.

Similar to [5], note that we assumeBTUE
< Tmax . Otherwise,

a sync operation would be triggered without reaching the target
TUE. Then, according to (2), we will have the seriesRk =
(

1 − 1
2k

)

, which gives the corresponding time window series:

Tk =
BTUE − kX

Rk

=

(

BTUE − kX
)

(

2k

2k − 1

)

. (3)

Recall that a sync operation is triggered only ifTk < X (where
X is the inter-update time). From (3), it is easy to see that this
inequality does not hold fork ≤ B

TUE

X
−1. Hence, a new sync

operation with the cloud will not be started until at leastBTUE

bytes are accumulated from the deferred updates, thus meeting
the targetTUE while yielding the minimum sync delay.

To sum up, under a regular pattern, RSD is able to minimize
the synchronization time, triggering a new sync operation with
the cloud only when the overhead is optimal. In contrast, ASD

triggers a logarithmic number of sync operations until reaching
a stable state, and then, it defers updates forever until there is
a significant change in the inter-update time. This behavior is
easy to see in the triangular pattern shown in Fig. 2, where the
bitsize of updates increases gradually up to80KBs to decrease
with the same speed. While RSD triggers a new sync operation
as soon asBTUE bytes has been buffered, spreading them over
time, ASD only triggers a final sync operation after adjustment
of the deferral time to the regular inter-update time, remaining
out-of-sync for110 seconds.

IV. EXPERIMENTAL COMPARISON

In practice, however, data update patterns are not so regular
as the “X KB/X sec” pattern. For this reason, we compared the
performance of both algorithms using real sessions from UB1

users [4]. From this trace3, and after some pre-processing, we
extracted7 random workloads4 corresponding to7 different

3The UB1 log trace contains the timestamp and the size of every update,
among other information.

4The workloads are available upon request.
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TABLE I
DETAILS OF WORKLOADS

Inter-update time (secs) Update size (MB)
Workload No. Updates 90%-tile Skewness Median CV

1 1, 653 16 3.24 2.74 1.41
2 5, 133 1 30.12 0.03 6.19
3 3, 463 7 18.2 0.40 4.53
4 736 61 1.02 0.81 0.28
5 505 49 3.13 5.54 0.67
6 441 234.6 1.96 5.01 0.67
7 730 125.1 −0.11 0.01 0.51

users. For clarity, we numbered them from1 to 7. Workloads
1− 5 corresponded to active users with inter-updates times of
a few seconds. Their purpose was to evaluate both algorithms
in the face of frequent of file modifications, which is the major
driving force for sync deferment techniques. Workloads6 and
7 corresponded to “warm” users, and concretely, to users who
often made changes to their sync folder with a frequency that
exceeded120 sec. The goal of the last two workloads was to
evaluate the performance of RSD when the timerT expires.
More details about workloads can be found in Table I.
Metrics. BesidesTUE, we compared both algorithms in terms
of synchronization delay, which is the aspect that distinguishes
RSD from ASD. To this aim, we utilized the slowdown ratio
SRdefined asSR= TimeASD

TimeRSD
, whereTimeASD andTimeRSD are

the average lengths of deferment periods delivered by ASD and
RSD, respectively. Note thatSR= 1 if both algorithms perform
identically. A value ofSR> 1 quantifies how many times the
synchronization delay is larger in ASD compared with RSD.

Setup. The experimental setup was as follows. In both algo-
rithms, we set the weighting factorω to 1/2 in order to strike
a perfect balance between memory and agility.Tmax was set to
120 sec in both algorithms. For RSD, this meant that the timer
T was reset to “120” sec at the beginning of each deferment
period. As RSD depends also on the targetedTUE, we ran it
for 3 different values ofTUE: 1.2, 1.3 and 1.4, respectively.
This gave us a sense of the sensitivity of RSD to TUE.

In the experiment, we replayed the sequence of updates in
each workload. During each replay, we recorded two measures
on a per-deferment period basis: the length and resultingTUE
of each sync deferment interval. For each workload, the results
of both metrics were finally averaged to produce Fig. 3-4.

Results.As shown in Fig. 3, theTUE values of both ASD and
RSD are very similar in the workloads1−5. These workloads
are very intense, and show that both mechanisms are equally
effective in the reduction of the network overhead in the face of
frequent file modifications. For these workloads, RSD does not
appear to be sensitive to the prespecifiedTUE. This is a “good
news”, since it reduces the amount of potential “fine tuning”
decisions to be made in order to optimize RSD’s performance.

For workload6, RSD is only comparable to ASD for the
most loosenTUE value. The reason is that inter-update times
in this workload often exceeded the120 sec, and RSD ended
up issuing a new sync operation with the cloud servers without
attaining the targetedTUE in many occasions. However, such
a behavior is desirable as confirmed in Fig. 4. Thanks to timer
T , RSD yielded synchronization times between70X to 150X
shorter than ASD, which incurred intolerably long sync delays.
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Fig. 3. EmpiricalTUE of ASD and RSD for different targetTUE values.
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For workload7, both algorithms reported badTUE values.
The reason behind this is that times between updates were very
variable, alternating between long and short inter-update times,
which caused a slow response of the EWMA controller in both
algorithms. Even in this pessimistic setting, RSD was capable
of decreasing a little bit the sync time as can be seen in Fig. 4.

For workloads1 − 5, RSD improved sync delays between
2X to 12X relative to ASD with equivalentTUE values, which
undeniably demonstrates the superior performance of RSD.

V. CONCLUSION

Cloud storage services like Dropbox and Google Drive are
becoming very popular these days. To optimize network traffic,
these storage services rely on techniques like sync deferment.
Literature so far has proven this technique to very useful in the
face of frequent file modifications. However, there still exist
some performance weaknesses on current implementations. To
cope with them, this letter presents an innovative adaptive sync
deferment algorithm, which is comparable to the current state
of the art in terms of overhead, but as a distinguishing feature,
it also optimizes file synchronization delays. Our experimental
results report improvements between2X to 12X in sync delay.
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