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In this paper, an approach for modeling and analysis of time critical, dynamic and complex systems using
stochastic Petri nets together with fuzzy sets is presented. The presented method consists of two stages.
The first stage is same as the conventional stochastic Petri nets with the difference that the steady-state
probabilities are obtained parametrically in terms of transition firing rates. In the second stage, the tran-
sition firing rates are described by triangular fuzzy numbers and then by applying fuzzy mathematics, the
fuzzy steady-state probabilities are calculated. A numerical example for modeling and analysis of a flex-
ible manufacturing cell is given to show the applicability of proposed method. The importance of the pro-
posed approach is that it can take into consideration both dimensions of uncertainty in system modeling,
stochastic variability and imprecision.
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1. Introduction

A flexible manufacturing system (FMS) is a discrete-event sys-
tem and contains a set of versatile machines, an automatic trans-
portation system, a decision-making system, multiple concurrent
flows of job processes that make different products, and often ex-
ploits shared resources to reduce the production cost (Jeng, 1997a;
Zuberek & Kubiak, 1994). The layout of a complex FMS is given in
Fig. 1 (http://www.denford.co.uk/). These systems require both
qualitative and quantitative aspects to be considered in modeling
and analysis. Qualitative analysis searches for structural properties
like the absence of deadlocks, the absence of overflows or the pres-
ence of certain mutual exclusions in case of resource sharing.
Quantitative analysis looks for performance properties (e.g.
throughput), responsiveness properties (e.g. average completion
times) or utilization properties (e.g. average queue lengths or uti-
lization rates). Quantitative analysis concerns the evaluation of
the efficiency of the modeled system whereas qualitative analysis
concerns the effectiveness of the modeled system.

There are many methods and tools used for modeling and anal-
ysis of FMSs such as queueing networks, Markov chains, simula-
tion, and Petri nets. Petri nets (PN) introduced by Petri (1962), as
a graphical and mathematical tool, can be used for modeling and
analyzing complex systems which can be characterized as synchro-
nous, parallel, simultaneous, distributed, resource sharing, nonde-
terministic and/or stochastic (Bobbio, 1990; Marsan, Balbo, Conte,
ll rights reserved.

).
Donatelli, & Franceschinis, 1995; Murata, 1989; Zhou & Venkatesh,
1999). The complex systems of these types exhibit characteristics
which are difficult to describe mathematically using conventional
tools like differential equations and difference equations (Jeng,
1997b; Murata, 1989). On the other hand, Petri nets as a mathe-
matical tool provide obtaining state equations describing system
behavior, finding algebraic results and developing other mathe-
matical models. With respect to other techniques of graphical sys-
tem representation like block diagrams or logical trees, Petri nets
are particularly more suited to represent in a natural way logical
interactions among parts or activities in a system (Bobbio, 1990).
In modeling point of view, Petri net theory allows the construction
of the models amenable both for the effectiveness and efficiency
analysis (DiCesare, Harhalakis, Proth, Silva, & Vernadat, 1993).

Due to the graphical nature, ability to describe static and dy-
namic system characteristics and system uncertainty, and the
presence of mathematical analysis techniques, Petri nets form an
appropriate conceptual infrastructure for modeling and analysis
of FMSs.

Although the concept of time was not included in the original
work by Petri (1962), for many practical applications, the addition
of time is a necessity. Without an explicit notion of time, it is not
possible to conduct temporal performance analysis, i.e., to deter-
mine production rate, resource utilization. In modeling a FMS with
PNs, timing and activity durations for analyzing temporal perfor-
mance and dynamics of the system should be taken into
consideration.

In PNs, time is often associated to transitions. The reason for this
is that transitions represent events in a model and it is more natural
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Fig. 1. The layout of a complex FMS (Denford Co., UK).
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to consider events to take time rather than time to be related to con-
ditions, that is, places (Bowden, 2000; Gharbi & Ioualalen, 2002;
Murata, 1989; Zhou & Venkatesh, 1999). The time delays in a PN
model can be specified either deterministically or probabilistically.
If the time delays are deterministically given, such a PN model is
called as deterministic timed net and if the delays are probabilisti-
cally specified, the PN model is called stochastic net. Timed PNs
and stochastic PNs are two popular extensions of PNs which are
widely used in the application field of manufacturing systems.

A stochastic PN (SPN) is a Petri net where each transition is
associated with an exponentially distributed random variable that
expresses the delay from the enabling to the firing of the transition.
Due to the memoryless property of the exponential distribution of
firing delays, Molloy (1982) showed that the reachability graph of a
bounded SPN is isomorphic to a finite Markov chain. Queueing net-
works and Markov chains provide flexible, powerful and easy to
use tools for modeling and analysis of complex manufacturing sys-
tems and are widely used (Al-Jaar & Desrochers, 1990). However, it
is difficult to describe the causal relation of uncertain events
explicitly in the complex models using Markov chain and queueing
network models because of their unrealistic mathematical
assumptions (Hatono, Yamagata, & Tamura, 1991). In SPN models,
we can explicitly describe the causal relation of uncertain events
by using places, transitions, and arcs. Therefore, using SPNs, we
can construct the model of a FMS more easily than using the other
models. SPNs combine the modeling power of PNs and the analyt-
ical tractability of Markov processes for the purpose of perfor-
mance analysis (Molloy, 1982).

The limitation of the SPN is that the number of states of the
associated Markov chain grows very fast as the complexity of the
SPN model increases (Marsan, Bobbio, Conte, & Cumani, 1984,
1995). Marsan et al. (1984) introduced the generalized SPNs to re-
duce the complexity of solving a SPN model in which the number
of reachable markings is smaller than that in a topologically iden-
tical SPN. A generalized SPN is basically a SPN with transitions that
are either timed (to describe the execution of time consuming
activities) or immediate (to describe some logical behavior of the
model). Timed transitions behave as in SPNs, whereas the immedi-
ate transitions have an infinite firing rate and fire in zero time.
Petri (1987) presented some criticism related to timed and sto-
chastic PNs about the conceptualization of time and chance. In his
latter study Petri (1996) presented many axioms, among which the
axioms of measurement and control related to time and nets, and
emphasized mainly on uncertainty. These studies turned the atten-
tion on fuzzy set theory and fuzzy logic (Zadeh, 1965, 1973) which
have been applied successfully in modeling and designing many
real world systems in environments of uncertainty and
imprecision.

There are several approaches that combine fuzzy sets and Petri
nets theories, differing not only in the fuzzy tools used but also in
the elements of the nets that are fuzzified. A PN structure is a four
tuple consisting of places, transitions, tokens and arcs, and theoret-
ically each of these can be fuzzified (Srinivasan & Gracanin, 1993).

Analysis and design of complex systems often involve two kinds
of uncertainty: randomness and fuzziness (Hu, Wu, & Shao, 2002).
Randomness refers to describing the behavior of the parameters by
using probability distribution functions. In other words, the ran-
domness models stochastic variability. Fuzziness models measure-
ment imprecision due to linguistic structure or incomplete
information. In modeling a FMS, input and model parameters are
usually in the form of uncertain parameters. The possible sources
of imprecision causing uncertainty in system modeling are system
inputs, system outputs, and imprecise inner operations (Virtanen,
1995). In some cases, the uncertainty arises from both randomness
(stochastic variability) and imprecision (fuzziness) simultaneously.
SPNs in which time is the only random variable and time delay is
described by probability functions well characterize the uncer-
tainty in the system with the measures of variance and probability
distributions. During the analysis, the uncertainty in parameter
values can be hidden in the results. The use of fuzzy sets theory
to be able to compensate this can be considered as an important
alternative.

Although the dominating concept to describe uncertainty in
modeling is stochastic models which are based on probability,
probabilistic models are not suitable to describe all kinds of uncer-
tainty, but only randomness. Especially the imprecision of data
which is for example as a result of the limited precision of measur-
ing is not statistical in nature and cannot be described by using
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probability (Viertl & Hareter, 2004). The quantification of a one-
dimensional quantity is possible by using fuzzy numbers, which
are a generalization of real numbers.

In this study, we propose an approach for modeling a FMS by
using stochastic PNs together with fuzzy set theory to represent
both stochastic variability and imprecision. In this approach, the
exponential distribution’s parameter is represented by a triangular
fuzzy number. By using the fuzzified parameter and fuzzy mathe-
matics, the fuzzy steady-state distribution is obtained. Although
fuzzy PNs and stochastic PNs have been separately used in model-
ing and analysis of FMS, the significant contribution of this paper,
as the first, is the suggestion of the use of fuzzy set theory together
with stochastic PNs in manufacturing system modeling.

The organization of the paper is as follows. In Section 2, a liter-
ature review on PNs is given. In Section 3, the formal definition of
stochastic PNs is presented. In Section 4, the proposed approach is
explained in detail. In Section 5, a numerical illustration of the pro-
posed approach for a FM cell is given. Finally the conclusions are
presented.
2. Literature review

In this section a literature review on PNs and their applications
in manufacturing systems are given.
2.1. Classical PNs

Valette, Courvoisier, and Mayeux (1982) were the first who pre-
sented the applicability of PNs for flexible production systems by
specifying and validating interconnected controllers for a transpor-
tation system in a car production system using PNs. They showed
that PNs were applicable to this system and indicated that such a
PN approach could be based on decomposition and structuring.
Valette (1987) indicated that PNs were more convenient than other
models for concurrency. Alla, Ladet, Martinez, and Silva (1985) em-
ployed coloured PNs to model the same car productions system in
Valette et al. (1982). Every token in a colored PN has its own attri-
butes and thus allows different parts and machines to be distin-
guished among each other. They revealed the possible benefits of
using colored PNs over ordinary PNs, i.e., their conciseness made
it possible to describe a complex FMS. Narahari and Viswanadham
(1985) used PNs to model two manufacturing systems: a transfer
line with three machines and two buffers, and a FMS with three
machines and two part types. The significance of boundedness,
liveness and reversibility in manufacturing systems was presented.
They also presented a systematic bottom-up modeling approach.
Barad and Sipper (1988) introduced an approach for describing
and measuring the flexibility in manufacturing systems by indicat-
ing the multi-dimensional characteristics of flexibility. They used
PNs for modeling a FMS and comparing different system on the ba-
sis of flexibility. Valavanis (1990) introduced extended PNs in
which each of tokens, places, transitions and arcs differ from the
other so that more information can be carried in a net model. In
this study, a FMS containing two workstations, a robot and input
and output stations are modeled and simulated. Zhou and DiCesare
(1991, 1992, 1993) proposed parallel and sequential mutual exclu-
sions to model resource sharing problems in FMS. The proposed
hybrid synthesis approach enables one to develop a Petri net with
good behavioral properties for sophisticated manufacturing sys-
tems and makes it possible to analyze by avoiding the enumeration
of all possible markings.

Zhou, McDermott, and Patel (1993) presented how to model a
FM cell having the specified properties and also explained a de-
tailed synthesis process. They also computed the cycle time of
the cell by using deterministic timed PNs. Shiizuka and Suzuki
(1994) showed the modeling power of PNs in modeling the auto-
mated guided vehicle (AGV) networks in FMSs. Using colored Petri
nets, they modeled behavior of AGVs such as, go straight ahead,
junction of two ways, branch off three ways, junction of three
ways, and etc. They also modeled an AGV network using all these
behaviors. Kiritsis and Porchet (1996) dealt with process planning
using Petri net as a computer-aided design (CAD) or computer-
aided process planning (CAPP). The proposed approach consists
of three parts. First and second parts are to build a fixed format
machining table and a PN model of the system based on the
machining table data, respectively. Third is to find a reachability
graph of the PN model. Finally reachability graph is reduced, and
optimum solution is found by applying simple heuristic. Jeng
(1997b) improved a Petri net synthesis theory, which has been pro-
posed for modeling shared-resource automated manufacturing
systems. This theory aims at constructing net models by using bot-
tom-up and modular composition approaches. Since only net
structure and initial marking are used for analysis, the proposed
approach is claimed to be more efficient than state enumeration
techniques such as reachability tree. Wang and Wu (1998) intro-
duced a method called colored time object oriented PNs for mod-
eling automated manufacturing systems. The proposed method
enables better modeling and analysis of dynamic behavior of auto-
mated manufacturing systems. Zimmermann, Rodriguez, and Silva
(2001) proposed a two phase optimization method for the PN mod-
els of manufacturing systems. In the first phase, by using meta
heuristic simulated annealing a near optimal result is obtained.
The optimal result is obtained in the second phase. Lefebvre
(2001) proposed a method for the estimation of the firing frequen-
cies in discrete and continuous PN models. In case of timed PNs,
the production frequencies estimation is obtained from the
approximation of the firing sequences and in case of continuous
PNs it results directly from the variants of the marking vector. In
the proposed method, when several solutions exist, the PNs were
extended with additional relations to provide a unique solution.

Abdallah, Elmaraghy, and Elmekkawy (2002) proposed a sched-
uling algorithm based on PNs by considering the deadlock-free
scheduling problem of manufacturing systems. The objective of
the model is to minimize the average flow time and the proposed
algorithm gives optimal or near optimal deadlock-free schedule by
considering the sequence of the transition firings. Based on the
application results, they claim that PN based scheduling is more
appropriate in comparison to mathematical programming ap-
proaches. Chen and Chen (2003) proposed a object oriented meth-
od for performance modeling and evaluation of dynamic tool
allocation in FMS by using colored PNs. The FMS is divided into
subclasses so that the complexity of the system is decreased. By
using PN based simulation the system performance is evaluated.
Uzam (2002, 2004) introduced the use of PN reduction approach
for obtaining an optimal deadlock prevention policy for FMSs. In
the first study, the proposed procedure uses the reachability graph
of PN model of a FMS. Due to the state explosion of the reachability
graph, it is difficult to obtain the optimal solution. In his latter
study, by using the PN reduction approach the procedure to obtain
an optimal result is simplified and explained on an example. Wang,
Zhang, and Chan (2005) proposed a hybrid PN approach for model-
ing of nerworked manufacturing systems and control system archi-
tecture. Both discrete and continuous system variables are used in
the PN model and the control mechanism for the system is devel-
oped based on the net model.

2.2. Stochastic PNs

Balbo, Bruell, and Ghanta (1988) presented a hierarchical mod-
eling approach that combines queueing network models and gen-
eralized SPNs for the solution of complex models of system
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behavior. They applied the proposed approach on two examples
and demonstrated that how the combination of the two techniques
preserves the inherent accuracy of each individual technique in the
evaluation of the overall model. Zhou, DiCesare, and Guo (1990)
modeled and analyzed the performance of two resource sharing
and deadlock-free manufacturing systems. The stochastic PN mod-
eling process is given based on top-down and bottom-up ap-
proaches and the system performance indices such as throughput
are derived and the comparison results are presented. Al-Jaar and
Desrochers (1990) presented the use of generalized SPNs for per-
formance evaluation of automated manufacturing systems for sev-
eral manufacturing case studies. They showed the use of
generalized SPNs, as a flexible and powerful tool for performance
evaluation, on a machining workstation controller, transfer lines
and production networks. They also presented the advantages of
using generalized SPNs for modeling and analysis of complex man-
ufacturing systems. Choi, Kulkarni, and Trivedi (1993) showed that
the marking process underlying a deterministic and stochastic PN,
which is an extension of SPNs including both exponentially distrib-
uted and deterministic delays, is a Markov regenerative stochastic
process. They introduced a numerical method for transient analysis
based on numerical inversion of Laplace–Stieltjes transforms.

German (1995) developed a numerical method for transient and
stationary analysis of deterministic and stochastic PNs based on
the method of supplementary variables. Based on the method of
supplementary variables general states equations are derived. He
also presented an approximation technique for more general cases.
Koriem and Patnaik (1997) proposed a method called as general-
ized stochastic high-level PNs for the performance evaluation of
parallel and distributed systems. The presented method is a hybrid
of the predicate/transition nets and the generalized SPNs. The main
advantage of this method is the reduction in the state space size of
the generalized stochastic high-level PN model. Yan, Wang, Zang,
and Cui (1998) introduced a method for manufacturing system
modeling and analysis which is named as extended stochastic
high-level evaluation Petri nets. Based on the simulation results,
they showed that by using this method the dynamic rescheduling
of the system is possible. In this method, in addition to immediate
and exponentially distributed transitions, the firing times that are
not exponentially distributed can be used. Lindermann and
Thümmler (1999) introduced a numerical algorithm for transient
analysis of deterministic and stochastic PNS and other discrete-
event stochastic systems with exponential and deterministic
events. The proposed approach is based on the analysis of a general
state space Markov chain whose state equations constitute a sys-
tem of multi-dimensional Fredholm integral equations. This meth-
od requires three orders of magnitude less computational effort
than the approach based on the method of supplementary
variables.

Zimmermann and Hommel (1999) used a new method based on
colored PNs for manufacturing system modeling. By using the
method named as colored stochastic PNs, the structure of a manu-
facturing system and the work plans can be modeled separately.
Bucholz (2004) presented a new approximate solution technique
for the numerical analysis of SPNs and related models. His ap-
proach combines numerical solution techniques and fixed point
computations. In contrast to other approximation methods, the
proposed method is adaptive by considering states with high prob-
ability in detail and aggregating states with small probabilities.
Chen, Amodeo, Chu, and Labadi (2005) introduced a new model
called batch deterministic and stochastic PNs by enhancing the
deterministic and stochastic PNs with batch places and batch to-
kens. They presented methods for structural and performance
analysis of the model developed. This class of stochastic PNs is suit-
able for modeling and analysis of inventory systems and real-life
supply chains.
2.3. Fuzziness in PNs

Valette, Cardoso, and Dubois (1989) introduced fuzzy-time
PNs which is based on the association of fuzzy enabling duration
with the transition which results in attaching a fuzzy firing date
to the transition. They used the definition of time PNs (Merlin,
1974) with the only modification that the enabling durations
associated to transitions are defined by fuzzy intervals. Murata
(1996) and Murata et al. (1999) proposed fuzzy-timing high-le-
vel PNs and applied to the simulation of communication proto-
cols. Based on the possibility theory, this approach introduced
four fuzzy theoretic functions of time called fuzzy timestamp,
fuzzy enabling time, fuzzy occurrence time and fuzzy delay.
For each of the fuzzy functions of time, trapezoidal or triangular
possibility distributions were used. Yeung, Liu, Shiu, and Fung
(1996) proposed a net based structure called fuzzy coloured
PNs to model both the dynamic behavior and inexact production
inference of FMSs. They applied this approach to a printed circuit
board production system and demonstrated the model’s capabil-
ity in simulating system behavior. Pedrycz and Camargo (2003)
introduced a new version of fuzzy PNs called fuzzy timed PNs
by incorporating a concept of time with the interval and fuzzy
set-based models of temporal relationship. The factor of time
is incorporated into the structure of the net at the level of tran-
sitions and places. In this approach the impact of the time factor
on the performance of the net is expressed in terms of firing of
the transitions and the distribution of the level of marking of the
input and output places. Ding, Bunke, Schneider, and Kandel
(2005) and Ding, Bunke, Kipersztok, Schneider, and Kandel
(2006) presented a new fuzzy timed PN model in which each
transition firing is associated with a fuzzy number and during
transitions firing tokens are removed from input and added to
output places. The performance analysis of the model is based
on the reachability state graph.

The papers including different applications of PNs mainly in the
field of manufacturing are; modeling and analysis of manufactur-
ing systems by using process nets with resources (Jeng, Xie, & Peng,
2002), reliability design of industrial plants using PNs (Bertolini,
Bevilacqua, & Mason, 2006), scheduling of FMSs with timed PNs
(Kim, Suzuki, & Narikiyo, 2007; Hsu, Korbaa, Dupas, & Goncalves,
2008; Lee & Korbaa, 2006; Zuberek & Kubiak, 1999), modeling
and scheduling of FMSs with PNs (Huang, Sun, & Sun, 2008), re-
duced PN models of discrete manufacturing systems (Rangel, Trev-
ino, & Mellado, 2005), property-preserving subnet reductions for
designing manufacturing systems with shared resources (Huang,
Jiao, & Cheung, 2005), PN approach for error recovery in manufac-
turing systems control (Odrey & Mejia, 2005), PN modeling of dis-
crete-event dynamic systems (Koriem, Dabbous, & El-Kilani, 2004),
Modeling and simulation of a bottling plant using hybrid Petri nets
(Giua, Pilloni, & Seatzu, 2005), PN based object-oriented modeling
of hybrid and complex productive systems (Liu, Jiang, & Fung,
2005; Villani, Pascal, Miyagi, & Valette, 2005), structuring and
composition in PN models (Gomes, 2005), hybrid PN and digraph
approach for deadlock prevention in automated manufacturing
systems (Maione & DiCesare, 2005), fuzzy PN modeling of FMSs
(Venkateswaran & Bhat, 2006), modeling, analysis and control of
hybrid dynamic systems (Lefebvre, Delherm, Leclercq, & Druaux,
2007), fuzzy PN modeling of intelligent databases (Korpeoglu &
Yazici, 2007), dynamic fuzzy PNs for course generation (Huang,
Chen, Huang, Jeng, & Kuo, 2008), scheduling by using timed PNs
(Ghaeli, Bahri, & Lee, 2008; Kim et al., 2007), cyclic scheduling of
FMSs by using PNs and genetic algorithm (Hsu et al., 2008),
resource-oriented PN for deadlock avoidance in flexible assembly
systems (Wu, Zhou, & Li, 2008), multiparadigm modeling of hybrid
dynamic systems using PNs (Lee, Zhou, & Hsu, 2008), reachability
and state space analysis of PNs (Fronk & Kehden, 2009; Praveen
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& Lodaya, 2008; Reinhardt, 2008), modeling and scheduling of job
shops by timed PNs (Zhang & Gu, 2009).

3. Stochastic Petri nets

Before giving the formal definition of SPNs we present the def-
inition of PNs introduced by Petri (1962).

A marked Petri net (PN) Z ¼ ðP; T; I;O;mÞ is a five-tuple where

1. P ¼ p1; p2; . . . ; pnf g;n > 0 and is a finite set of places pictured
by circles

2. T ¼ t1; t2; . . . ; tsf g; s > 0 and is a finite set of transitions pic-
tured by bars, with P [ T – ; and P \ T ¼ ;

3. I : P � T ! N and is an input function that defines the set of
directed arcs from P to T where N ¼ 0;1;2; . . .f g

4. O : T � P ! N and is an output function that defines the set of
directed arcs from T to P

5. mi : P ! N and is a marking whose ith component represents
the number of tokens in the ith place. An initial marking is
denoted by m0. The tokens are pictured by dots.

A marked PN and its elements are shown in Fig. 2. The four-tu-
ple ðP; T; I;OÞ is called a PN structure that defines a directed graph
structure. A PN models system dynamics using tokens and their fir-
ing rules. Introducing tokens into places and their flow through
transitions make it possible to describe and study the discrete-
event dynamic behavior of the PN. Additional information about
structures and properties of PNs, firing rules and analysis tech-
niques can be found in Murata (1989).

An ordinary continuous-time stochastic PN is a PN with a set of
positive, finite and exponentially distributed firing rates
K ¼ ðk1; . . . ; kmÞ, possibly marking dependent, associated with all
its transitions. An enabled transition can fire after an exponentially
distributed time delay with parameter 1

k elapses.
Live and bounded SPNs are isomorphic to continuous-time Mar-

kov chains due to the memoryless property of exponential distri-
bution (Molloy, 1982). This important property allows for the
analysis of SPNs and the derivation of the some important perfor-
mance measures. The states of the Markov chain are the markings
in the reachabillity graph, and the state transition rates are the
exponential firing rates of the transitions in the SPN. By solving a
system of linear equations representing the Markov chain, perfor-
mance measures can be computed.

Assume that every transition in a PN is associated with an expo-
nentially distributed random delay from the enabling to the firing
of the transition. Then the firing time of each transition can be
characterized as a firing rate.

A stochastic PN Z ¼ ðP; T; I;O;m0;KÞ is a six-tuple where

1. P ¼ p1; p2; . . . ; pnf g;n > 0 and is a finite set of places
2. T ¼ t1; t2; . . . ; tsf g; s > 0 and is a finite set of transitions with

P [ T – ; and P \ T ¼ ;
Input Place Transition Output Place 

Token Arc 

Fig. 2. A marked PN and its elements.
3. I : P � T ! N and is an input function that defines the set of
directed arcs from P to T where N ¼ 0;1;2; . . .f g

4. O : P � T ! N and is an output function that defines the set of
directed arcs from T to P

5. mi : P ! N and is a marking whose ith component represents
the number of tokens in the ith place. An initial marking is
denoted by m0.

6. K : T ! Rþ and is a firing function whose ith component rep-
resents the firing rate of the ith transition where ki denotes
the firing rate of ti and Rþ is the set of all positive real
numbers.

In a SPN, when a transition is enabled at marking m, the tokens
remain in its input places during the firing time delay. At the end of
the firing time, tokens are removed from its input places and
deposited in its output places. The number of tokens in the flow
depends on the input and output functions.

After generating the reachability graph Rðm0Þ, the Markov pro-
cess is obtained by assigning each arc with the rate of the corre-
sponding transition. The steady-state probability distribution
P ¼ ðp0;p1; . . . ;pqÞ of a SPN is obtained by solving the linear
system

PA ¼ 0;
Xq�1

i¼0

pi ¼ 1 ð1Þ

where A ¼ aij
� �

q�q is the transition rate matrix. For i ¼ 0;1; . . . ; q� 1,
A’s ith row elements, i.e., aij; j ¼ 0;1; . . . ; q� 1 are determined as
follows:

1. if j – i; aij is the sum of all outgoing arcs from state mi to mj.
2. Since any row elements in A satisfies

Pq�1
j¼0 aij ¼ 0, then

aii ¼ �
Pq�1

j – iaij, where aii represents the sum of firing rates
of transitions enabled at mi, i.e., transition rates leaving state
mi.

From the steady-state distribution P and transition firing rates
K, the required performance indices of the system modeled by the
SPN can be obtained.

4. Stochastic Petri nets with fuzzy parameters

The steady-state probability distribution P ¼ ðp0;p1; . . . ;pqÞ of
a SPN is obtained by solving the linear system in Eq. (1). Here the
transition rate matrix A is a square matrix whose off-diagonal ele-
ments are the rates of the exponential distribution associated with
the state to state transitions. The elements on the main diagonal
are chosen so that the elements of each row sum to zero.

Every transition in a SPN is associated with an exponentially
distributed random delay from the enabling to the firing of the
transition. Then ki denotes the firing rate of ti. While modeling
manufacturing systems by using SPNs, the k is used for exponen-
tially representing the activity durations like machining, transfer-
ring of materials or parts, machine failure, inspection etc.
probabilistically. In conventional Markov method and SPNs, k val-
ues are estimated statistically from crisp data with a confidence le-
vel based on measurement, and are accepted as constant values.
Such a way of describing the behavior of the parameters used for
modeling and analysis by using probability distribution functions
takes into consideration the probabilistic or stochastic variability
only, in short randomness. As mentioned before the imprecison
of data, as a result of the limited precision of measuring, is not sta-
tistical in nature and can not be described by using probability
theory.

To be able to better represent uncertainty, both stochastic or
probabilistic variability and imprecision, we present an approach
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for modeling FMSs by using stochastic PNs which is based on the
fuzzification of transition firing rates. In this way, we will obtain
the fuzzy steady-state probabilities by using fuzzified parameters
and applying fuzzy mathematics. Although the proposed approach
is applied to a FM cell, its usage is not restricted to modeling and
analysis of FMSs. It can be used for modeling and analysis of any
time critical, dynamic and complex system modeled by SPNs.

Before we present our approach, we will explain some impor-
tant concepts about fuzzy sets that are used in our method. For de-
tailed information about fuzzy set theory, see Zadeh (1965),
Zimmerman (1994) and Ross (1995).

Definition 4.1. Fuzzy numbers are the fuzzy sets that are normal-
ized and convex. However our fuzzy numbers will always be
triangular (shaped) fuzzy numbers. A triangular fuzzy number ~N is
defined by three numbers a < b < c where the base of the triangle
is the interval a; c½ � and its vertex is at x ¼ b which is shown in
Fig. 3.

To be triangular shaped fuzzy number the graph is required to
be continuous and: (1) monotonically increasing on a; b½ �, and (2)
monotonically decreasing on b; c½ �.

Definition 4.2. a-cuts are slices through a fuzzy set producing reg-
ular (non-fuzzy) sets. If ~A is a fuzzy subset of some set X, then an a-
cut of ~A, written ~AðaÞ is defined as

~AðaÞ ¼ fx 2 Xj~AðaÞP ag; ð2Þ

for all a;0 < a 6 1. The a ¼ 0 cut, or ~Að0Þ, must be defined
separately.

For any fuzzy number ~Q , ~QðaÞ is a closed, bounded, and interval
for 0 6 a 6 1 and can be written as

~QðaÞ ¼ q1ðaÞ; q2ðaÞ½ � ð3Þ

where q1ðaÞðq2ðaÞÞ will be an increasing (decreasing) function of a
with q1ð1Þ 6 q2ð1Þ. If ~Q is a triangular shaped fuzzy number then:
(1) q1ðaÞ will be a continuous, monotonically increasing function
of a in 0;1½ �; (2) q2ðaÞ will be a continuous, monotonically decreas-
ing function of a in 0;1½ �; and (3) q1ð1Þ ¼ q2ð1Þ. It is possible to
check monotone increasing (decreasing) by showing that
dq1ðaÞ=da > 0 (dq2ðaÞ=da < 0Þ holds.

Fuzzy arithmetic operations for fuzzy numbers can be per-
formed by using two basic methods of computing: the extension
principle, and interval arithmetic with a-cuts. In our study, we will
use the interval arithmetic with a-cuts which is equivalent to the
extension principle, but it is more user and computer friendly.

Let ~A and ~B be two fuzzy numbers. Since a-cuts are closed,
bounded, intervals so let ~AðaÞ ¼ a1ðaÞ; a2ðaÞ½ � and
~BðaÞ ¼ b1ðaÞ; b2ðaÞ½ �. Then basic fuzzy operations can be done by
using the following equations:
x 

1 

0 

a b c

α

Fig. 3. A triangular fuzzy number, ~N.
~AðaÞ þ ~BðaÞ ¼ a1ðaÞ þ b1ðaÞ; a2ðaÞ þ b2ðaÞ½ � ð4Þ
~AðaÞ � ~BðaÞ ¼ a1ðaÞ � b2ðaÞ; a2ðaÞ � b1ðaÞ½ � ð5Þ
~AðaÞ � ~BðaÞ ¼ cðaÞ;dðaÞ½ � ð6Þ

where

cðaÞ ¼minfa1ðaÞb1ðaÞ; a1ðaÞb2ðaÞ; a2ðaÞb1ðaÞ; a2ðaÞb2ðaÞg ð7Þ
dðaÞ ¼maxfa1ðaÞb1ðaÞ; a1ðaÞb2ðaÞ; a2ðaÞb1ðaÞ; a2ðaÞb2ðaÞg ð8Þ

~AðaÞ=~BðaÞ ¼ a1ðaÞ; a2ðaÞ½ � � 1
b2ðaÞ

;
1

b1ðaÞ

� �
ð9Þ

when ~AðaÞ=~BðaÞ, provided that zero does not belong to ~BðaÞ for all a.
The memoryless property of exponential distribution of firing

delays is very important since live and bounded SPNs are isomor-
phic to continuous-time Markov chains due to the memoryless
property of exponential distribution (Molloy, 1982). In our ap-
proach, we describe the exponentially distributed transition firing
rates as triangular fuzzy numbers. Since our aim is to take into con-
sideration both randomness and fuzziness, the memoryless prop-
erty for fuzzy exponential function must be satisfied in order to
perform the stochastic analysis of fuzzy parameters.

The exponential EðkÞ has density

f ðx; kÞ ¼ ke�kx; x P 0
0; otherwise

�
ð10Þ

The mean and variance of EðkÞ is 1
k and 1

k2, respectively.
The probability statement of the memoryless property of crisp

exponential is

P X P t þ sjX P t½ � ¼ P X P s½ � ð11Þ

If we substitute ~k for k in Eq. (10) we obtain the fuzzy exponen-
tial, Eð~kÞ. If ~l denotes the mean, we find its a-cuts as

~l ¼
Z 1

0
xke�kxdx

��k 2 ~kðaÞ
� �

ð12Þ

for all a. However, each integral in the above equation equals 1
k.

Hence ~l ¼ 1
~k
. If ~r2 is the fuzzy variance, then we write down an

equation to find its a-cuts and we obtain ~r2 ¼ 1
~k2. It can be seen that

the fuzzy mean (variance) is the fuzzification of the crisp mean
(variance).

The conditional probability of fuzzy event A given a fuzzy event
B is defined by Zadeh (1968) as

~PðAjBÞ ¼
~PðA � BÞ

~PðBÞ
; ~PðBÞ > 0 ð13Þ

By using the fuzzy exponential a-cuts of the fuzzy conditional
probability, relating to the left side of Eq. (11)

P X P t þ sjX P t½ �ðaÞ ¼
R1

tþs ke�kx dxR1
t ke�kx dx

( �����k 2 ~kðaÞ
)

ð14Þ

for a 2 0;1½ �. Now the quotient of the integrals in Eq. (14) equals,
after evaluation, e�ks, so

P X P t þ sjX P t½ �ðaÞ ¼
Z 1

s
ke�kxdx

����k 2 ~kðaÞ
� �

ð15Þ

which equals ~P X P s½ �ðaÞ. Hence, Eq. (11) holds for the fuzzy expo-
nential which shows the memoryless property.

Our approach is a two stage modeling approach. The first stage
is same as the conventional SPN modeling approach. The only dif-
ference is that the steady-state distributions are obtained paramet-
rically by using Eq. (1) and no numeric results are calculated. In
other words, each steady-state probability, pi, is described in terms
of transition firing rates, as a function of ki. Up to the second stage,
the system is a crisp one and describing the stochastic nature of the
system. At this stage we represent the transition firing rates, ki, as
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triangular fuzzy numbers which may depend on the opinions of ex-
perts. After replacing the fuzzy numeric values of transition firing
rates, by using the fuzzy calculation theory we obtain the a-cuts
of the fuzzy steady-state probabilities of the system. As Buckley
(2005) states that whenever we use interval arithmetic with a-cuts
is used to compute the functions of fuzzy variables, we may get
something larger than that obtained by using the extension princi-
ple. To be able to find the a-cuts of the fuzzy-steady probabilities
we solve an optimization problem that makes the solution feasible.

The procedure to compute the fuzzy steady-state probabilities
is as follows:

Stage 1:
1.1. Model the system using a PN and associate exponential

time delays with transitions.
1.2. Generate the reachability graph. Assign each arc with the

rate of the corresponding transition. Label all states or
markings.

1.3. By using Eq. (1) find the steady-state probabilities para-
metrically, in terms of transition firing rates.
Machine 1 

Robot 1 

Raw materials 
with pallets 

Final products 

Machine 2 
Buffer

Robot 2 

Fig. 4. The illustration of the flexible manufacturing cell.

p1 
t1 

Loading 

M1 
idle 

p5

p7 
R1 
idle 

Breakdown 

t4 t5

t2

p4

p2

M1
proces
R1’s lo

Repair 

M1 in 
repair

Fig. 5. The stochastic PN
Stage 2:
2.1. Place the transition firing rates described as triangular

fuzzy numbers in parametric steady-state probabilities
obtained in Step (1.3).

2.2. Compute the fuzzy steady-state probabilities by using
Eqs. (4)–(9) in terms a-cuts.

2.3. For each fuzzy steady-state probability, pi, find a ¼ o val-
ues which gives the largest possible interval. It should be
noted that for a ¼ 1 the obtained result is the steady-
state distribution of the crisp SPN.

2.4. For each pi, the maximum and minimum value (a ¼ o
value) must be in the interval 0;1½ �. If a ¼ o for each pi

does satisfy this, the result is feasible. If any of the
obtained fuzzy probability does not satisfy this, apply
the optimization in the next step.

2.5. As mentioned before, interval arithmetic with a-cuts
method is mainly based on max and min operators which
may produce larger intervals. Theoretically, a ¼ o cut of a
fuzzy number gives the largest possible interval of values.
Since we want to calculate the fuzzy probabilities the
p6 

Parts 
ready 

p3

p8

p9

Conveyor slots 
available 

M2 
idle 

’s 
sing & 
ading 

R2’s loading 
M2’s processing 
& R2’s loading 

t3 

R2 
idle 

model of the system.

Table 1
Places, transitions and their firing rates used in the model.

Places Interpretation

p1 Pallets with workpieces available
p2 M1 in process
p3 Intermediate parts available for processing at M2
p4 M1 in repair
p5 M1 available
p6 Conveyor slots available
p7 R1 available (redundant from the analysis viewpoint)
p8 M2 available (redundant from the analysis viewpoint)
p9 R2 available (redundant from the analysis viewpoint)
Transitions Interpretation Firing rates

t1 R1 loads a part to M1 k1 ¼ 40
t2 M1 machines and R1 unloads a part k2 ¼ 5
t3 R1 loads/unloads and M2 machines a part k3 ¼ 4
t4 M1 breaks down k4 ¼ 0:5
t5 M1 is repaired k5 ¼ 0:5



Table 2
The fuzzified transition firing rates and their a-cut representations.

Fuzzy k value a-cut representation

k1 ¼ ð30=40=50Þ k1 ¼ 30þ 10a; 50� 10a½ �
k2 ¼ ð4=5=6Þ k2 ¼ 4þ a; 6� a½ �
k3 ¼ ð3=4=5Þ k3 ¼ 3þ a; 5� a½ �
k4 ¼ ð0:4=0:5=0:6Þ k4 ¼ 0:4þ 0:1a; 0:6� 0:1a½ �
k5 ¼ ð0:4=0:5=0:6Þ k5 ¼ 0:4þ 0:1a; 0:6� 0:1a½ �
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largest possible interval is restricted to the interval 0;1½ �.
The problem is finding the min a-cut that satisfies this
condition which can be found solving the following opti-
mization problem:

Assume that the a-cut representation for the fuzzy steady-state
probability is pi ¼ p�i ðaÞ;pþi ðaÞ

	 

, where i ¼ 1;2; . . . ;n and n is the

number of the states. Then the structure of the problem is

Min ðZÞ ¼ a
s:t: pþi ðaÞ 6 1

p�i ðaÞP 0
0 6 a 6 1
p�i ðaÞ 6 pþi ðaÞ

In the next section a numerical illustration of the proposed ap-
proach is given.

5. A numerical example

A new approach for modeling and analysis of complex dynamic
systems such as FMSs by using stochastic PNs together with fuzzy
set theory to represent both stochastic variability and imprecision
has been proposed and the structure of the new algorithm has
been given in the above sections. In this section the approach is ap-
plied to a FM cell which is selected from Zhou and Venkatesh
(1999). This FM cell is illustrated in Fig. 4.

Our FM cell consists of two machines (M1 and M2), each of
which is served by a dedicated robot (R1 and R2) for loading and
unloading, as shown in Fig. 4. An incoming conveyor carries pallets
with raw materials one by one, from which R1 loads M1. An outgo-
ing conveyor takes the finished product, to which R2 unloads M2.
There is a buffer with capacity of two intermediate parts between
two machines. The system produces a specific type of final parts.
Each raw workpiece fixtured with one of three available pallets
is processed by M1 and then M2. A pallet with a finished product
is automatically defixtured, then fixtured with raw material, and fi-
nally returns to the incoming conveyor. Now suppose that

1. M1 performs faster M2 does, however subject to failures when
it is processing a part. On the average, M1 takes two time units
to break down, and a quarter time unit to be repaired. Thus, its
average failure and repair rates (1/time unit) are 0.5 and 4
respectively. M2 and the two robots are failure-free.

2. R1’s loading speed is 40 per unit time. The average rate for M1’s
processing plus R1’s loading is 5 per unit time.

3. The average rate for M2’s processing plus the related R2’s load-
ing and unloading is 4 per unit time.
m0=(100012) m1=(010002

m3=(000102

t1

1λ
t4

4λ

t3

3λ

Fig. 6. The reachability graph and Mar
4. All the time delays associated with the above operations are
exponential.

The problem is to find the average utilization of M1, assuming
that only one pallet is available.

First, we need to model the system using PNs and associate
exponential time delay with transitions. The SPN model of the sys-
tem is given in Fig. 5. Table 1 gives the explanation and interpreta-
tion of the PN elements used in the model.

Note that, the redundant information in each marking on the to-
ken values in places p7; p8 and p9 has been eliminated since p7

holds the same number of tokens as p5 does and each of the other
two always has one token.

The reachability graph and the Markov chain of the modeled
system is given in Fig. 6.

By using Eq. (1) we obtain the following system of equations:

ðp0;p1;p2;p3Þ

�k1 k1 0 0
0 �k2 � k4 k2 k4

k3 0 �k3 0
0 k5 0 �k5

0
BBB@

1
CCCA ¼ 0

p0 þ p1 þ p2 þ p3 ¼ 1

ð16Þ

The solution of the above system gives the steady-state proba-
bilities parametrically, in terms of transition firing rates, as
follows:

PT ¼

p0

p1

p2

p3

2
6664

3
7775 ¼

k2k3k5=k

k1k3k5=k

k1k2k5=k

k1k3k4=k

2
6664

3
7775 ð17Þ

where k ¼ k2k3k5 þ k1k3k5 þ k1k2k5 þ k1k3k4.
After obtaining the steady-state probabilities in terms of transi-

tion firing rates, in the second stage of our approach we must rep-
resent the transition firing rates as triangular fuzzy numbers. The
fuzzy number values of each transition firing rate are as in Table 2.

By placing the fuzzy values of Table 2 in the previously obtained
parametric steady-state probability representations, Eq. (17), and
) m2=(001011) 

) 

t2

2λ
t5

5λ

kov chain of the modeled system.



Table 3
The final fuzzy steady-state probabilities.

a ¼ 0 cut a ¼ 1 cut

p0 0:014; 0:1½ � 0.037
p1 0:106; 0:826½ � 0.296
p2 0:138; 1½ � 0.37
p3 0:106; 0:826½ � 0.296
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applying fuzzy mathematics given in Eqs. (4)–(9), the following a-
cut representations of fuzzy steady-state probabilities are
obtained.

p0ðaÞ ¼
0:1a3þ1:1a2þ4aþ4:8

�3:1a3þ50:7a2�275:6aþ498
;
�0:1a3þ1:7a2�9:6aþ18

3:1a3þ32:1a2þ110aþ124:8

� �

p1ðaÞ ¼
a3þ10a2þ33aþ36

�3:1a3þ50:7a2�275:6aþ498
;
�a3þ16a2�85aþ150

3:1a3þ32:1a2þ110aþ124:8

� �

p2ðaÞ ¼
a3þ11a2þ40aþ48

�3:1a3þ50:7a2�275:6aþ498
;
�a3þ17a2�96aþ180

3:1a3þ32:1a2þ110aþ124:8

� �

p3ðaÞ ¼
a3þ10a2þ33aþ36

�3:1a3þ50:7a2�275:6aþ498
;
�a3þ16a2�85aþ150

3:1a3þ32:1a2þ110aþ124:8

� �

The graphics of the fuzzy steady-state probabilities are given in
Fig. 7a–d.

Although for each pi ¼ p�i ðaÞ;pþi ðaÞ
	 


, the maximum and mini-
mum value (a ¼ o value) must be in the interval 0;1½ �, it can be
seen that pþ1 ;pþ2 and pþ3 do not satisfy this condition. So we must
optimize it to find the min a-cut that satisfies this condition. Since
p1 ¼ p3 and p�i ðaÞP 0, the structure of the optimization problem
can be reduced to the following:

Min ðZÞ ¼ a
s:t: pþ0 ðaÞ 6 1

pþ1 ðaÞ 6 1
pþ2 ðaÞ 6 1
0 6 a 6 1
pþ0 ðaÞ;pþ1 ðaÞ;pþ1 ðaÞP 0
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Fig. 7. The graphical representation of the fuzzy stead
By making the necessary simplifications the problem is obtained as
follows:

Min ðZÞ ¼ a
s:t: � 3:2a3 � 30:4a2 � 119:6a� 106:8 6 0

� 4:1a3 � 16:1a2 � 195aþ 25:2 6 0

� 4:1a3 � 15:1a2 � 206aþ 55:2 6 0
0 6 a 6 1

The solution for the problem can be found by using software
packages such as MATLAB or a spread sheet like Excel. The result
of the optimization problem is 0.263. This a value is the one that
makes the fuzzy steady-state probabilities feasible. The final fuzzy
steady-state probabilities are presented in Table 3.

Note that a ¼ 0 cut value represents the largest interval of prob-
ability whereas a ¼ 1 cut value represents the crisp SPN
probability.

M1’s utilization is determined by the probability that M1 is
machining a raw workpiece. This corresponds to the marking m1

at which p2 is marked, or state probability p1. Therefore, the
expected M1’s utilization is p1 which is ð0:106=0:296=0:826Þ. This
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result informs us that the utilization ratio of M1 can be 0.106 at its
lowest level while it can be at most 0.826. The most possible value
of M1’s utilization is 0.296 with a membership degree of 1.0. The
crisp case with a single value does not enable us to have such a
result.
6. Conclusion

In this study, we proposed an approach for modeling and anal-
ysis of discrete-event dynamic systems which is based on stochas-
tic PNs together with fuzzy set theory to represent both
dimensions of uncertainty which are probabilistic (stochastic) var-
iability and imprecision (fuzziness). Our approach is a two stage
method which combines two theories, fuzzy sets and PNs, and
aims at increasing the power of the modeling and analysis of com-
plex systems. Although the proposed approach was applied to a FM
cell, it is not restricted to modeling and analysis of FMSs. It can be
used for modeling and analysis of any time critical, dynamic and
complex system modeled by SPNs. We believe that the main con-
tribution of our study, in addition to the suggestion of the use of
fuzzy set theory together with stochastic PNs in system modeling,
is that, a deeper analysis and understanding of the system can be
attained. For further research, sensitivity analysis with respect to
fuzzy parameters and application of the proposed approach in
other fields rather than FMSs are recommended.
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