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Abstract—Cloud storage services like Dropbox, Google Drive, its distinguishing feature is that it is also capablefimizing
and OneDrive, to cite a few, are becoming an increasingly “vital”  the synchronization delay, up t@X compared with Ab. This
tool in our everyday life. Unluckily, these services can incur large angjates into a better user experience, and less conflicts. The

network overhead in different usage scenarios. To reduce it, these is that tud ther di ion b dint dat
systems utilize several techniques like source-based deduplication,r_(':‘ason IS that we study another dimension beyond inter-update

chunking, delta compression, etc. One of these techniques is syndime: the data size of updates. Combining both metrics, we can
deferment, which relies on the packing of updates to intentionally operate with the data rate instead, and adjust the deferral time

defer the synchronization process for some time, and increase the to the minimum necessary to presumably collect enough useful
volume of useful data per overhead byte. The scientific literature data. and thus deliver a low network overhead
has shown this technique to be very helpful, though there are still ’ ’

some limitations on current solutions. To resolve them, we present

here a new adaptive sync deferment method, that is comparable Il. BACKGROUND
to the current state of the art in terms of network overhead, but

is also able to minimize the file synchronization time up tol2X.  A. Network overhead

Index Terms—Personal Cloud storage, file sync deferment. Throughout the paper, we will utilize tHeU E metric [1] to
qguantify the network overheadUE stands forTraffic Usage

| INTRODUCTION Efficiency, which is defined as:

S a tool for personal storage and file synchronization, TUE - Jotal sync raffic

cloud storage services like Dropbox, OneDrive or Google Data update size

Drive have become part of our everyday life. In these systeMghere thedata update sizeefers to the size of the altered bits
the process of synchronizing a file requires of several metadg{ahe update due to file creation, modification or removal. It

and data transfers between the cloud servers and the end ysgitively signals the network overhead from the user side.
devices. To reduce the network overhead, these services use a

suite of tools like delta compression, chunking, €ftc¢. [1], [2]. _
One of these optimizations, and the subject of this letter, B Adaptive Sync Deferment

sync deferment. Sync deferment consists of batching updates tqye describe thedaptive sync defermei sp) algorithm
intentionally defer the sync process for some time. In this Wa¥resented i J1]. To the best of our knowledgespdis the only
the client can artificially increase the amount of useful data P&lgorithm in the literature thatdaptivelyadjusts the deferment
sync operation, and hence, diminish the network overti€ad [glne. We briefly revisit it here. It works as follows:
This has proven to be very effective to cope with frequent file Upon theith update at time;, the idea behind AD is to
modifications[[8]. The authors df|[1], however, discovered th@laptively tune the sync deferment time wind@wsuch that
simple sync _deferment based on static_thresholds could be pQhe next update falls within the randgto t; + T;, then it is
helpful. To wit, they found that by usingfexedsync deferment geferred and marked as pending in the client. Otherwise, all the
time (not tunable by the user), the network overhead could Bgnding updates are pushed to the cloud backend. Specifically,
of several orders of magnitude larger than the amount of usefuls tyned in an iterative manner as an EWMA (Exponentially
data in some situations. To address this issue, they proPOSG@\@PghtedMoving Average) controller:
adaptive sync deferme(A sD) technique that adjusts the sync
deferment time based on thater-update time. T; = min ((1 — w)T;—1 + WAL + € Tax), Q)

As a part of our ongoing process of implementing an open- ) ) _ )
source cloud storage service basedon [2], we carefully studi¥fereAt is the inter-update time between theljth and the
the AsD algorithm, and found that in some cases, it may rendgf data updates, ande (0,1.0) is a small constant that ensures
long synchronization delays. Such a finding spurred us to corhel© be slightly longer thant; in a small number of iteration
up with a novel deferment algorithm that we contribute her2Unds.Tr.x is & constant representing an upper bound;on

While it is comparable to A in terms of network overhead, {0 Prevent a largd; from harming user experience due to long
sync delays.
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1.44}
Although it has been seen in [1] thatsA outperforms sync

deferment algorithms based on static values (e.g., the number |

w
of uncommitted bytes), it only considers an EWMA estimator P tazr
of the inter-update time as the deferment criteria. And hence, it 141y
neglects an important dimensiahe size of updates. THEJE 14t
metric, however, measures the traffic overhead. Consequently, 139
what should be key for a sync deferment scheme should be to 80 40 S0 60 70 8 90 100 110 120

- Fixed Sync Deferment Time (Secs)
accumulate a sufficiently large number of unsynced bytes such

thatTUE was close td, yet delivering a short synchornizationrig. 1. TUE as a function of sync deferment time in UBI1.

delay. With time alone, it is very difficult to achieve this, as we

demonstrate in the evaluation. It is also necessary to consider ] ) ]

the count of deferred bytes. Put another way, when the numi§&ta by means of curve interpolation, and thus produce Fig. 1.
of deferred bytes guarantees a srTllE, it does not yet make We also used the interpolatddJ E curve in our evaluatiofl.

sense to wait for a new update, but to trigger a sync operationAS €an be seen in this figure, the longer the client waits to
with the cloud backend as soon as possible. send the pending updates to the cloud, the shorter the TUE is.

The important observation to be made is that deferring updates
too much is not of much utility. Beyond a certain poifnt) E
does not reduce significantly. This suggests #zasoon as the
A. Trade-off between TUE and synchronization time size of the deferred updates yields a small TUE, it is better off
] ) to push them to the cloud\Imost surely, waiting for the next
It is clear that a sync deferment algorithm able to hold go%date will bring no much benefit. o cannot exploit such a

levels on both parameters is still missing. This task is not eagyqe-off well. For this reason. we devised theRalgorithm.
There is a trade-off between both parameters: when one tries

to minimize one dimension, the other can grow uncontrollabl

To better understand this, pretend now that the dimensionéb T_he Rsp algorithm __ ) o
optimize is the synchronization delay. Clearly, this will benefit Given a target network overheddE, our major objective
user experience, since any modification to a file will be quickly {©© minimize the synchronization time. To this end, instead of
propagated to the unsynced devices. However, it will impose2gapting the sync deferment time according to the inter-update
huge overhead on the system, because the count of unsyrf#¥8§ as in #8D, we do so by turning attention onto thedate
bytes will be typically small. On the other hand, suppose nd@te. defined ag = b/At, wherebis the total number of bytes
that objective is to decrease the network overhead. This wo@gcumulated from local updates over certain time inteAtal
require deferring updates in order to transmit more useful byt8¥ estimating the rat&®, we can dynamically adjust the sync
per overhead byte. Depending on to what extent, however, figferment delay to the data generation rate of a user, so that it
synchronization delay could become intolerably long, and f6R" Pe shortened if it is expected that the targ@tgé will be

instance, preclude services such as collaborative file editin§/Ifilled soon according to the predicted rate. This is the reason
\@py our algorithm is calledate-based sync defermefRsD).

To give a sense of this trade-off, we investigated the impa . T
In practice, our scheme expresses the overhead objective as

of sync deferment delay ohUE in Ubuntu One (UB1), a real the number of unsynced bytes necessary to accumulate in order
cloud storage service. Concretely, we randomly pick&d00 _ —2 .
g Y Y pici P yield an overhead equal or lower théit) E. We denote this

client sessions from the publicly available track [4]. Then, 6 ) TUE TUE i
each client session, we recorded the resuffibiE obtained by duantity asB™=*. Note thatB' = = (Total sync traffic)T UE.

varying the sync deferment threshold fraito 120 seconds. 10 estimate the rate, $d utilizes an EWMA predictor. This
The resultingT UE values were averaged to produce Fi. 1 means that upon th¢h update, RD estimates the current rate
R: as an average between the value of the last estim&iqn

Since the UBIlservice shut down on JuB014, we could not and the current observatidn/At; such that:

use its desktop client to empirically measure The¢E. Instead,
to approximate the resultinpUE as a function of the amount R =(1-wR_i+w b; ?)

of deferred data, we performed a small measurement analysis At

of Dropbox similar to that in[[1]. The idea was pretty simplewhereAt; is the inter-update time between theljth and the

To approximate its realUE, we measured the resultifdJE  th data updatesy; is the size of théth update in bytes, and
when adding files of different sizes to the sync folder. To avoig the weighting factor that shapes its memory. With the value
any bias, we used binargon-compressibléles, ranging from of R; at hand, then BD calculates the sync deferment tirfie

1 B to 100 MB, so that theTUE can be simply approximated 5T, — BTU';BACC, i.e., as the number of bytes still needed to

as the ratio between the monitored network traffic after ever¥n;SS from fluture updateBTUE —BACC) divided byR;, where

file addition and the file size. Actually, we got similar results tQ , .. byt ter that tracks the size of all updates si
those listed in[[],[[B], with & UE of ~ 37 for 1 KB files, and IS a byte counter that tracks the size of all updates since

of ~ 1.1 for 100 MB files. As a result of th'§ me_asurement' WE 15|l the experiments in this letter were performed on a commodity machine:
could return ar UE value for every potential size of deferredntel Core i5-4440 3.10GHz CP8, GB RAM, connected to a 1 GbE LAN.
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the last sync operation with the cloud backend. After syncing

the pending update®°C is always reset to. :z 4 A

As in AsD, a sync operation is started with the cloud servers . A A Tianglewave
when the next update falls outside the rang® t; + T;. Also, g A |
to ensure that updates do not remain unsynced for a long time, 8 I* f
RsDuses atimer7. When.7 expires, a new sync operation is g0 i"; P
triggered, irrespective of whether the targ&tE is met or not. §40 - MA
Note that this is different from limiting the maximum allowed 30 R N
value for each individual; as in Asb. Indeed, AD does not ol t i O L4

0 20 40 60 80 100 120 140

ensure that the deferred updates are eventually applied. This is Time (Secs)

easy to see by simply inspectirid (1). If inter-update times were
always< T,..x (€.9., as a result of a frequent file modification)fig. 2. Asb vs. Rsb under a regular triangular pattern.
AsD could defer the updates forever if EWMA converged to a
atony e I B i adesse 01 e ot 1€ S cr 1 Undor X KB e ptensocever
the arrival of the first update af,ter the last sync operation. T ee minimum synchronization delay to satSHE.
' Proof: Let B'VE denote the number of bytes necessary

complete pseud code is listed in Algorittith 1. to accumulate to meet the objectiV&J E. To verify that RSD

Algorithm 1 Rsp algorithm minimizes the synchronization timg, we must prove ihat there
upon ith Update happenso is no data transfer to the cloud until the targ&tE is fulfilled.
P if BACC = 0 then First, we note that the observed rate= X = 1 for all updates.
set timer.Z to T, seconds Similar to [5], note that we assun& VZ < T,,,.. Otherwise,

a sync operation would be triggered without reaching the target

At =t -t > compute the inter-update time ) . o
R = (1-w)R_; + ‘Uf_f,. » update the EWMA estimator of TU E.]Then,.accolrdmg to{2), we WI|.| hai/e the- seriBs =
the rate (1 - 27) which gives the corresponding time window series:
BACC = BACC + b
L TUE _ k
it Tiy < At then T,= B kX _ (B877F — kx| ( 2 ) 3)
push the deferreBA°C bytes to the cloudB”° := 0 Re 2k -1
else S Recall that a sync operation is triggered onlif;if< X (where
To= 5 X is the inter-update time). Frorl(3), it is easy to see that this
. g ; ; BTUE
upon timer .7 expiresdo inequality does not hold fok < *— —1. Hence, a new sync

push the deferre®”°¢ bytes to the cloudBA°¢:=0  operation with the cloud will not be started until at leB§t'*
bytes are accumulated from the deferred updates, thus meeting
the targefTUE while yielding the minimum sync delay. m
To sum up, under a regular patternsiris able to minimize
the synchronization time, triggering a new sync operation with
Here we compare analytically the performance sbivith  the cloud only when the overhead is optimal. In contrastpA
AsbD to better understand the benefits of sync deferment baggggers a logarithmic number of sync operations until reaching
on the data generation rate. For this purpose, we will adopt thetaple state, and then, it defers updates forever until there is
“X KB/X sec” pattern that was originally posited iri [1]] [5] tog significant change in the inter-update time. This behavior is
validate Asp. As in [5], we will set the weight factow = 1/2  easy to see in the triangular pattern shown in Eig. 2, where the
to simplify our discussion. From the analysisin [5], it followsyitsize of updates increases gradually ug@&Bs to decrease
easily the following corollary: with the same speed. Whiles® triggers a new sync operation
Corollary 1: Under the*X KB/X sec” patternAsD {riggers  as soon a8’ U~ hytes has been buffered, spreading them over
at most k=1g X + 1 data transfers to the cloud. time, AsD only triggers a final sync operation after adjustment

_Indeed, itis easy to see that these data transfers occur atdhhe deferral time to the regular inter-update time, remaining
first k updates, i.e., while the value of converges tX. From  qyt-of-sync for110 seconds.

that point onwards[{1) guarantees tiat- X, fori > k4, and
hence, subsequent file updates may stay in pending state at the IV. EXPERIMENTAL COMPARISON

kt lient for a long time, even forever, yielding very lon .
ger?ch?gncizZtionoti;gs g time, even forever, yielding very long In practice, however, data update patterns are not so regular
y ' as the X KB/ X sec” pattern. For this reason, we compared the

With RsD, however, the value Of; decreases progressively : ) :
. erformance of both algorithms using real sessions from UB1
towards0, to ensure that when the size of the deferred updates .

and after some pre-processing, we

. . r . From this tr
reachesB’VE pytes, a sync operation with the cloud backen sers([H]. From this tra . .
. C ST extracted7 random workloadhb corresponding td7 different
is always started. This minimizes the synchronization time yét

C. Analytical ComparisonRsD vs. ASD

delivering a smallTUE: 3The UBI log trace contains the timestamp and the size of every update,
among other information.
2Under the X KB/X sec” pattern, the inter-update timeds; = X secVi. 4The workloads are available upon request.
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TABLE | 25
DETAILS OF WORKLOADS 2.25| IERSD TUE = 1.2
> I RSD TUE = 1.3
Inter-update time (secs) [ Update size (MB) 175 :If:zg TUE =14
Workload | No. Updates| 90%-tile Skewness | Median CV 15 LJas
1 1,653 16 3.24 2.74 1.41 3 125
2 5,133 | 30.12 0.03 6.19 = 1
3 3,463 7 18.2 0.40 4.53 075
4 736 61 1.02 0.81 0.28 )
5 505 49 3.13 5.54 0.67 05
6 441 234.6 1.96 5.01 0.67 °-2§
7 730 125.1 -0.11 0.01 0.51 1 2 3 4 5 6 7

Workload

users. For clarity, we numbered them frdnto 7. Workloads Fig. 3. EmpiricalTUE of Asp and Rsp for different targefTUE values.
1 -5 corresponded to active users with inter-updates times of

a few seconds. Their purpose was to evaluate both algorithms 150

in the face of frequent of file modifications, which is the major 130 -
driving force for sync deferment techniques. Workloadsnd 110 =%:ﬁ§
7 corresponded to “warm” users, and concretely, to users who oo UEEM

often made changes to their sync folder with a frequency that
exceeded 20 sec. The goal of the last two workloads was to
evaluate the performance ofsR when the timer7 expires.
More details about workloads can be found in Tdble I.
Metrics. BesidesT UE, we compared both algorithms in terms
of synchronization delay, which is the aspect that distinguishes
Rsp from Asb. To this aim, we utilized the slowdown ratiorig. 4. Slowdown ratio §R) of Asp relative to Rsp for different TUEs.
SRdefined asSR= 2;"1—’;’;:5 whereTimeysp andTimersp are

the average lengths of deferment periods delivered &y @nd

RsD, respectively. Note th& R= 1 if both algorithms perform _ For workload7, both algorithms reported batUE values.
identically. A value ofSR> 1 quantifies how many times the The reason behind this is that times between updates were very

variable, alternating between long and short inter-update times,
) which caused a slow response of the EWMA controller in both
Setup. The experimental setup was as follows. In both alggggorithms. Even in this pessimistic settingsiRwas capable
rithms, we set the weighting facter to 1/2 in order to strike o gecreasing a little bit the sync time as can be seen iriFig. 4.
a perfect balance between memory and agilify,, was set to For workloads! — 5, Rsb improved sync delays between
120 sec in both algorithms. For $, this meant that the timer 5x 15 12X relative to Asp with equivalenfT UE values, which

7 was reset to “120” sec at the beginning of each defermephdeniably demonstrates the superior performancesaf. R
period. As 5D depends also on the target€ E, we ran it

for 3 different values offUE: 1.2, 1.3 and 1.4, respectively. V. CONCLUSION
This gave us a Sense of the sensitivity atkto TUE. . Cloud storage services like Dropbox and Google Drive are
In the experiment, we replayed the sequence of updateso|en

each workload. During each replay, we recorded two measumgcoming very popular these days. To optimize network traffic,
on a per-deferment period basis: the length and resultaE se storage services rely on techniques like sync deferment.

: iterature so far has proven this technique to very useful in the
of each sync deferment interval. For each workload, the resm#ft P N y

. : ace of frequent file modifications. However, there still exist
of both metrics were finally averaged to produce Eigl 3-4. N : .
some performance weaknesses on current implementations. To

Results.As shown in Fig[B, th& UE values of both Apand cope with them, this letter presents an innovative adaptive sync
RsD are very similar in the workloads— 5. These workloads deferment algorithm, which is comparable to the current state
are very intense, and show that both mechanisms are equallyhe art in terms of overhead, but as a distinguishing feature,
effective in the reduction of the network overhead in the face itfalso optimizes file synchronization delays. Our experimental
frequent file modifications. For these workloadstRloes not results report improvements betweBxto 12X in sync delay.
appear to be sensitive to the prespecifi&E. This is a “good

Workload

synchronization delay is larger ing® compared with RD.

news”, since it reduces the amount of potential “fine tuning” REFERENCES
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. . File Synchronization,” inMiddleware, 2014, pp. 49-60.
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