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ing and management capabilities in providing 
high-performance communications services.

Considering the complex environment of 
heterogeneous networks, at least two main 
issues need to be considered: 1) considerable 
amounts of data with high data dimension-
ality; 2) large number of protocols or use 
cases with complex contexts. To handle high 
volume and dimensionality of data, potential 
algorithms must achieve high time and mem-
ory efficiencies to fit off-the-shelf hardware 
configurations. On one hand, enumerating 
and modeling all possible contexts and using 
cases in heterogeneous networks are next to 
impossible. Conversely, the drive towards 
automatic network monitoring aims to greatly 
reduce or remove the need for human input in 
the processing part of network monitoring. To 
operate in an automatic manner and without 
expert domain knowledge input, general-pur-
pose algorithms remain a requirement [4], [5] 
for discovering potentially interesting patterns 
and contexts. The most appropriate techniques 
lie in the domains of frequent itemset discov-
ery [7], [8], [9], [10], association rule deduc-
tion [14], sequential pattern mining [15], [16], 
[17], [18], and temporal pattern mining [19], 
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ment of heterogeneous wireless communica-
tion networks. This paper presents a multilevel 
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matic network management by discovering 
interesting patterns from telecom network 
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covery over data streams, association rule 
deduction, frequent sequential pattern mining, 
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processing platforms to achieve high-volume 
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I. INTRODUCTION

Recent advances in telecommunication net-
work technologies and their evolution [1], [2], 
[3] to heterogeneous networks have intensified 
the need for more efficient network monitor-
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quirements, frequent temporal pattern mining 
can discover temporal patterns with greater 
accuracy. For each pattern discovery approach, 
parallel processing mechanisms (e.g., Hadoop 
[24] and Spark [25]) can be deployed to han-
dle high volumes of data.

This paper presents an architecture to 
support the combination of tasks required to 
discover interesting patterns in high-volume 
high-dimensionality data. This architecture 
can efficiently achieve pattern mining for 
heterogeneous network monitoring data and 
discover potentially interesting patterns by 
leveraging and combining existing frequent 
itemset discovery over data stream, associa-
tion rule deduction, frequent sequential pattern 
mining, and frequent temporal pattern mining 
techniques within distributed processing plat-
forms.

II. CONTEXT OF THE ARCHITECTURE

The presented novel multi-level pattern min-
ing architecture forms part of a larger auto-
matic network management system [6]. To 
achieve this goal, a pattern discovery work 
package strives to extract sequential event pat-
terns from network monitoring data, especially 
in the context of ever-increasing management 
data volumes, which is the subject of this pa-
per.

2.1 Overall architecture

The overall project architecture is shown in 
Fig. 1. The architecture is made up of five 
main modules: a dimension reduction module 
(DRM), an episode discovery module (EDM), 
an episode classification module (ECM), a pat-
tern matching and prediction module (PMM), 
and a recommender system module (RSM).

1. The DRM [24] greatly reduces the di-
mensionality of the data and filters out most 
noisy events in the data stream to reduce the 
computation complexity of EDM and PMM.

2. The EDM discovers and identifies epi-
sodes or sequential patterns from the dimen-
sion-reduced event stream and then exports 
sequential pattern models into the Pattern 

[20], [21], [22], [23].
When dealing with large volumes of data 

with high dimensionality, providing admin-
istrators with timely response is necessary. 
Thus, real-time processing is the primary 
challenge for this work on pattern mining. To 
achieve this goal, this work proposes to mine 
multilevel patterns according to different time 
efficiencies by incorporating frequent itemset 
mining, frequent sequential pattern mining, 
and frequent temporal pattern mining. In 
simple terms, frequent itemsets are frequent 
combinations of unique items supported by 
transactions [7]; moreover, frequent sequential 
patterns not only comprises all the items but 
also comprises those in the correct sequence 
[17]. Furthermore, frequent temporal patterns 
extend frequent sequential patterns by also 
considering the time between elements and the 
sequence of elements [22]. Of these mining 
tasks, frequent itemset mining requires the 
least time, memory, and computing resources 
and is often sufficient for applications with 
relaxed pattern accuracy requirements or strict 
time requirements. In addition, frequent item-
set mining can often be used as a precursor 
to other mining tasks while supporting faster 
analysis and summarization for some use cas-
es and contexts. Frequent sequential pattern 
mining has high time and memory require-
ments but achieves better pattern accuracy, 
thus supporting applications with high accura-
cy requirements but with less constrained re-
sponse times. With high time and memory re-

Fig.1  Overall system architecture



China Communications • July 2016 110

accuracy/overhead trade-offs is flexible and 
benefi cial.

The EDM is made up of fi ve sub-modules: 
the Data Analyzer, Mining Controller, Data 
Miner, Combiner, and the Episode Analyzer. 
These five sub-modules cooperate with each 
other to accomplish the task of the EDM by 
fulfi lling their functions in turn. A fl owchart of 
the EDM is presented in Fig. 3.

Model Library (PML), thus updating the set of 
discovered sequential patterns for the via the 
ECM.

3. The ECM models and classifi es the dis-
covered sequential patterns. Feedback from 
the ECM can help the DRM and the EDM op-
timize their parameter settings (such as trans-
action length and window size) to improve 
performance. The identifi ed pattern models are 
output to the PML for the PMM.

4. The PMM scans the trace stream and 
matches the partial pattern models (from 
PML) to predict interesting patterns in the data 
just before they occur. These predictions will 
be exported to the RSM.

5. In response to PMM matches of pattern 
prediction rules, the RSM (retrieves and ranks 
suggestions to avert, alleviate, or mitigate 
against the effect of predicted issues on the ba-
sis of historic actions, experience of network 
administrators, or best practice.

2.2 Multilevel pattern structure

As mentioned, we classify patterns, and asso-
ciated techniques into discover patterns, into 
three successive types: frequent itemsets, fre-
quent sequential patterns, and frequent tempo-
ral patterns. This classifi cation also establishes 
three different levels of patterns where mining 
tasks can be cascaded, as shown in Fig. 2.

2.3 Architecture of EDM

The task of the EDM is to constantly mine 
frequent episodes (pattern candidates) from 
dimension-reduced data streams. To facilitate 
distributed processing and to target and min-
imize time and memory consumption when 
mining frequent sequential patterns, the EDM 
adopts a three-level pattern structure. Frequent 
closed itemsets are fi rst discovered, then fre-
quent closed sequential episodes are mined 
based on the frequent closed itemsets, and 
fi nally, frequent closed temporal episodes can 
be selectively mined. This three-level pattern 
mining approach aims to reduce the discov-
ery of unnecessary frequent patterns thereby 
minimizing the overhead. Notably, outputting 
three different types of patterns with different 

Fig.2  Multilevel pattern structure

Fig.3  Flowchart of the EDM module
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III. EDM

1) Data Analyzer: As introduced, the Data 
Analyzer automatically determines a proper 
setting of parameters for the EDM module 
using statistics and feedback from DRM and 
ECM. Specifically, the Data Analyzer analyzes 
the dimension-reduced data by collecting and 
calculating essential characteristics of the 
data, such as average frequency of each event 
and the distribution of events. On the basis 
of the analysis, different data sub-streams of 
dimension-reduced for different contexts or 
use cases will be separated, and in some cases, 
data sub-streams shall be further divided into 
subgroups for parallel processing. Correspond-
ingly, decisions about parameters for these 
data sub-streams will be automatically and ac-
curately estimated and output after integrating 
feedback from DRM and ECM. Different sub-
streams may have different parameter settings, 
but different time sliding windows within the 
same sub-stream or sub-group share the same 
parameter setting. Splitting the data stream 
into different sub-streams is mainly based on 
the following considerations: First, different 
use cases usually have different episodes with 
different contexts, and the episodes that cross 
several use cases are usually meaningless. 
Thus, reorganizing the data according to dif-
ferent use cases or contexts before the process 
of episode mining is better. Second, different 
sub-streams of the data that originate from dif-
ferent use cases generally have different data 
characteristics/features; thus, different opti-
mized algorithm configurations may exist for 
mining episodes from different sub-streams. 
For example, consider two distinct telecom 
use cases, one where patterns related to indi-
vidual mobile users are sought and another 
that focuses on patterns related to individual 
fixed cells in a mobile network. Clearly, when 
separating the data stream into individual sub-
streams, a sensible approach is to partition the 
data in different ways, one where the data is 
partitioned by the user regardless of which cell 
they use and the other where the data are par-
titioned by cell regardless of users in the cell.

1. Data Analyzer: It determines appropriate 
configuration parameters for the data mining 
tasks (e.g., Min-Sup, window size, transaction 
length) and also determines if and how the 
stream could be split into sub-streams for par-
allel processing. For episode discovery in the 
EDM, automatic determination of algorithm 
settings is one of the significant challenges.

2. Mining Controller: After obtaining con-
figuration information from the Data Analyzer, 
the Mining Controller splits the dimension-re-
duced trace stream into sub-streams or sub-
groups and then assigns computation resources 
according to the configuration settings, such 
as I/O, memory and CPU, to each sub-stream 
or sub-group of the data. The Mining Control-
ler then recursively calls the Data Miner to 
process the datasets split into different sliding 
window views over sub-streams to discover 
frequent episodes based on parameter settings 
provided by the Data Analyzer.

3. Data Miner: As the core sub-module of 
the EDM, the Data Miner continuously dis-
covers frequent closed itemsets from each slid-
ing window view according to its parameter 
settings. In this sub-module, the NewMoment 
[12] algorithm implementation can be selected 
to handle this task.

4. Combiner: After discovering new fre-
quent closed itemsets from different sliding 
windows, the Combiner combines these fre-
quent closed itemsets to form an overall set 
of frequent closed itemsets with a uniform 
format for each sub-stream. Then, on the basis 
of these discovered frequent closed itemsets 
and their corresponding projected databases, 
both PrefixSpan [17] and HTPM [22] can be 
selected to find the frequent closed sequential 
episodes or frequent closed temporal episodes 
for each sub-stream.

5. Episode Analyzer: This sub-module 
adopts an association rule mining approach to 
analyze discovered frequent episodes to filter 
out most episodes that are not relevant for the 
given use case. The identified episodes will be 
outputted and stored into the PML as pattern 
models.
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Specifically, after receiving FCITs and bit 
vectors of events and itemsets of each sub-
stream and sub-group, the Combiner fi rst com-
bines the FCITs of sub-groups into an overall 
FCIT for each sub-stream. For this specific 
purpose, the algorithm [26] presents a set of 
FCIT combination policies and suitable ap-
proaches. Then, for each frequent closed item-
set, a corresponding projected-database is built 
by fi ltering out all sub-sequences/transactions 

The Data Analyzer comprises seven com-
ponents: Statistic Information Collector, Feed-
back Parser, Use Case Parser, Statistic Parser, 
DRM Parser, ECM Parser, and Parameter 
Setting Controller. A fl owchart of the Data An-
alyzer is shown in Fig. 4.

2) Mining Controller: After receiving in-
structions from the Data Analyzer, the Mining 
Controller allocates computation resources to 
carry out the work specifi ed by the Data Ana-
lyzer. Specifi cally, after obtaining the param-
eter settings from the Data Analyzer, the Min-
ing Controller starts to split the reduced data 
into sub-streams (if necessary, the sub-streams 
could be further divided into sub-groups in the 
Mining Controller) and then assigns computa-
tion resources, such as I/O, memory, and CPU, 
for these sub-streams or even sub-groups 
according to their corresponding parameter 
settings. Afterwards, the Mining Controller 
will recursively call the Data Miner to process 
the data sub-streams or sub-groups to discover 
episodes according to the parameters set by 
the Data Analyzer.

The Mining Controller consists of three 
components, namely, Stream Splitter, Confi g-
uration Controller, and Source Controller. A 
fl owchart of the Mining Controller is shown in 
Fig. 5.

Data Miner consists of four components, 
namely, Event Bit Representation, Itemset Bit 
Representation, Frequent Closed Itemset Dis-
covery, and Occurrence Recorder. A fl owchart 
of the Data Miner is shown in Fig. 6.

4) Combiner: As mentioned above, the fre-
quent episode mining process consists of two 
phases. The fi rst phase is to discover frequent 
closed itemsets, and it is handled by the Data 
Miner. The second phase is to mine frequent 
closed episodes from the frequent closed item-
sets found in the fi rst phase, and it is handled 
by the Combiner.

Combiner has three components, namely, 
Frequent Closed Itemset Combiner, the Pro-
jected Database Builder, and the Frequent 
Closed Episode Miner. A flowchart of the 
Combiner is shown in Fig. 7.

Fig.4  Flowchart of Data Analyzer

Fig.5  Flowchart of Mining Controller



China Communications • July 2016113

in which the particular itemset is not contained 
and the events with the types other than those 
present in the particular itemset. Finally, the 
Combiner recursively invokes a frequent se-
quential or temporal mining algorithm, such 
as Prefi xSpan [17] or HTPM [22], to discover 
frequent closed episodes in the projected da-
tabase for each frequent closed itemset. Only 
frequent closed episodes that consist of all 
the different event types in the corresponding 
itemset and have suffi ciently large support val-
ues in the corresponding projected databases 
will be outputted.

5) Episode Analyzer: The Episode Analyzer 
aims to deduce association rules from the dis-
covered episodes. Most of the meaningless ep-
isodes will be fi ltered out in this sub-module. 
Specifically, after receiving frequent closed 
episodes from the Combiner, the Confidence 
and Lift of each episode are calculated in 
terms of the support values of the antecedent 
and consequent parts of the episode sequence. 
(Confi dence denotes the conditional probabil-
ity of the consequent actually occurring after 
the antecedent events occurred, which indi-
cates whether useful association rules can be 
derived from the discovered patterns. Lift rep-
resents the degree to which one event or event 
sequence occurrence predicts another event or 
event sequence occurrence.) Then, discovered 
episodes are identifi ed according to the thresh-
olds of Confi dence and Lift, and the episodes 
with values less than the thresholds will be 
fi ltered out; the default thresholds are 60% for 
Confidence and 100% for Lift. The frequent 
closed episodes with suffi cient Confi dence and 
Lift values are exported into the PML, while a 
notifi cation will be sent to the ECM for further 
processing. The Episode Analyzer consists of 
two components, namely, the Confi dence Cal-
culator and the Lift Calculator. A fl owchart of 
the Episode Analyzer is shown in Fig. 8.

IV. EXPERIMENTAL EVALUATIONS

To prove the feasibility of the EDM module, 
three classic algorithms, namely, NewMo-
ment, Prefi xSpan, and HTPM, are implement-

Fig.6  Flowchart of Data Miner

Fig.7  Flowchart of Combiner
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continuous data stream that contains complex 
context with unpredictable unbounded vol-
umes. A multi-level pattern mining solution 

ed in Java. All the experiments are performed 
on a 2.5 GHz Intel Core i5-3210M PC with 
8 GB of main memory and running Micro-
soft Windows 7. Each approach was evalu-
ated using a simulated dataset called aPG_
Sim, which is generated by the open-source 
OpenMSC real-time emulator [27]. On the 
basis of a set of confi gurable parameters and 
predefined message sequences, correlations, 
and temporal pattern parameters, OpenMSC 
generates realistic real-time pattern traces ob-
fuscated with a large corpus of random noise 
events. The PG_Sim dataset consists of a total 
of 100K events, including 500 + 12 unique 
types of events, incorporating 500 noise event 
types {100,…..,599} and 12 information event 
types. Three candidate sequence patterns are 
manually pre-defi ned for inclusion.

The performance of the NewMoment, 
PrefixSpan, and HTPM algorithms is tested 
by running them on the test dataset PG_Sim. 
Results show that all the predefined patterns 
are found by the NewMoment, PrefixSpan, 
and HTPM algorithms with different pattern 
forms. The time taken for the algorithms to 
complete their search given different Min-Sup 
values is shown in Figs. 9 and 10. The Min-
Sup value is incrementally increased from 0.35 
(35%) to 0.8 (80%), while transaction length 
is fi xed at 20.

Figs. 9 and 10 clearly show signifi cant dif-
ferences in the time required for NewMoment, 
Prefi xSpan, and HTPM to complete. The time 
requirements for HTPM are much larger than 
that of Prefi xSpan, while Prefi xSpan is slower 
than NewMoment. With the decreasing Min-
Sup, this difference increases substantially. 
Fig. 9 also shows that for relatively simple 
streams with a small number of event types 
and patterns, where streams can be adequately 
split into smaller transaction sets (in this case, 
100K events), NewMoment can process the 
stream online in a near-real-time manner.

V. CONCLUSIONS

This paper outlined the challenges that need 
to be solved to perform pattern mining in a 

Fig.8  Flowchart of Episode Analyzer

Fig.9  Time consumption comparison between NewMoment and Prefi xSpan (Min-
Sup)
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