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a b s t r a c t

In the Internet of Things (IoT), data gathered from a global-scale deployment of smart-things, are the
base for making intelligent decisions and providing services. If data are of poor quality, decisions are
likely to be unsound. Data quality (DQ) is crucial to gain user engagement and acceptance of the IoT
paradigm and services. This paper aims at enhancing DQ in IoT by providing an overview of its state-of-
the-art. Data properties and their new lifecycle in IoT are surveyed. The concept of DQ is defined and a set
of generic and domain-specific DQ dimensions, fit for use in assessing IoT's DQ, are selected. IoT-related
factors endangering the DQ and their impact on various DQ dimensions and on the overall DQ are ex-
haustively analyzed. DQ problems manifestations are discussed and their symptoms identified. Data
outliers, as a major DQ problem manifestation, their underlying knowledge and their impact in the
context of IoT and its applications are studied. Techniques for enhancing DQ are presented with a special
focus on data cleaning techniques which are reviewed and compared using an extended taxonomy to
outline their characteristics and their fitness for use for IoT. Finally, open challenges and possible future
research directions are discussed.
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1. Introduction

The Internet of Things (IoT) is about millions of connected,
communicating and exchanging objects, scattered all over the
world and generating tremendous amounts of data using their
sensors every single second. IoT is a new evolution of the Internet
(Evans, 2011) and has many definitions depending on the chosen
viewpoint. One that relates to data reports the shifting of roles in
the era of IoT. Interconnected smart things will become the major
data producers and consumers instead of humans. The flow of data
from the physical to the digital world will extend the awareness of
computers of their surroundings, thus, gaining the ability to act on
behalf of humans through ubiquitous services.

IoT has and will affect many fields in our daily life both on
personal and business levels (e.g. cities, homes, health, etc.). Fur-
ther, it has a significant impact on society to the extent it has
become a social “symbolic capital of power” (Nataliia and Elena,
2015). A taxonomy of IoT applications is presented in Gubbi et al.
(2013) which, based on the type of network availability, coverage,
scale, heterogeneity, repeatability, user involvement and impact,
identifies four application domains: Home and personal, en-
terprise, utilities and mobile. Applications based on the crossing-
over of physical and cyber worlds allowed by the IoT vision (e.g.
Health applications, Home energy monitoring, Smart cities, In-
telligent Products, etc.) have already been created and many more
are expected (Aggarwal et al., 2013; Kiritsis, 2011).

Data represent the bridge that connects cyber and physical
worlds. Their importance is illustrated with the emergence of IoT
semantic-oriented vision (Atzori et al., 2010) which finds its utility
from the need of ways to represent and manipulate the huge
amount of raw data expected to be generated from the “things”. The
autonomous and continuous harvesting of data by the “things” (e.g.
RFID readers, sensor nodes, etc.) easily overtakes manually entered
data. It was in 2008 when the number of connected objects has
already surpassed the number of persons on the planet (Aggarwal
et al., 2013). Moreover, considering the predictions in National In-
telligence Council (2008), Sundmaeker et al. (2010), the number of
connected objects will become even greater. In fact, as predicted in
(National Intelligence Council, 2008), common things of our daily
life (e.g. lamps, refrigerators, food packages, etc.) will have had
embedded components allowing them to communicate and be-
come more intelligent by the year 2025. Furthermore, technological
advances have impressively sharpened the “data harvesting” cap-
abilities of embedded sensor devices resulting in more generated
data and more continuous data streams from the real world. As a
result, IoT has become an important catalyzer of Big Data Analytics.

Data are a valuable asset in the IoT because they give insights
about a given phenomenon, person or entity which are used by
applications to provide intelligent services in a ubiquitous manner.
These insights are mined from the harvested data using data
mining techniques and algorithms (Tsai et al., 2014). Many works
(Equille, 2007; Hand et al., 2001; Hipp et al., 2001) state the im-
portance of data quality (DQ) for data mining processes and the
impact of low DQ on the validity of the results and interpretations
of such processes, leading to the conclusion that DQ and accuracy
should be ensured. However, many factors characterizing the IoT
including deployment scale, things' constrained resources (Branch
et al., 2009) and intermittent loss of connection (Zeng et al., 2011)
are endangering the quality of the produced data. Many DQ pro-
blems, measurable at the level of DQ dimensions, occur as a result
of such hazardous elements. One major manifestation of these
deviations in DQ are Data Outliers (Branch et al., 2009; Chandola
et al., 2009; Javed and Wolf, 2012; Otey et al., 2006). However,
while outliers could describe errors, they can also describe rare
events (Zhang et al., 2010) which represent precious information
for the applications (Knox and Ng, 1998) (e.g. “unusual” high



Fig. 1. Data life cycle in the Internet and IoT (Adapted from (Qin et al., 2014)).
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temperature readings as a result of a fire in a monitored forest).
Solutions to deal with DQ problems are required considering that
data trustworthiness is crucial for user engagement and accep-
tance of IoT services, and thus, for a successful large scale de-
ployment of the IoT paradigm. This is shown in (Yan et al., 2014)
where data collection trust and accuracy represent the major
concern of the Data Perception Trust as part of a holistic trust
management approach for IoT.

Our survey investigates DQ in the context of IoT. First of all, we
present the new lifecycle of data in IoT and we review the char-
acteristics of data gathered by the things. Then, we enumerate IoT
environment-related factors affecting the quality of data and we
present their distribution. Further, we exhaustively analyze the
impact of each previously-mentioned factor on various DQ di-
mensions, which we selected for assessing IoT data, and thus on
the overall DQ. Moreover, we identify in what form do DQ pro-
blems manifest and we associate each manifestation class with its
symptoms with respect to the affected DQ dimensions. Further, we
study data outliers as a major type of DQ problems by defining
their underlying concept, enumerating their types and analyzing
their impact on a large scale deployment and acceptance of IoT
paradigm. We further investigate outliers' impact on key compo-
nents of IoT applications. Techniques for enhancing DQ and over-
coming DQ problems are then studied. We compare and discuss, in
more depth, data cleaning techniques that promise to overcome
the uncertainty in the gathered data and provide purified data for
IoT applications. Finally, we discuss open challenges and possible
future research directions we believe have the potential to deliver
efficient solutions and approaches. Our aim is to give an overview
of the current state of the art of DQ in the context of IoT in order to
find ways to enhance it. Even though, some surveys (Qin et al.,
2014; Sathe et al., 2013; Zhang et al., 2010) have been conducted
recently, they either present the whole data processing cycle from
acquisition to compression with a lack of focus on DQ manage-
ment, or present data cleaning techniques for a sub-component of
the IoT. In fact, Qin et al. (2014) only surveys the data stream
processing techniques, data storage, search and event processing
in IoT. Sathe et al. (2013) presents data acquisition, query proces-
sing and data compression techniques. It also surveys mathema-
tical models used in outlier detection techniques. However, it only
provides brief descriptions of actual data cleaning techniques such
as the declarative-based one. Further, no comparison of these
cleaning techniques is presented. Zhang et al. (2010) presents
techniques for outlier detection in Wireless Sensor Networks
(WSN) which only represents a sub-component of IoT.

The remainder of this article is organized as follows. Section 2
discusses the new lifecycle of data in the context of IoT and their
characteristics. Also, we introduce the concept of DQ and its di-
mensions. We then specify a set of generic and domain-specific DQ
dimensions that are fit for assessing DQ in IoT. In Section 3, IoT-
related factors endangering the DQ are enumerated and their
distribution in a 3-layered IoT architecture is described. Further, an
exhaustive qualitative analysis of their impact on various DQ di-
mensions and on the overall DQ is presented. In Section 4, we
study how DQ problems manifest in IoT and what are their
symptoms (i.e. affected DQ dimensions). In Section 5, we study, in
more depth, the concept of data outliers as a major DQ problem.
Their types and more importantly their impact on IoT is discussed.
In Section 6, we study DQ enhancement techniques that promise
to overcome DQ problems. We largely focus on data cleaning
techniques for which we present a general architecture, followed
with the specification of a comparison taxonomy and a compar-
ison of data cleaning techniques that outlines their properties and
how fit they are for use in IoT context. Section 7 discusses open
challenges and possible future research directions. Finally, Section
8 concludes the article.
2. Data and DQ in Iot

Data represent a valuable asset in the IoT paradigm as a source
for extracting insights and a means for communication. Moreover,
quality is a critical requirement for any data consumer (e.g. IoT
pervasive services and their users). In this section, we present the
new data lifecycle in the context of IoT vision. We also discuss IoT
data's characteristics. Furthermore, we define the concept of DQ.
Then, we introduce DQ dimensions and their categories as metrics
for measuring this quality aspect of data. Further, starting from
various DQ dimensions used in the context of WSN and RFID-en-
abled data, we identify numerous DQ dimensions that could be
used for assessing IoT's data. Finally, considering the scope of the
IoT, we investigate other domain-specific DQ dimensions poten-
tially usable in specific IoT application scenarios.

2.1. A new data lifecycle

As shown in Fig. 1, in the well-known conventional internet,
data come generally from people using their computers (e.g. to
interact with each other on social networks) and are used gen-
erally to provide services for these same people. In contrast, in IoT,
things will produce the majority of data and will also be their main
consumer in order to provide services for persons. Further, data
are the main communication medium in the Machine-2-Machine
(M2M) paradigm (Aggarwal et al., 2013), which is a predecessor of
the IoT (Holler et al., 2014); a paradigm that will help objects in the
IoT communicate and collaborate to autonomously provide new
services. Data are a valuable asset in the IoT because they give
insights about a given phenomenon, person or entity. Those in-
sights are used by applications to provide intelligent services in a
ubiquitous manner. If data are inaccurate, extracted knowledge
and action based on it will probably be unsound.

2.2. IoT data characteristics

IoT sensors generally monitor a variable of interest (e.g. tem-
perature, sleep habits, etc.) in the physical world. Moreover, the
environments in which the harvesting of data occurs are rapidly
changing and volatile (Qin et al., 2014). As a result, many char-
acteristics (Javed and Wolf, 2012; Sathe et al., 2013) are usually
associated with data in the IoT. While some of these characteristics
might be considered omnipresent (i.e. uncertain, erroneous, noisy,
distributed and voluminous), other characteristics are not general
and highly depend on the context and the monitored phenomena
(i.e. smooth variation, continuous, correlation, periodicity and
Markovian behavior). Below is a summary of these characteristics:

� Uncertain, erroneous and noisy: Considering the numerous
factors (Section 3) endangering the quality of data, generated
data in the IoT are considered to be inherently uncertain and
erroneous.



Table 1
Categories of DQ dimensions.

DQ dimensions' category Definition Examples

Intrinsic Dimensions that describe quality that is innate in or that inherently exists within data. Accuracy, Reputation
Contextual Dimensions describing the quality with respect to the context of tasks using data. Timelines, Completeness, Data volume
Representational Dimensions describing how well data formats are representative and understandable. Interpretability, Ease of understanding
Accessibility Dimensions that describe how accessible (and in the same time secured) data are for data

consumers.
Accessibility, Access security
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� Voluminous and distributed: In the IoT, sources of data are
millions of devices scattered all over the world. The generation
rate is enormous and easily overwhelms its human-generated
counterpart.

� Smooth variation: Many physical monitored variables of in-
terest (e.g. ambient temperature) exhibit smooth variations, i.e.
a small variation (or none) occurs between 2 consecutive time
stamps.

� Continuous: Data produced from monitoring many physical
phenomenon is continuous (e.g. temperature, etc.) even when a
sampling strategy is adopted. This is a direct result of the
smooth variations. Sampling is used primarily to achieve en-
ergy-efficiency because the monitored phenomenon does not
often change in a sudden.

� Correlation: Generated sensor value dataset has often an un-
derlying correlation. The data are either temporally correlated,
spatially correlated or both.

� Periodicity: Dataset related to many phenomenon may present
an inherent periodic pattern where the same values occur at
specific intervals.

� Markovian behavior: The sensor value at a given time stamp ti
is only function of the previous sensor value at the previous
timestamp ti-1.

2.3. Definition of DQ and DQ dimensions

DQ refers to how well data meet the requirements of data
consumers (Batini and Scannapieco, 2006; Wang and Strong,
1996). This definition gives a broader conceptualization of DQ by
focusing on how consumers perceive quality, rather than the in-
formation systems professionals' perception limited to intrinsic
level and accuracy dimension, considering that data have become
a product, the fitness of which is judged by its user. This means
that DQ would hardly be seen in the same way by different users.
In fact, each data consumer requires the used data to fulfill certain
criteria which he presumes essential for his own tasks at hand.
These criteria or aspects or attributes of DQ are known as DQ Di-
mensions (e.g. Accuracy, Timeliness, Precision, Completeness, Re-
liability and Error recovery (Bailey and Pearson, 1983; Batini and
Scannapieco, 2006; Geisler et al., 2011; Klein and Lehner, 2009b;
Strong et al., 1997). Based on this broader conceptualization and
starting from 159 dimensions, four main categories have been
identified (Wang and Strong, 1996) as described in Table 1.

Moreover, there exist a plethora of DQ dimensions (both do-
main-agnostic and domain-specific) due to the fact that data are a
representation of various aspects of the real world phenomena
(Batini and Scannapieco, 2006). However, there is no standardized
definition for each and every dimension. In fact, a single dimen-
sion could have many (and different) definitions and could be
considered with respect to various granules. We take for example
the Timeliness dimension; different definitions taken from pre-
vious works in the DQ literature clearly show a non-agreement on
a single definition. In fact, (Dasu and Johnson, 2003) defines
timeliness as “the currency of the data. That is, the most recent
time when it was updated”. In Klein and Lehner (2009b), time-
liness is seen from two perspectives; as “the age of a specific data
item as the difference between the recording timestamp and
the current system time” and as “the punctuality of the data
item with respect to the application context”. Moreover,
in Naumann (2002), timeliness is seen as “the average age of the
data in a source”. Finally, in Liu and Chi (2002), timeliness is de-
fined as “The extent to which data are sufficiently up-to-date for
a task.”

2.4. DQ and DQ dimensions for IoT

Back in 2003, Dasu and Johnson (2003) asserted that con-
temporary data need updated and more flexible criteria for their
assessment. These contemporary data were characterized by the
nature of their collection process and federated aspect, size, vari-
ety and content.

Likewise, the emergence of the IoT paradigm, which takes all
the characteristics of the contemporary data to a whole new level
(e.g. the size of gathered data), may also require updated criteria to
assess its data.

For the IoT, DQ means essentially how suitable the gathered
data (from the smart things) are for providing ubiquitous services
for IoT users. As the WSN and RFID are the key enabling technol-
ogies of the IoT paradigm, it makes sense to adopt DQ dimensions
used for assessing WSN-enabled and RFID-enabled data to equally
assess IoT data. However, we believe that DQ dimensions for IoT
should cover a larger vision than those for WSN and RFID.

Klein and Lehner (2009b) have used five dimensions for as-
sessing the quality of sensor data streams (and for data streaming
environments in general) namely accuracy, confidence, com-
pleteness, data volume and timeliness. For RFID data, (van der Togt
et al., 2011) proposes a framework for evaluating the performance
and assessing the DQ of RFID systems especially in healthcare
settings. Some of the key phases of this framework focus on the
data accuracy and data completeness dimensions and their as-
sessment. Also, Sellitto et al. (2007) reports information quality
attributes benefits resulting from the adoption of RFID technolo-
gies in the retail supply chain domain. These reported quality at-
tributes could be projected on datasets given that pieces of in-
formation are themselves originated from data. For example, ac-
curate information are essentially extracted from accurate data.
Even though these quality attributes were identified with respect
to a specific application domain, i.e. retail supply chain, many of
them are not restricted to it (e.g. accuracy, timeliness, complete-
ness, accessibility, etc.).

In the following Table 2, we report common quality dimensions
defined for WSN and RFID systems. The examples given in the
table are considered in the following scenario: A set of n smart
things each of which equipped with one sensor capable of mea-
suring temperature. The sensors have a precision class of 5% and
could measure up to a maximum 80 °C. The sensors' sampling rate
is set to one value/minute. Each tuple i of the data stream contains
the measured temperature value v and a timestamp ti.

Moreover, in the light of IoT paradigm, other DQ dimensions, in
addition to those presented in Table 2, could be introduced to
evaluate IoT DQ. In fact, with the predicted huge amount of col-
lected data, requirements such as ease of access become essential.
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Table 3
Additional DQ dimensions for IoT.

DQ dimension Definition Category

Ease of access The availability and easiness of retrieving
data.

Accessibility

Access security Securing data in order to protect its privacy
and confidentiality.

Accessibility

Interpretability Data is clear in meaning and format. Representational

Table 4
IoT Domain-specific DQ dimensions.

DQ dimension Definition Domain

Duplicates Healthcare records duplication's rate in the pa-
tients' databases.

E-health

Availability Data, i.e. Electronic Health Record (HER) records,
which are available for a secondary use in epi-
demiological research.

E-health

Duplicates Evaluates if a reading is not being received and
stored more than once.

Smart grids
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Also, the things forming the IoT will be scattered around the
world, yet they need to be accessed securely. In addition, IoT ap-
plications rely on heterogeneous and distributed sources of data
which need to be interpretable and have concise representation
for easy and meaningful integration. Further, these dimensions are
tightly related to security challenges facing IoT which have been
extensively surveyed in Jing et al. (2014), Sicari et al. (2015), Zhao
and Ge (2013).

In Table 3, we report additional DQ dimensions as defined in
the relational data field (Strong et al., 1997; Wang and Strong,
1996). Also, it is worth noting that in Wang and Strong (1996),
accessibility is considered a part of the overall DQ rather than a
separated field of study.

It is worth noting that our set of DQ dimensions for assessing
IoT DQ is larger than the one used in Sicari et al. (2014) for their
proposed IoT system architecture and its application case study. In
fact, the authors only used accuracy, completeness and timelines
dimensions. Moreover, Guo et al. (2013) considers data accuracy
alongside source validity as important DQ criteria in the context of
IoT applications. Furthermore, F. Li et al. (2012) only proposed
using the currency, availability and validity DQ dimensions in
pervasive applications where currency and validity dimensions are
closely related to timeliness and accuracy dimensions respectively.

2.5. DQ dimensions for IoT domain-specific applications

Looking at the scope of the IoT and the numerous applications
that could be built using its paradigm, we assume that there could
be a need for other domain-specific DQ dimensions. As we have
already mentioned, DQ dimensions could be either domain-de-
pendent or domain-independent. In Table 4, we present some
domain-specific DQ dimensions defined in the context of different
IoT application domains (Cardoso and Carreira, n.d.; Nobles et al.,
2015; Pinto-Valverde et al., 2013).

2.6. DQ dimensions trade-offs

It is worth noticing that trade-offs usually occur when handling
certain DQ dimensions such as the pair accuracy and timeliness
(Geisler et al., 2011). In fact, DQ dimensions are correlated and
trade-offs could be necessary when highlighting one dimension
over others (Batini and Scannapieco, 2006). For example, usually
when aiming for accurate data, many checks and verifications are
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involved that may cause delays in data arrival (i.e. affecting
timeliness). Inversely, to obtain timely data, we may need to ne-
glect the checks pipeline which could affect the accuracy of data.
This scenario could be even worse when resources are limited as
in the case of smart things which, generally, cannot handle many
operations at a time.

Many optimizing mechanisms designed for DQ dimensions'
trade-offs have been proposed for different contexts. As an ex-
ample, (Ballou and Pazer, 1995) proposes a methodology to define
when the accuracy-timeliness trade-off is optimal for decision
making, i.e. when the available data is accurate enough to still give
a timely and sound enough decision. Also, the proposed frame-
work could well work for other trade-offs such as completeness-
timeliness ones. Moreover, (Ballou and Pazer, 2003) provides a
framework to optimize the consistency-completeness trade-off
enabling data consumers to determine when it is more beneficial
to keep data even if it is inconsistent (i.e. better completeness)
versus when to discard them (i.e. better consistency). Finally,
(Helfert et al., 2009) proposes a cost/benefit model for optimizing
the security-timeliness trade-offs especially for real-time
applications.
3. Factors endangering IoT DQ and their impact

In IoT context, various factors could represent potential ha-
zardous elements to DQ. In this section, we represent these factors
as well as their distribution in a 3-layered IoT architecture. Further,
through an exhaustive analysis, we qualitatively study their im-
pact on different DQ dimensions and thus on the overall DQ. As a
result, a mapping between IoT factors and IoT DQ is created.

3.1. Factors affecting IoT DQ

In the context of IoT, millions of sensing-enabled devices will be
deployed in various areas, regions and environments to monitor
different phenomenon and produce insights based on which fur-
ther actions and goals are achieved. Many problems (Branch et al.,
2009; Erguler, 2015; Jeffery et al., 2006a, 2006b; Klein and Lehner,
2009b; Said and Masud, 2013; Sathe et al., 2013; Ukil et al., 2011;
Zeng et al., 2011) arise from the afore-mentioned scenarios which
endanger the quality of produced data. These problems affect the
main components of the IoT system and relate to the following
aspects:

� Deployment Scale: IoT is expected to be deployed on a global
scale. This leads to an enormous heterogeneity in data sources
as it will no longer come only from computers but rather from
day-to-day's objects. Furthermore, the distributed aspect will be
unprecedented. The huge number of devices accumulates the
chance of error occurrence.

� Resources constraints: The things in the IoT (e.g. RFID tags)
suffer generally from a severe lack of resources (e.g. power,
storage, etc.). Their computational and storage capabilities do
not allow complex operations support (e.g. cryptographic op-
erations, etc.). Furthermore, they are usually battery-powered
and they often operate with discharged batteries. Considering
the scarce resources, data collection policies, where tradeoffs
are generally made, are adopted which affect the quality and
cleanliness of data.

� Network: Intermittent loss of connection in the IoT is rather
frequent. In fact, IoT is seen as an IP network with more con-
straints and a higher ratio of packet loss. Things are only capable
of transmitting small-sized messages due to their scarce
resources.

� Sensors: Embedded sensors may lack precision or suffer from
loss of calibration or even low accuracy especially when they are
of low cost. Faulty sensors may also result in inconsistencies in
data sensing. The casing or the measurement devices could be
damaged due to extreme conditions like extreme heating or
freezing which can also cause mechanical failures. The conver-
sion operation between measured quantities is often imprecise
(e.g. from voltage to humidity).

� Environment: The sensor devices will not be deployed only in
tolerant and less aggressive environments. In fact, to monitor
some phenomenon (e.g. weather), sensors are deployed in en-
vironments with extreme conditions (e.g. a mountain's sum-
mit). The maintenance of such sensors is rarely ensured con-
sidering the inaccessibility of terrains. In those conditions,
sensors may become dysfunctional or instable due to many
events (e.g. snow accumulation, dirt accumulation, etc.).

� Vandalism: Things are generally defenseless from outside
physical threats. In addition, their deployment in the open
nature makes them an easy prey for vandalism both from hu-
mans and animals. Such acts often result in rendering sensors
dysfunctional which definitely affect the quality of produced
data.

� Fail-dirty: It is a case where a sensor node fails, but keeps up
reporting readings which are erroneous. It is a well-known
problem for sensor networks and generally an important source
of outlier readings.

� Privacy preservation processing: DQ could be intentionally
reduced during the phase of privacy preservation processing.

� Security vulnerability: Sensor devices are vulnerable to se-
curity attacks. Their lack of resources makes it even harder to
protect them from security threats (e.g. no support for crypto-
graphic operations because of their high consumption of re-
sources). For example, it is possible for a malicious entity to
alter data in sensor nodes or RFID tags causing data integrity to
fail.

� Data stream processing: Data gathered by smart things are
sent in the form of streams to the back-end pervasive applica-
tions which make use of them. These data streams could be
processed for a variety of purposes (e.g. extracting knowledge,
decreasing the data stream volume to save up on the scarce
resources, etc.). (Klein and Lehner, 2009b) argues that many
data stream processing operators (e.g. selection) could, under
certain conditions, affect the quality of the underlying data.

3.2. Layered distribution of factors threatening DQ

The aforementioned problems threatening the quality of pro-
duced data occur in different layers of the IoT system model.
Various architectures were proposed for IoT (Atzori et al., 2012;
Bauer et al., 2013; Kovatsch et al., 2012; Pujolle, 2006; Tanganelli
et al., 2013; Vajda et al., 2011) that could be used as a referential to
discuss the affected layers. It is worthwhile to mention that the
resulting final positioning of these hazardous elements is greatly
influenced by the chosen architecture. We consider the 3-layered
architecture used in Yan et al. (2014) composed of; (i) The Physical
perception layer (PPL), (ii) the Network layer (NL) and (iii) the
Application layer (AL).

The physical perception layer represents the sensing and ac-
tuation infrastructures. It is responsible for the generation of the
huge amount of data used to represent the physical world in the
cyber world. The Network layer groups heterogeneous network
components responsible for processing and transmitting data. Fi-
nally, the Application layer provides ubiquitous services for users
based on data feed from the Network layer.

While some of the aforementioned problems are limited to one
layer, others have larger span over multiple layers (Fig. 2). The
deployment scale spans across all layers of IoT architecture. For



Fig. 2. Layered distribution of IoT factors threatening DQ.

Fig. 3. Impact of deployment scale and resources constraints on DQ dimensions in
the IoT.
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both PPL and NL, keeping infrastructures that meet the vision of
IoT will be both challenging and source of problems. For AL, the
huge deployment scale means more generated data (not ne-
cessarily from trusted or known third parties) that require more
resources and efficient processing techniques. Moreover, pervasive
applications in the AL need to process the received data stream to
extract actionable knowledge mandatory in order to provide ser-
vices. Further, the resources constraints are characteristics of the
things which form the PPL. The intermittent loss of connection is a
problem affecting PPL because of the scarce resources not allowing
the things to maintain the data flux. It is also affecting the NL
because of inefficiency of existing networking solutions in the
context of IoT environment. Faulty and fail dirty sensors related
problems concern the PPL considering that sensors are one of
PPL's key building blocks. Environment-related problems affect
the things-enabled PPL infrastructure and the networking
infrastructure.

Security attacks could target components of any layer. Also, the
privacy of gathered data from smart things needs to be ensured as
it may be used to reveal the identity of their owner (e.g. a RFID tag
that uniquely identifies a person and his whereabouts). The priv-
acy preservation process may occur while collecting (i.e. within
the PPL), transmitting (i.e. within the NL) or sharing data between
ubiquitous applications and services (i.e. within the AL).

3.3. Impact on IoT DQ

In order to demonstrate how the previously mentioned IoT-
related factors affect the quality of IoT data, we proceed by iden-
tifying patterns of how these factors impact various IoT DQ di-
mensions. In fact, DQ problems describe any difficulty affecting
any DQ dimension, causing data to become entirely or partially
unusable by not meeting user's requirements (Strong et al., 1997).
Moreover, DQ problems manifest not only as accuracy problems
but surpass them to other DQ dimensions such as Completeness
problems, Timeliness problems, etc. (Wang and Strong, 1996). As a
result, studying how DQ dimensions are affected in different sce-
narios will lead to creating a crisp image of how the overall DQ is
affected. We qualitatively analyze how starting from a given con-
text, where an IoT-related factor occurs (e.g. Resources con-
straints), certain DQ dimensions are affected. This creates a map-
ping between these IoT-related factors and DQ problems. In the
following schemas depicted in this section, rounded rectangles
represent the previously discussed factors associated with the IoT
environment. We consider them as starting states. The dashed
rectangles illustrate intermediate states that result directly from
the aforementioned factors. Finally, the rectangles represent var-
ious DQ dimensions on which we want to determine the impact.

3.3.1. Impact of deployment scale, failing-dirty, vandalism and en-
vironment on DQ dimensions in the IoT

Fig. 3 depicts the impact of the deployment scale factor on the
quality dimensions accuracy and confidence. The vision of the IoT
states that the smart things will ubiquitously be present around
us. This unprecedented envisioned scale of deployment may have
consequences on DQ. In fact, as we mentioned in the introduction,
the number of connected objects is so large that it has already
surpassed the number of persons on the planet (1). To achieve
their main goal of harvesting data about their surroundings, these
smart things use embedded sensors which are not ideal and
therefore have a margin of error. For huge number of devices, the
error margin may no longer be neglected and could eventually
lead to an accumulated chance of error occurrence (2) which is
synonym to lower accuracy in the gathered data. In order to reach
this huge number of devices, different manufacturers should
produce different types of smart things for different purposes (3).
This means a highly heterogeneous landscape of devices. For an
ubiquitous application which uses data sent by scattered smart
things over which it has not necessarily some kind of control (i.e.
third-party data streams), these received data should be used with
precaution as it is uncertain whether or not they have been intact
during collection, storage or transfer (4).

Fig. 4 depicts the impact of vandalism, environment and fail-
ing-dirty factors on DQ. There exists a plethora of applications



Fig. 4. Impact of deployment scale, vandalism, fail-dirty and environment on DQ
dimensions in the IoT.
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using data about the real world (e.g. monitoring application). It
might be unavoidable for some applications to deploy smart things
in particularly harsh environments in order to gather data about
some phenomenon of interest (1). Potential problems arise in this
scenario. First, in aggressive environments (2), the deployed smart
things are likely to get damaged for various reasons (e.g. dirt ac-
cumulation, snow accumulation, etc.) (3). Second, even in the
event of a damaged smart thing, neither corrective nor frequent
preventive maintenance might be available or provided (5) be-
cause of the inaccessible terrains (4) which generally characterize
this type of remote deployment environments (e.g. mountain's
summit). These unfortunate events might result in a dysfunctional
smart thing. The same result could be caused by vandalism acts
(7) which are likely to happen when taking in consideration that
the smart things are generally both defenseless and deployed in
open nature (6).

There are many direct consequences of dysfunctional smart
thing on the quality of data it generates. In fact, a dysfunctional
smart thing could fail dirty (8) and keep generating inaccurate
data and feeding it to the back-end application (9). It could also
become less available and could stop frequently (10) which will
have a direct impact on how much data it generates about real
world events (in comparison with howmuch data it is supposed to
generate). Furthermore, not being able to deliver readings in time
may negatively affect the timeliness of data (11). All these
Fig. 5. Impact of resources constraints, security vulnerability and
potential problems make it hard to put significant trust on data
generated by a potentially dysfunctional smart thing (12).

3.3.2. Impact of resources constraints, unreliable sensors, network,
security vulnerability and privacy preservation processing on DQ di-
mensions in the IoT

One major problem that confronts the IoT is that the smart
things usually suffer from severe resources constraints which
could affect the DQ as depicted in Fig. 3. Many approaches for
saving up resources are adopted. Such approaches include sam-
pling strategies used while gathering data considering that smart
things cannot operate continuously (5) (i.e. required sleep mode to
save energy (Jardak and Walewski, 2013; Uckelmann et al., 2011)).
In many cases (e.g. monitoring natural phenomenon), the sam-
pling means the discretization of continuous phenomena, i.e. only
part of the available data is gathered (6). Also, statistical errors are
introduced due to uncertainty about sampling estimates which
lower the confidence about the received data (7).

Fig. 5 further depicts the impact of the resources constraints
factor. In fact, the constrained resources prevent sufficient security
protocols from being supported by smart things, as they usually
require significant resource capabilities, resulting in a lack of a
built-in security layer which makes smart things vulnerable (1).
These security vulnerabilities could be used by unauthorized en-
tities to gain access to the device (2). Once the device is hijacked,
all forms of malicious commands could be executed ranging from
altering stored readings (3), nullifying all or some attributes (4) to
blocking readings transfer (5) which affects the accuracy, the
completeness and the timeliness respectively.

The privacy (6) is a key security requirement to be ensured
especially in the context of IoT where tiny devices could be used to
breach one's privacy (e.g. a RFID tag that uniquely identifies a
person could be used to remotely trace his movements). Privacy
preservation processing techniques intend to blur or even break
the link between sensitive data and the originate owner (i.e. the
source) without critically affecting its capability to provide valu-
able insights about a certain phenomenon of interest (i.e. ensuring
privacy while minimizing information loss). Various techniques for
privacy preservation intentionally reduce DQ (7). Examples in-
clude aggregating data (i.e. reducing data volume) (8), adding
noise (9) or falsifying (i.e. reducing the accuracy and confidence)
geo-location data in order to hide the user's true location (Zheng
and Zhou, 2011), reducing data accuracy (Aggarwal and Yu, 2008)
(10), removing (sensible) attributes (11) and processing surveil-
lance systems' video stream data in order to mask authorized
privacy preservation processing on DQ dimensions in the IoT.



Fig. 6. Impact of resources constraints and network on DQ dimensions in the IoT.

Fig. 7. Impact of unreliable embedded sensors on DQ dimensions in the IoT.
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persons (i.e. reducing the completeness and the accuracy of video
stream data) (Wickramasuriya et al., 2004).

Further, Fig. 6 shows other scenarios where resources con-
straints affect the DQ. In fact, most of smart things are neither
capable of sending large messages (i.e. packets) nor capable of
reporting frequently (1). As a result, only small-sized messages are
being exchanged which could turn out to be insufficient to report
all available data (2). Moreover, because of these scarce resources,
smart things will frequently go through sleep mode in order to
conserve energy (3). However, the IP protocols, forming the
backbone of IoT connectivity, are not adapted to these sleep modes
and require the smart things to be always operational (4) (Ag-
garwal et al., 2013). This incompatibility results in an instable
connectivity and intermittent loss of connection which translates
to a high ratio of packet loss (5). The completeness of data could be
highly affected by those lost packets (6) and even if some kind of
packets reception acknowledgment and recovery mechanisms are
in place, it might be too late to resend the lost packet as it might
have already become outdated (7).

Fig. 7 shows the impact that sensors could have on DQ. In fact,
considering the number of deployed objects envisioned by the IoT,
it would certainly be less expensive to use cheap devices over
expensive ones. However, there are many problems associated
with cheap devices mainly because their components tend to be
less reliable (1). As an example, low cost embedded sensors are
more prone to loss of calibration and lack of precision which re-
sults in the measured values being less accurate and more un-
Fig. 8. Impact of data stream process
certain (2). Another factor that may introduce errors in the re-
ported measurements is the conversion process, often imprecise
(4), used to convert between measured quantities (3).

3.3.3. Impact of data stream processing on DQ dimensions in the IoT
As we mentioned earlier, Klein and Lehner (2009b) studied

how different data stream processing operators could affect the
quality of the data they process. As it turned out, there exists an
influence of the data stream processing on the quality of the un-
derlying data. We summarize some of the paper's discussed cases
in Fig. 8. After identifying four classes of data stream processing
operators, namely Data-modifying operators (1), Data-reducing
operators (2), Data-generating operators (3) and Data-merging
operators (4), the authors studied the impact of different operators
(e.g. Selection, Unary algebraic operators, etc.) belonging to each
defined class on DQ. In fact, some operators (e.g. Timestamp-Join
of Asynchronous streams) include sampling operations which in-
troduce statistical errors (5).

Other operators such as the Selection operator could also in-
troduce statistical errors (e.g. when an item that should not be
selected, does get selected) (6). Moreover, inserting data items (e.g.
inferred from existing one using interpolation) into data stream
lowers the completeness (7). Finally, aggregating data items re-
duces data volume (8).
ing on DQ dimensions in the IoT.



Fig. 9. Impact of different IoT-related factors on Ease of Access DQ dimension.
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3.3.4. Impact of different IoT problems on ease of access, access se-
curity and interpretability DQ dimensions

Both Figs. 9 and 10 show the impact of the previously men-
tioned IoT-related factors on ease of access, access security and
interpretability dimensions. In these figures, the dotted lines in-
dicate that we omitted some intermediate states which have al-
ready been shown in Figs. 3–8.

As depicted in Fig. 9, dysfunctional smart things may no longer
be available to answer data retrieval queries rendering the stored
data unavailable for the requesting applications (1). This unavail-
ability could also be caused by the intermittent loss of connection
as a stable connection for retrieving data may be hard to maintain
(2) or that the supported size of exchanged message is not suffi-
ciently enough to deliver all the available data within a reasonable
time interval (3).

Further, Fig. 10 reports other impact scenarios. In fact, the huge
amount of available data could significantly slow down the re-
trieval process performances. Also, too much data could become a
barrier to retrieving specific data of interest. Both these aspects
affect the Ease of Access dimension (1). Moreover, when a smart
thing is hijacked, the access control rules could be maliciously
changed as to deny authorized access, thus both the smart thing
and the data it has gathered become unavailable for authorized
entities (2).

The security vulnerabilities of the smart things caused by their
lack of resources also affect the Security Access dimension as it
becomes more difficult to protect the privacy and confidentiality of
data. More specifically, when a smart thing is hijacked, both the
privacy and the confidentiality of its stored data could be breached
as the attacking malicious entity may have already gained full
control of the device (3).
Fig. 10. Impact of different IoT-related factors on ease of acc
One of the key features of the IoT is that large numbers of
devices will be able to harvest data and provide them to ubiqui-
tous applications. However, if each provided data stream has a
different structure (4) and the ubiquitous applications have no
previous knowledge about it (which is likely as data streams could
be produced by third parties), merging them would not be in-
tuitive or out of the box. In such case, the received data would be
hardly interpretable and would serve no real purpose.
4. Manifestation of DQ problems in IoT and their symptoms

Data in the IoT are vulnerable to many risks affecting their
Quality. Data suffering from quality problems fail to represent the
reality and could have negative effects both on the decisional and
operational levels of any business or organization (i.e. data con-
sumer) (Batini and Scannapieco, 2006). In this section, we present
in what form do DQ problems manifest. We also discuss their
symptoms by associating each manifestation class with the set of
its characterizing affected DQ dimensions.

4.1. DQ problems' manifestation classes

In (Jeffery et al., 2006a), two manifestation classes have been
presented for “dirty-data” (i.e. low quality data):

� Dropped readings: The delivery of things' readings is usually
inferior to the requested readings required by pervasive appli-
cations. In fact, the ratio of successful delivery is typically low
due to scarce resources and intermittent communication that
cause a drop in the reporting efficiency. The ratio of dropping
could be measured with metrics such as the epoch yield (Jeffery
et al., 2006a) defined as the total reported readings as a fraction
of total requested readings by an application.

� Unreliable readings: Impreciseness, calibration failure and fail-
dirty nodes among other reasons cause things' data to be
unreliable.

Other IoT DQ problems were reported in the literature and they
include:

� Multi-source data inconsistences (Ma, 2011; Mishra et al.,
2015; Rao, 2016; Vongsingthong and Smanchat, 2015; Wang
et al., 2012): Data in IoT come from a number of different objects
(e.g. RFID and sensors) and in a variety of structured, semi-
structured and unstructured formats (e.g. text, numerical, video,
etc.). This makes non-uniformity and inconsistency big chal-
lenges when handling IoT data. In fact, most ubiquitous services
enabled by the IoT use data from different sources which
ess, access security and interpretability DQ dimensions.
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require extensive integration and fusion. Moreover, the dynamic
nature of IoT itself could cause inconsistencies in the generated
data in cases such as addition or removal of smart objects from
existing deployments (Vongsingthong and Smanchat, 2015).

� Data duplication (Amadeo et al., 2014; Li et al., 2013; Mishra
et al., 2015; Rong et al., 2014): When a data consumer (e.g. a
pervasive application) sends data retrieval requests, many data
producers (e.g. sensor nodes) may report similar harvested data.
In other cases, a data producer could report similar data as a
response to various data retrieval requests (e.g. similar video
frames recorded from an environment that did not change over
time, RFID tags readings). Considering the scope of IoT, the huge
number of smart objects already/to be deployed and their
constrained resources, these duplicated data could introduce
significant costs for transmission, handling and storing.

� Data leakage (Singh et al., 2015; Weinberg, 2004): Data leakage
occurs when an application retrieves or store more data than
needed. Considering the ubiquity of IoT, this issue could be very
threatening to user's privacy because data in IoT carry more
insights about our daily life and routines than, probably, any
other medium ever had.

� Multi-source data time alignment (Shah, 2016): Most ubiqui-
tous services require integrating data from multiple sources
(both dynamic and static) to provide appropriate services.
However, issues related to the time-alignment of these data
sources, to extract significant insights, usually rise due to the
spectacular rate of generating real-time data in IoT and the huge
number of available data producers.

Finally, it is worth noting that DQ problems existing in semi-
structured and unstructured data, which are extensively used in
IoT, still need more investigation (Wang, 2016) and may reveal
other classes of DQ problems.

4.2. Symptoms of DQ dimensions difficulties associated with DQ
problems classes

In the previous chapter, we used DQ dimensions as a metric to
study the impact on DQ. We also noted that any DQ problem could
be expressed as difficulties at the level of DQ dimensions. In this
paragraph, we specify the symptoms (i.e. affected DQ dimensions)
of each of the DQ problems classes defined above. The resulting
mapping is depicted in Fig. 11.

Unreliable data as a DQ problem class represent the uncertainty
inherent to data items due to various factors. This uncertainty is
related to the extent the measured data items' values represent
the true values with respect to the measurement's accuracy and
preciseness. Both the accuracy and confidence dimensions could
Fig. 11. DQ problem
be used to profile these data items. Items suffering from this DQ
problem will be characterized with poor accuracy and confidence.

Both low completeness and low data volume are key symptoms
of the Dropped Readings DQ problem class as they both translate
to the ratio of dropped/missing values (e.g. NULL values) in the
reported data stream.

Timeliness deficiencies represent a special DQ dimension as
they could be seen as a key symptom of both the dropped readings
and the unreliable readings DQ problem classes. In fact, on one
hand, an outdated reading (i.e. not arriving in time with respect to
the use requirements) essentially means that one requested
reading by the application could not be delivered on time. As a
result, even when this reading arrives, it will be of no use and will
be ignored/dropped either explicitly or implicitly (e.g. by not in-
corporating them into the data processing). On the other hand, an
obsolete reading in a dataset could affect the soundness of the
decision making. Let us take, for example, a decision making
process that takes as an input the readings from the last thirty
seconds and derives actionable decisions (e.g. adjust temperature
in a factory production line). If an obsolete reading (in our case, a
reading measured more than thirty seconds ago) has finally ar-
rived and is used in the input dataset, the derived decision is no
longer valid as it depends not only on the state of the last thirty
seconds (as required by the user or the application-defined rules)
but also on readings from an interval of non interest for the user/
application. As a result, obsolete readings could be seen as outliers
(with respect to the application's timeframe of interest) that are
unreliable and should not be used for later data processing (e.g.
business decision making).

Multi-source data-related problems manifest generally in the
form of low consistency. Moreover, data generating objects use
various data formats causing significant data presentation pro-
blems resulting in a low interpretability and low interoperability
between the incoming data streams. As regards data duplication, it
mainly affects the data volume by making it unnecessary and
costly huge due to redundant readings. Further, data leakage
shows a low level of access security to generated data in smart
objects allowing certain applications to pull more data than they
should be authorized to. Finally, the multi-source data time
alignment is essentially a time related problem and manifests in
the form of low timeliness.
5. Data outliers

Data produced in the context of IoT by the things are generally
unreliable. Data outliers are one of the major manifestations of
s' symptoms.
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data uncertainty. In this section, we study data outliers as a spe-
cific representation of the “Unreliable Readings” DQ problem class.
We start by defining the concept of a data outlier. We then discuss
their types. Finally, we analyze their impact in the IoT context.
5.1. Definition of data outliers

Outliers or anomalies belong to the class of unreliable readings
as depicted in Fig. 11. They are readings that are outside what is
considered as a “normal state” (represented by a model for ex-
ample) (Javed and Wolf, 2012). In Branch et al. (2009), outliers are
considered “events with extremely small probabilities of occur-
rence”. They are also seen as “points in a data set that are highly
unlikely to occur given a model of the data” (Otey et al., 2006).
Following the same logic, Chandola et al. (2009) defines anomalies
as “patterns in data that do not conform to a well-defined notion of
normal behavior”. There exist other formal metric-based defini-
tions such as distance-based outliers (DB-outlier) (Knox and Ng,
1998), for which “an object O in a dataset T is a DB (p, D)-outlier if
at least fraction p of the objects in T lies greater than distance D
from O”. Fig. 12 shows an example of outliers in a dataset. The
values within the regions R1 and R2 are considered normal, while
the values outside these 2 regions are considered outliers.
5.2. Types of outliers

Outliers are elements that significantly differ from other ele-
ments in a dataset. This does not automatically mean that they
represent errors. In fact, outliers may translate to important
information.

Based on the carried underlying knowledge, an outlier could
represent (Zhang et al., 2010):

– An error: A value generated due to a system dysfunction (e.g. a
node failure).

– An event: A value generated because of a sudden or extreme
change in the monitored phenomena (e.g. a passing hurricane).
It represents an extreme (legitimate) reading.
Another classification of outliers is presented in Chandola et al.
(2009):

– Point anomaly: Represents a single value that differs greatly
from other values in a dataset.

– Contextual anomaly: Represents a value that, depending on the
context, could be considered an outlier or not. The same value
could be an outlier in one context but not in another.

– Collective anomaly: Represents a collection of related values
which differ largely from the rest of values in the dataset. The
occurrence of the whole cluster of values is what is considered
outlier and not necessarily the individual values.
Fig. 12. Example of outliers in a reading dataset.
5.3. Impact of outliers in the IoT

In the IoT, data gathered by things (e.g. body sensor) will serve
as an input for data mining in order to extract insights about a
given monitored phenomena (e.g. environment, home, health,
etc.). Upon these insights, decision will be made in a pervasive
manner (e.g. call emergency, fire alert, etc.). It is clear that insights
extracted from “dirty data” (i.e. unreliable data) are probably er-
roneous and thus the decisions to be made are likely unsound (e.g.
high rate of false positive and false negative). As an example, in the
RFID-enabled library scenario (Jeffery et al., 2006a), almost half of
the emitted alerts are false positives due to unreliability of raw
data.

The importance of accuracy and reliability of data is even
higher when exploited in applications which involve or affect
human lives. Examples are given in Burdakis and Deligiannakis
(2012) which include a scenario where phenomena such as Tsu-
namis and avalanches are monitored in order to quickly evacuate
endangered zones. Another scenario involves monitoring fire in
forests in order to quickly react and take appropriate procedures.
In addition to applications in component monitoring where, in
order to protect expensive systems and avoid damages, the data
about the state of components should be accurately reported. Any
failure to deliver accurate data may compromise whole systems or
even put peoples' lives at risk.

While decisions made based on erroneous raw data are likely
unsound, this is not the case, if the outliers report rare events in
which case they represent a mine of gold for the pervasive ap-
plications: “One person's noise is another person's signal.” (Knox
and Ng, 1998). In fact, for some applications, outliers (representing
events) are far more important, with respect to the knowledge
discovery standpoint, than the “common behavior” as they re-
present rare events (Knox and Ng, 1998) (e.g. fire in a forest).

Data trustworthiness is crucial for user engagement and ac-
ceptance of IoT services, thus, for a successful large scale deploy-
ment of the IoT paradigm. This is shown in Yan et al. (2014) where
data collection trust and accuracy represent the major concern of
the Data Perception Trust as part of a holistic trust management
approach for the IoT.

Simulations or reproducible experimentations are an effective
way to better understand IoT systems and its challenges. In fact,
many Testbeds for IoT experimentation, such as FIT-Equipex (Pa-
padopoulos et al., 2013), already exist and are operational. A
number of other existing (public and private) Testbeds are sur-
veyed in Gluhak et al. (2011). However, to further investigate the
impact of data outliers, we report two real-world case studies of
DQ issues' impact on the e-health application domain.

E-health refers to internet (and other related technologies) –

enabled services which aim to provide and improve healthcare
(Eysenbach, 2001). Data play, within Medical Information Systems,
a fundamental role as the source of information and knowledge.
However, as we have previously stated, decisions taken based on
poor quality data are probably erroneous and this kind of un-
certain decisions cannot be allowed or tolerated in the e-health
domain considering the patients' life involved.

The first case study (Rodríguez et al., 2010) investigates the
impact of DQ issues on e-health monitoring applications. In this
work, and in order to identify DQ problems affecting DQ criteria
(e.g. accuracy, precision, currency, accessibility and consistency)
that are argued to be crucial to provide appropriate assistance for
the patient, three levels of data management are defined with
respect to a scenario of cardiac monitoring application: Data col-
lection, data processing and data discovery. For example, in data
collection level, problems are mainly related to body sensors
performance, the volume of data to pre-process and the quality of
communications.
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The second reported case study (McNaull et al., 2012) in-
vestigates poor DQ impact on Ambient Assisted Living systems
(AAL) (resulting from the convergence of Ambient Intelligence and
Assisted Living technologies). AAL provides support (e.g. monitor-
ing health and wellbeing) for people in their homes. In this work,
poor DQ is argued to alter the presentation of occurring events,
thus, preventing these systems from providing adequate support
for users and causing erroneous reporting of a patient health, in-
efficient management of in-home environmental conditions, etc.

E-health applications are among the most critical IoT applica-
tions considering the human life factor involved and, as a con-
sequence, do not tolerate uncertainty in DQ.

5.4. Context-awareness and data outliers

Context-awareness is fundamental in IoT applications and a key
feature in many industrial IoT products (Perera et al., 2015). The
concept of “context” has been defined in Abowd and Mynatt
(2000), Dey and Abowd (1999), Pascoe (1998), Schilit et al. (1994).
It refers to information used to provide adequate services, i.e. the
expected services under certain circumstances, to a user based on
the representation they construct about the current situation and
all the entities involved (Gallacher et al., 2013). Raw data (e.g.
sensor data) are the base to extracting context. For example, the
data retrieved from temperature sensors are raw data. The
knowledge inferred from these data about whether the weather is
hot or cool, is the context.

Four phases compose the context life cycle: Context acquisition,
Context modeling, Context reasoning and Context dissemination
(Perera et al., 2014). Context-related actions (e.g. context acquisi-
tion, etc.) could be performed within the application or outside
(e.g. in a dedicated infrastructure such as middlewares like Guo
et al., 2010; Wang et al., 2009; Hu et al., 2008). The data cleaning
should occur, at the latest, in the Context acquisition phase as to
ensure that the inputs of the upcoming phases are sound.

It is clear that the more accurate raw data are, the more re-
levant and accurate the obtained context is. In fact, the quality of
context (QoC) depends on the quality of physical sensors and in-
itial data (Bellavista et al., 2012). In Dey and Abowd (1999), five
pillars for building context are specified: Who, What, Where,
When and Why. If one of these axes is not present or poorly built,
then the whole context will collapse. Now, let us consider that our
raw data or a portion of it is of poor quality. By further processing
raw data, we could retrieve the Who, the What and the When
components. However, the “Where” component retrieved does not
accurately describe the location because of the deficiency of initial
data. As a result, the reason, i.e. the Why, a situation is occurring
cannot be determined and the extracted context will probably
trigger unsound actions which defies a basic principle of the per-
vasive aspect of IoT which is providing the right services in the
right time for the right person.

As an example, a device equipped with multiple sensors allows
parents to monitor the state of their child and his location. If the
context built based on data received from that device is wrong
because some sensors failed dirty and are reporting inaccurate
readings, then the parents will have a wrong idea about the si-
tuation of their child. In fact, the child may have already left the
safe zone that the parents have determined, but because of the
device that kept reporting erroneous positional data, neither the
parents nor the monitoring application have triggered the alarm of
the child been missing as the context they had did not suggest so.

6. DQ enhancement approaches

In contrast with the conventional Internet, IoT data come from
things rather than persons, thus, the programming's golden rule
“Never trust user input”,1 should evolve to “Never trust things in-
put”. This is justified by the inherently afore-mentioned un-
certainty and inconsistency of sensor data. To avoid costly con-
sequences of low DQ, techniques to pre-process data and improve
their quality are needed. In this section, we present five major DQ
enhancement techniques namely outlier detection, interpolation,
data integration, data deduplication and data cleaning. We present
their main principles, their general processes and the DQ aspects
they enhance. Moreover, we propose an extended taxonomy of
criteria which we use to compare different data cleaning techni-
ques and outline their characteristics and their fitness to be used
in the context of IoT.

6.1. Outlier detection

6.1.1. Outlier detection's process description
During the process of outlier detection, elements that differ

from what is considered normal are discovered. The end-goal is to
either suppress or highlight outliers (Branch et al., 2009). On the
one hand, once outliers (i.e. elements believed to be unreliable or
extremely suspicious) are discovered, further operations could be
easily taken such as suppressing discovered outliers (i.e. elim-
inating unreliable elements). On the other hand, highlighting
outliers is used while looking for rare events and patterns un-
derlying in a dataset in specific domain (e.g. fraud analysis).

Outlier detection is closely related, however differs from noise
removal and noise accommodation. It is also closely related to
novelty detection where novel patterns in dataset are mined and
incorporated into normal model (Chandola et al., 2009).

6.1.2. DQ enhanced aspects
Outlier detection helps improve the overall quality of datasets

by making them more consistent. Moreover, outlier detection re-
presents the first phase for handling instances of the Unreliable
Reading DQ problem class. In fact, data cleansing processing
adopts the approach of suppressing discovered outliers in order to
increase DQ. Consequently, the accuracy and reliability of data
processing results are also increased (i.e. more sound decision-
making). It is worth noting that the accuracy at the level of single
data items itself is not increased as it is only related to data gen-
erating sources and cannot be improved by data processing op-
erations (Klein and Lehner, 2009a).

6.1.3. DQ dimensions in outlier detection
Metrics used in outlier detection techniques focus on high-

lighting the difference between data values in order to identify
outliers (e.g. a value not fitting an established model (Javed and
Wolf, 2012)). To the best of our knowledge, none of the techniques
use metrics that highlight the intrinsic DQ in processed datasets
i.e., to use DQ dimensions or attributes assessment to identify data
values that represent outliers. In Klein et al. (2007), a framework
based on Data Stream Management Systems (DSMS) and Rela-
tional Database Management Systems (RDBMS) metamodels ex-
tensions has been proposed to ensure an end-to-end management
of DQ from capturing to persisting. Data values, within each
window, are associated with their DQ dimensions values. In the-
ory, these DQ values could be used as criteria to classify data. Data
values could be considered outliers or of poor quality when their
corresponding DQ values do not validate some specified threshold.
However, these same DQ dimensions values, used for evaluating
data, may themselves be unreliable or become insignificant under
certain circumstances. An example would be the Accuracy di-
mension used in the aforementioned framework which is

https://msdn.microsoft.com/en-us/library/ee798441%28v&equal;cs.20%29.aspx
https://msdn.microsoft.com/en-us/library/ee798441%28v&equal;cs.20%29.aspx
https://msdn.microsoft.com/en-us/library/ee798441%28v&equal;cs.20%29.aspx
https://msdn.microsoft.com/en-us/library/ee798441%28v&equal;cs.20%29.aspx
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retrieved from the manufacturer-specified sensor's measurement
precision class. If the sensor fails dirty under any circumstances,
then the Accuracy dimension is rendered insignificant and
unreliable.

6.2. Interpolation

6.2.1. Definition
Interpolation consists of inferring missing values based on

other (available) values. In the context of data stream, it represents
an estimation of missing data stream attributes or tuples (due to
sensor malfunctions or loss of connection, etc.). For example, if a
tuple j is not received and it is required for later data processing,
its value could be estimated knowing the values of tuples j�1 and
jþ1 (We suppose that both tuples j�1 and jþ1 were correctly
received). Many methods for interpolating data points exist in-
cluding linear interpolation, polynomial interpolation, etc. Inter-
polation is used in a variety of domains such as (Hofstra et al.,
2008; Štěpánek et al., 2011).

6.2.2. DQ enhanced aspects
Missing values represent gaps in available data about a certain

entity or phenomena of interest for the user. As knowledge de-
riving processes use these datasets as input, these gaps could also
lead to incomplete knowledge or wrong decisions which means
that missing values could lead to a decrease in DQ. Further, a user-
defined rule could specify a threshold on the size of data input (i.e.
data volume) or a constraint on the number of Null values (i.e.
completeness) for data processing which should be fulfilled in
order to carry on with later phases of data processing pipeline. As
it is not rare to not receive a requested value, interpolation
methods could be used to meet user requirements (e.g. providing
timely (predicted) data items in lieu of lost ones) and to overcome
instances of the Dropped readings DQ problem class by inferring
the missing values. In fact, interpolation is a data generating ap-
proach and as such it does improve the data volume DQ dimension
(i.e. increases the available data items). However, interpolation has
an opposite effect on the completeness DQ dimension which by
definition is the ratio of non-interpolated items to all available (i.e.
both non-interpolated and interpolated) data in the considered
stream window. This situation could be described as an optimi-
zation problem that should be resolved to find the optimal com-
promises between these two DQ dimensions with the constraint of
fulfilling the user-defined DQ requirements (Klein and Lehner,
2009a). Moreover, an important factor to take into account when
choosing an interpolation technique is the accuracy of interpolated
values (Chaplot et al., 2006) which should also fulfill the user-
requirements.

6.3. Data integration

6.3.1. Definition
IoT data come from a heterogeneous landscape of smart ob-

jects. In order to be used, these data need to overcome their
structure differences and inconsistencies to become truly bene-
ficial for the ubiquitous services. Semantic-based integration ap-
proaches falls under the semantic-vision of IoT and they aim to
make the integration and interoperability of IoT sensor data more
achievable. (Aggarwal et al., 2013) reports two such approaches
namely the Open Geospatial Consortium's Sensor Web Enable-
ment initiative and the World Wide Web Consortium (W3C)'s
Semantic Sensor Networks Incubator Group (SSN-XL) initiative.
Both these initiative proposes a suite of components and services
specifying standardized mechanism to ensure ease of under-
standing and efficient interoperability of sensor data. Such com-
ponents include ontologies, annotations, metadata, web service
interfaces, etc. Moreover, frameworks such as the Resource De-
scription Framework (RDF) (Staab and Studer, 2007) and the Web
Ontology Language (OWL) (Bechhofer, 2009) are providing stan-
dardized mechanism to describe data in order to make tasks such
as searching, retrieval and processing more straight forward. Fur-
ther, the Linked Data is a very promising approach to ease data
integration and retrieval in IoT (Qin et al., 2015). As an example, a
semantic data integration framework using Linked Data principles
and semantic web technologies was proposed in Nagib and Hamza
(2016). Other approaches consist of building middlewares to ab-
stract the underlying physical sensing layer and ease data in-
tegration such as the OpenIoT project (Soldatos et al., 2015) and
the Global Sensor Networks (GSN) project (Aberer et al., 2006).

Other solutions for data integration designed for specific IoT-
domain application were also proposed. In fact, Petrolo et al.
(2016) designed an architecture for integrating smart objects in
the context of a Smart City scenario. In addition, a Service Oriented
Architecture (SOA) paradigm was also proposed to abstract het-
erogeneity of smart things and enhance their interoperability in
the context of e-health applications (Wlodarczak et al., 2016).

6.3.2. DQ enhanced aspects
Data integration solutions mainly focus on resolving the pre-

sentation inconsistencies between the various data streams. Also,
they provide means to improve the interpretability of data (e.g. by
using annotations) and their interoperability by abstracting het-
erogeneous objects specifications and presenting pervasive appli-
cation with unified interfaces to search, retrieve and process data.

6.4. Data deduplication

6.4.1. Definition
Data deduplication is a data compression mechanism aiming to

reduce data handling's resources consumption by reducing the
amount of available data through removing of duplicate data items
and replacing themwith a pointer to the unique remaining copy. A
comparison of existing deduplication techniques is presented in
Mandagere et al. (2008). Moreover, Sethi and Kumar (2014) pro-
posed a methodology to leverage the Hadoop Framework with
deduplication capabilities. In a more IoT-specific context, Li et al.
(2015) proposes a technique for video deduplication with privacy
preservation considerations. Finally, Yan et al. (2016) proposes
deduplication techniques for cloud stored encrypted data.

6.4.2. DQ enhanced aspects
Data deduplication is quite simply a removal process of re-

dundant data items. As such, it mainly reduces the amount of data
and affect the data volume DQ dimension.

6.5. Data cleaning

6.5.1. Data cleaning benefits and phases' pipeline
Data cleaning is part of the data's life cycle as described

in Sathe et al. (2013) alongside data acquisition, query processing
and data compression. It represents an important task in data
processing. Data cleansing is not a new process specific to the IoT
context. It has already been defined as a process for database
systems in Maletic and Marcus (2000) where it is composed of
3 main phases: (i) Determination of error types, (ii) Identification
of potential errors and (iii) the correction of identified (potential)
errors. It is also very common for managing enterprise data in the
context of data warehousing (Jeffery et al., 2006a). Data cleaning is
widely studied under the “things-oriented” vision of the IoT (Ag-
garwal et al., 2013). While outlier detection is limited to dis-
covering outliers, data cleaning goes a step further and suppresses
the discovered elements. In general, and in order to handle



Fig. 13. Built-in capabilities of data cleaning techniques.
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different types of problems (unreliable and dropped readings DQ
problem classes instances), data cleaning techniques have a larger
scope than both outlier detection and interpolation. In fact, data
cleaning techniques usually incorporate built-in capabilities for
interpolation and outlier detection, thus, affecting all the DQ di-
mensions affected by both sub-components (Fig. 13). It is worth
noting that while the majority of affected DQ dimensions are en-
hanced, others could be affected negatively (e.g. the interpolation
decreasing the completeness of data as shown in Fig. 13) because
of existing trade-offs between certain DQ dimensions.

Further, although existing applications do typically implement
inner mechanisms for data cleaning within their logic considering
the unreliability of data, their support for data cleaning is limited,
application-specific and imposes post-processing overheads which
increase development and deployment costs (Jeffery et al., 2006a).
Providing a data cleaning system would help applications to con-
centrate on their core logic without worrying about data reliability
post-processing overheads.

6.5.2. Data cleaning system's general architecture
In a data cleaning system architecture (Fig. 14), four main

components are generally present as described in (Sathe et al.,
2013):

– The user interface: Responsible for interactions (inputs and
outputs) between the system and the end user.

– The stream processing engine: Maintains the flow of data in-
coming from physical world and operates as a data cleaning
platform.

– The anomaly detector: Searches for outliers in datasets.
– The data storage: Stores raw data and cleaned data. Both kinds
of data are kept because the raw data could be used in future
data cleaning processes.

The data cleaning process could be implemented as part of the
middleware layer (Aggarwal et al., 2013) that hides the complexity
and details of the physical perception layer from the application
layer. The major role of a data cleaning process, as described in
Fig. 14. A Data cleaning system's architectu
(Branch et al., 2009), is to identify and suppress outliers in order to
increase DQ. The identification task is carried out by the outlier
detector component which could be argued to be the core com-
ponent of the data cleaning system. Furthermore, from a design
standpoint, multiple outlier detection techniques could be used in
parallel as it was demonstrated in other domains such as in net-
work traffic anomaly detection where a parallel design outper-
forms all the individual algorithms (Shanbhag and Wolf, 2008).

Datasets may belong to a variety of domains (e.g. meteorology).
The underlying knowledge presented by these datasets is specific
to their respective domains. This is a major concern because in
order for a data cleaning process to purify datasets, a domain-
specific knowledge is often argued to be necessary for optimal
results (Maletic and Marcus, 2000). In the afore-mentioned data
cleaning architecture, the user interface plays the role of an in-
terface for capturing domain-specific knowledge (e.g. confidence,
thresholds, etc.) from the end users whom also may be required to
decide whether a detected outlier is a correct value or an actual
error.

6.5.3. Comparison's taxonomy
There are many data cleaning and outlier detection techniques.

In order to better outline the characteristics of each approach, we
adopt the following criteria on which we found our comparison
(summarized in Tables 5 and 6):

� Approach type: Different techniques use different approaches
to perform data cleaning tasks. For example, the model-based
approaches use well-established mathematical models to re-
present the datasets, while the declarative-based approaches
use a higher-level abstraction queries to describe the cleaning
process. To give more insights about how a mathematical model
is built and used for assessing DQ, the schema in Fig. 15
summaries the case of the model-based technique in Javed and
Wolf (2012) which we discuss in more details in Section 6.5.4.1.
First of all, the initial data are broken up to Training Samples
and Testing Samples. The former are used as input to create the
model (e.g. using multiple regression) whereas the latter are
re (Adapted from (Sathe et al., 2013)).
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used to avoid over-fitting problems. A “good” model performs
well on both Training and Testing samples. Once created, real-
life data streams are tested against the model and the result is
given as a binary output; a “normal data item” or an outlier
(with respect to the used model).

� Cleaning scope: Some techniques offer a holistic framework for
data cleaning while others focus on the outlier detection
component.

� Data stream sources: RFID and sensor technologies are the
main enablers of the IoT vision. They are the major sources of
data streams in the context of IoT. The surveyed techniques are
classified based on their capabilities to process RFID- and sen-
sor-enabled data.

� Data characteristics: As it was mentioned in Section 2.2, data in
the IoT exhibit many properties. Many of the surveyed techni-
ques make use of these characteristics to perform their tasks.

� Operating mode: There are 2 operating modes: (i) online mode
and (ii) offline mode. In the first mode, data stream is processed
as soon as it is captured in a real-time fashion. No trace files
storage or processing is required which results in a simpler
system design. The latter mode processes data after their arrival
and storage. In this case, trace files, typically voluminous due
the amount of data generated, are stored and processed peri-
odically or on demand.

� Event/error separation: Outliers could represent either errors
or important events. The ability to distinguish the underlying
knowledge of an outlier could help reduce the intervention of
the human factor.

� Automatic: The degree of human intervention in the data
cleaning process varies. Some techniques need minimum hu-
man intervention (e.g. automatically discover an underlying
model in datasets), others require more human intervention
(e.g. specifying threshold and query for every step of the
cleaning pipeline).

� Domain-agnostic: Depending on the need for prior (domain-
specific) knowledge, techniques are either domain- agnostic, i.e.
usable for various domains, or domain-specific, i.e. they are
designed for the use in a specific context.

� Variables of interest: A variable of interest represents an at-
tribute in the real world. The types and sources of sensor data
used by data cleaning techniques vary from unique to hetero-
geneous sources.
� Distributed: In a distributed design, the cleaning tasks are
performed locally in various components (e.g. sensor nodes) in
contrast with the centralized design where the cleaning pipe-
line tasks are performed in one place (e.g. a server).

� Fault tolerance: Sensor devices face many problems as it was
described in Section 3.1 (e.g. node failure). Data cleaning
approaches, which interact generally with the physical percep-
tion layer, should be resilient to faults and node failures in order
to provide a stable service.

� Confidence: A confidence score represents how much trust we
can put in an element. A confidence score could be calculated
and attributed to different elements (e.g. dataset's values, sen-
sor nodes).

6.5.4. Data cleaning techniques comparison
6.5.4.1. Model-based data cleaning techniques. Many of the char-
acteristics (e.g. correlation) exhibited by the data gathered in the
context of the IoT form the base for most of data cleaning model-
based techniques. These techniques use many well-established
mathematical models (e.g. regression models) to perform data-
related tasks, such as outlier detection. These mathematical
models are surveyed in (Sathe et al., 2013).

� An in-network data cleaning approach for wireless sensor
networks (Lei et al., 2016)
This paper proposes an in-network architecture for cleaning
sensor data. The data cleaning process is composed of four
steps, each of which is performed in a different physical
component. The first stage is performed by individual sensor
node. Each node checks its data using a built-in lightweight
outlier detection based on the correlation of the measured
attributes. The second stage consists of a cooperative process
where neighbor nodes check unusual data for event detection.
The third stage is performed in the sink to replace missing
values with predicted ones. The fourth stage is computationally
costly and is performed in the back-end server. It consists of
providing regression parameters (e.g. using Gradient Descent
method over recent historical data) for outlier detection algo-
rithms running in sensor nodes and performing usual data
mining tasks.
The outlier detection algorithm implemented in individual
sensor node is using lightweight regression model and take
advantage of the inherent correlation between various
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monitored attributes. For each reading, an abnormal-level value
is used to label its degree of reliability. The more reliable a
reading is, the less its abnormal-level will be. The event outlier
detection algorithm is carried in the immediate neighbor node.
This algorithm uses the Euclidian distance to measure the
similarity between readings from neighbor nodes. If this dis-
tance is less than a user-specified thresholds, the abnormal-
level is decreased to zero, thus, considering the suspicious
reading as a legitimate event outlier. Otherwise, the abnor-
mal-level is increased and the reading is considered faulty.
To measure the effectiveness of this technique, the authors
implemented both outlier and event detection algorithms. A
subset of sensor data from the Intel Lab scenario (“Intel Lab
Data,” 2004) was used for the experiments. The results reported
by the authors showed a good accuracy for outlier detection and
more energy-efficiency. However, our major concern is that the
implementation was done in MATLAB and the algorithms were
not running in a sensor node with constrained resources which
might not give an exact measurement of the performance.
Moreover, both stages 3 and 4 were only introduced without
any further implementation or performance evaluation.

� Distributed Internal Anomaly Detection System for Internet-
of-Things (Thanigaivelan et al., 2016)
The authors propose a distributed system for monitoring,
detecting and blocking anomalous sensor nodes. Even though
the proposed approach focuses on detecting nodes having an
outlier behavior, it does indirectly enhance the quality of the
generated data from the sensor network. In fact, anomalous
nodes may produce erroneous data either intentionally (e.g. a
hacked node) or unintentionally (e.g. fail-dirty node). Thus,
blocking these anomalous nodes will improve the overall DQ.
The detection system delegates to each node the responsibility
to monitor and grade its direct-neighbors (i.e. 1-hop neighbors)
for any discrepancy in monitored features, with respect to the
normal learnt behavior, such as suspicious packet size or data
rate. If such anomalous behavior is detected, the node isolates
and blocks the packets sent by its outlier neighbor, while also
informing its parent about the incident.
The detection system has three subsystems built into the
6LoWPAN protocol stack and available for all individual nodes:
(i) a Monitoring and Grading subsystem (MGSS), (ii) a Reporting
subsystem (RSS) and (iii) an Isolation subsystem (ISS). The
MGSS handles behavior monitoring and grading-related opera-
tions. The RSS reports newly detected incident to the parent
node through Distress Propagation Object messages (DPO), a
novel control message integrated to the routing protocol for
low-power and lossy networks (RPL). The ISS, giving the status
of the neighbor, handles the tasks of allowing or discarding its
packets. The three subsystems exchange information (e.g. the
neighbor status) through a local repository. Giving their respec-
tive tasks, the MGSS and RSS operate in the Network Layer of
the 6LoWPAN protocol stack because they need to access details
of packets sent by the neighbor nodes, while the ISS operate in
the Link Layer because it requires the ability to allow/discard
transiting packets. It is worth noting that while the individual
nodes are responsible for monitoring and reporting potential
anomalous nodes, only the edge-router has the final call of
whether to consider a node as anomalous or legitimate. To this
end, the edge-router analyses the forwarded PDO messages
from parent nodes for its final decision. Moreover, regardless of
the edge-router final decision, the suspected node incurs an
enforced isolation for a specified period of time. The edge-
router oversees the changes in the network using network
fingerprinting and performs periodic consistency checks
through analyzing reports correlation.
The presented system's design suggests a number of advantages
such as its scalability thanks to its distributed nature and energy
and communication overheads minimization thanks to its
reactive approach. However, no experimentation results nor
performance analysis are reported in the paper.

� Anomaly detection with HTM (Hole, 2016)
The paper proposes the use of the Hierarchical Temporal
Memory (HTM) (Hawkins et al., 2011) to detect anomalies in
streaming data. HTM is a machine learning algorithm modeled
on how the neocortex performs the cognitive tasks such visual
pattern recognition, understanding spoken language, etc.
Among the basic functions performed by HTM are: learning,
inference and prediction. In fact, HTM regions, representing the
levels of the used hierarchical model, learn by discovering
patterns on the input data using their spatial correlation (i.e.
spatial patterns) and temporal correlation (i.e. temporal pat-
terns or sequences) (e.g. identifying patterns in temperature
and humidity readings produced in a certain area and how
these patterns evolve over the span of each day). The nature of
the input data themselves is not known for the HTM. The HTM's
inference is done by comparing new input to previously learnt
patterns. Finally, the prediction function compares current input
data to the stored learnt sequences of patterns and tries to
figure out which inputs are coming next.
For the outlier detection application, HTM computes an anom-
aly score for each pattern it receives. If the current received
pattern is predicted (i.e. belonging to a well-known sequence of
patterns), its anomaly score is set to zero. If the pattern is totally
new (i.e. never encountered/learnt), its anomaly score is set to
one. Otherwise, an anomaly score between zero and one is
given to any partially predicted pattern. HTM suspects every
new pattern that it never encountered. However, the more such
pattern is encountered, the more normal it is considered. This is
reflected in its anomaly score being decreased. When the HTM-
based outlier detection starts operating, the ratio of flagged
patterns will be high as the algorithm is still learning what it is a
normal pattern (i.e. frequently encountered pattern) and what
is not. Moreover, to handle the case of noisy data producing too
many false positives alerts, HTM also uses an anomaly prob-
ability to identify how likely an obtained anomaly score is. The
anomaly probabilities are computed over a window of pre-
viously calculated anomaly scores.
The authors presented an implementation for detecting anoma-
lies in streaming metric data from running virtual machines
clusters over the Amazon Web Services cloud platform. Another
implementation is described for rogue behavior detection
which aims to identify unusual and suspicious actions of human
individuals in a monitored employment environment. The
reported results shows that HTM could effectively detect
anomalous patterns even when these are hard to find by a
human monitor. While both implementation do not deal with
data generated from smart things, the approach itself is usable
for IoT giving its unsupervised learning features as noted by the
authors.

� A framework for distributed cleaning of data streams (Gill
and Lee, 2015a)
A distributed framework for real-time environmental data
streams cleaning is proposed. The presented Distributed Clean-
ing System (DCS) is designed as sub-system of a Stream
Processing Engine (SPE). It is composed of a set of pipelined
processes executed concurrently, over a cloud computing plat-
form, for each incoming data stream. The same pipelined stages
(Point, Smooth, Merge, Arbitrate and Virtualize) proposed by
ESP (Jeffery et al., 2006a) are adopted by the DCS. However,
their implementation are not necessarily done using a declara-
tive language like in ESP but could be achieved with different
kinds of statistical models. Moreover, the pipeline of functions
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in DCS is configurable such that certain functions could be
implemented while others are not, depending on the applica-
tion scenario's requirements. The proposed DCS architecture
could be used to concurrently execute data cleaning task using
various models for different applications.
The current implementation of DCS only features the Point
stage performed using declarative cleaning queries and the
Smooth stage performed using regression models (e.g. multiple
regression models). Moreover, the different parts of the current
DCS are separate. In fact, the Point stage is implemented in
Streams-Esper (Scharrenbach, 2013) using its Event Processing
Language (EPL) to remove obvious data outliers by imposing
thresholds. Further, the regression models used in the Smooth
stage are created and tested offline in R using the partially-
cleaned data output of the Point stage. Finally, the actual
Smooth stage is executed in a distributed framework using
Spark Streaming (Zaharia et al., 2010). The trained models are
imported as R objects and used to predict values on the
incoming data stream.
The proposed approach for cleaning data streams has the
advantage of being distributed which represents an important
feature giving the needed resources required to process the
large scale data generated in the context of IoT. However, the
different parts of the system implementation should be inte-
grated in order to further examine its performances.

� Context aware model-based cleaning of data streams (Gill
and Lee, 2015b)
This paper proposes a context aware model-based technique for
cleaning environmental sensor data. The novelty in this work is
using context data from external sources to build the models. In
fact, besides the environmental sensor data generated by the
motes, geographical (e.g. location, elevation) and meteorological
(e.g. wind speed) data are added to the training dataset while
building the statistical models and also during the online
cleaning of the environmental data stream. Most of these
contextual data are obtained using web services.
The models were built using the Multiple Regression method.
70% of the initial data were used to build the models, while the
remaining 30% were used for effectiveness testing and valida-
tion. Three types of models were built; linear, polynomial and
Generalized Additive Models (GAM) for each variable of interest
(i.e. the monitored pollutant). The best set of predictors was
obtained using the Forward Stepwise Selection (FSS) technique.
Similarly, to identify the best model, the authors used the Mean
Squared Error (MSE) metric.
A two stage cleaning pipeline is implemented in a Data Cleaning
System (DCS) architecture (Gill and Lee, 2015a). The first step is
to clean obvious incorrect values (e.g. any temperature reading
above 50 °C) using the Point stage process. In the second step
(i.e. Smoothing stage), the different partially-cleaned tuples
(enhanced with contextual data) are then passed to the predic-
tion models. For each attribute of each tuple, the observed value
is compared to the predicted value. The predicted value replaces
the observed one any time the latter falls out of the 3 sigma rule
interval used as the system error tolerance. During the cleaning
of data stream, the MSE of each predictive model was calcu-
lated. The results shows that predictive models built on static
data could also be effectively used for cleaning streaming data.

� An outlier detect algorithm using big data processing and
internet of things architecture (Souza and Amazonas, 2015)
A k-means clustering-based algorithm is used in conjunction
with Big Data processing technologies and frameworks to detect
outliers in huge sets of sensor data generated in the IoT.
The key elements of this approach are threefold. First, the
k-means algorithm aims, starting from a set of observations
(e.g. sensor data readings) and an initial set of k-clusters with
their centroids, to iteratively group the observations into the
available clusters using a distance function. In fact, in each
iteration, each element is allocated to the cluster which has the
shortest distance, giving the used distance function (e.g. Eu-
clidean distance), between the cluster's centroid and the ob-
servation. Then, each centroid is updated as the mean of the
within-cluster observations. The partitioning stops when the
observations' allocation does not change, i.e. all clusters' cen-
troids are stable. Second, a distributed computing architecture
(Apache Hadoop) is adopted to handle the execution of the
outlier detection process. In fact, the k-means clustering algo-
rithm is executed concurrently on a distributed platform. Then,
the output stable centroids and radii of each cluster are used as
a model and are compared against each of the initial sensor
readings. If the measured distance (e.g. Euclidean distance)
between a sensor reading and each of the centroid is greater
than the corresponding radius, the sensor reading is marked as
an outlier. Third, the proposed distributed outlier detection
module is integrated as a new layer in an IoT middleware.
The authors used the implementations of both the k-means
algorithm and the Canopy clustering initialization algorithm
provided in the Apache Mahout project (“Apache Mahout,”
2014) which is built on top of the Apache Hadoop distributed
computing project (“Apache Hadoop,” 2014). Also, the outlier
detection module is integrated as a new layer of the LinkSmart
IoT middleware (Sarnovský et al., 2008). Finally, the reported
experimentation results suggest that the outlier detection did
well in identifying anomalous readings. However, the experi-
ment only used raw data produced by a single sensor node.
More experimentation involving multiple Hadoop instances and
the LinkSmart middleware could give a clearer view on the
performances of the detection algorithm.

� An estimation maximization based approach for finding re-
liable sensors in environmental sensing (Zhang et al., 2015)
The authors propose a DQ enhancement approach based on
selecting and relying only on reliable sensors in an environ-
mental sensing deployment. Intuitively, the more reliable a
sensor is, the more confidence we can put on the readings it
produces. Thus, by identifying faulty sensors and discarding
their readings, the output data stream is cleaned.
An Expectation-Maximization algorithm (EM) is used in this
approach. The main goal of such algorithm is to elaborate a
statistical model (e.g. a model of environmental features) from
observation data (e.g. environmental sensor data), given the
existence of latent variables in the observed data (e.g. sensor
faulty states). Both the statistical model and the latent variable
are used to provide a likelihood function which the EM algo-
rithm is set to maximize. Two steps are iteratively repeated
until a convergence state is reached. First, an E-step which,
giving a fixed statistical model, aims to find the latent variables.
Second, an M-step which aims to find the new statistical model
parameters that maximize the likelihood function giving fixed
latent variables.
In their proposed approach, the authors initialize their algo-
rithm with a linear model with Gaussian noises for the
monitored environmental feature over a limited set of observa-
tions. The given justification is that within a limited timeframe,
environmental phenomena tend to be characterized with
smooth variations and spatio-temporal correlation. On the other
hand, the used latent variable represent the faulty state of
sensors. Initially, a domain-specific knowledge representing the
probability of a reading being faulty is required. In each
iteration, a selection array is elaborated from the current model
and the readings reported by each sensor. It contains the
decision to either take the readings of a sensor into account
or to discard them. Then, according to the updated selection
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array, the statistical model is also updated to maximize a
defined likelihood function. When the selection array con-
verges, the algorithm stops.
The authors reported their experimentation findings on syn-
thetic and real datasets. The results shows that EM approach
effectively picks only non-faulty data and ignores the faulty
ones especially when the readings produced by reliable sensor
largely differs from the ones produced by faulty sensors. It also
largely outperforms two other well-established data cleaning
techniques.

� Vehicle anomaly detection based on trajectory data of ANPR
system (Sun et al., 2015)
A trajectory-based outlier detection algorithm is proposed for
identifying outlier vehicles using data generated by Automatic
Number Plate Recognition systems (ANPR). The devised ap-
proach extracts temporal and spatial information from vehicles'
trajectories in order to analyze and detect anomalous driving
behavior (e.g. A wandering vehicle). The trajectories are con-
structed from the data provided by ANPR systems. In fact, each
deployed video camera in the ANPR system monitors a specific
area, referred to as a gateway, and automatically recognizes and
reports vehicles driving through that area. The reported read-
ings follow the model (time, gateway, license) denoting a
specific vehicle (identified by its license plate), going through
a specific area (i.e. gateway) at a specific time. More formally,
the constructed trajectory is a set of readings reported by the
ANPR cameras. To extract more significant insights about a
vehicle's behavior, its trajectories are divided, using a time
interval threshold, to a set of trips. The trips are then used as
a source to extract a number of temporal and spatial features.
The extracted spatial features include the Route Length Factor
(RLF) and the Route Rarity Factor (RRF). The RLF denotes a
normalized value of the maximum path in a vehicle's trajectory.
The RRF denotes a normalized value of the route rarity in a
vehicle's trajectory. The route rarity represents how often a
route is used, i.e. how many vehicles have driven through that
route. On the other hand, the extracted temporal features
include the Activity of Daily Period (ADP) and the Activity of
Specific Hours (ASH). The ADP denotes the activity of a vehicle
on a daily-basis, i.e. on which days were the vehicle detected in
the monitored area. The ASH denotes the activity of a vehicle on
an hourly-basis in the monitored area.
The authors propose the use of two algorithms for detecting
outlier vehicle: (i) a spatial outlier detection taking advantage of
the extracted spatial features and (ii) a temporal outlier detec-
tion taking advantage of the extracted temporal features. The
spatial outlier detection is based on the Cumulative Rotation
Angles around the Centroid (CRAC) algorithm. Two phases are
carried on during the spatial outlier detection. First, a list of
candidate outlier vehicles are selected. A candidate vehicle is
one whose RLF and RRF exceeds predefined thresholds, i.e. the
vehicle takes long paths on uncommon routes. Second, for each
candidate vehicle, a CRAC value is calculated for each of its trips.
If any trip's calculated CRAC value exceeds a predefined thresh-
old, the vehicle is flagged as being an outlier.
The temporal outlier detection uses a k-mean clustering algo-
rithm and is performed over two steps. First, temporal features
are extracted from the data of a subset of vehicles that exhibit
normal behavior. Then, the k-mean algorithm is executed to
group the extracted features (i.e. ADP and ASH) into k clusters
representing the types of vehicles in the monitored area (e.g.
trucks, buses, etc.). Second, for each vehicle, the minimum
distance, using Euclidian distance, of its features from all the
clusters' centroids is computed. If this minimum distance
exceeds a predefined threshold, the vehicle is flagged as being
an outlier.
The authors tested their approach both on synthetic and real
datasets. The reported results show that both algorithms
detects anomalous vehicles. However, they are both sensitive
to the ANPR's recognition accuracy, especially the temporal
outlier detection. Also, both algorithms require domain-specific
knowledge and experimentation to specify various thresholds.

� Efficiently managing uncertain data in RFID sensor networks
(Ma et al., 2014)
A framework for managing the uncertainty in RFID data in
networked RFID systems for large scale object traceability is
proposed. Two major components are described. A Markov-
based global object tracking model and a local data manage-
ment model. We focus on the latter in the remainder of this
paragraph.
The data management model is executed locally in each node of
the traceability network (e.g. a location in a supply chain
network). Each node is responsible for managing data generated
by its RFID readers and storing, in a local probabilistic database,
a set of records following the proposed data model (time, tag ID,
location, probability) denoting an object (i.e. tag ID), located in a
certain node (i.e. location), at a certain time with a giving
confidence (i.e. probability). Tracking applications could query
these records in real-time to get the current position of an
object, while tracing applications could use them to get an
overview of the entire trajectory of such object.
Three sub-components compose the data management model:
(i) a data processing component, (ii) a particle filter component
and (iii) a data model component. In data processing stage, raw
RFID readings are gathered and they are further represented as
an observation variable Y (i.e. a set of n raw RFID readings
reported by RFID readers). The location of an object, which is
the only variable of interest in the object's state considered in
this paper, is modeled with a continuous random variable X
composed of a set of samples xi paired with their probability pi
following a probability density function of the likelihood of the
object being in a point xi in a region covered by RFID readers.
The sum of all probabilities of samples belonging to the same
random variable equals 1, i.e. the object must be present in the
traceability network for each point in time within its transiting
lifecycle. The probability pi of an object being in a specific
location xi is inferred following Bayes' rule by computing a
marginal posterior density of xi over observed Y. This inference
could be computationally costly as it requires to take into
account all RFID readings captured thus far. In order to cope
with this optimization problem, particle filtering, a sampling-
based technique, is used to approximate this conditional dis-
tribution. In fact, instead of incorporating all the states of the
objects, i.e. all locations, only a subset of these states, called
particles, are used. The chosen particles are decided through a
two-stage particle filter process which takes as input the whole
set of an object's states (i.e. X) and a set of current observed
readings (i.e. Yt) . First, a predicting step, outputs a set of
candidate particles, representing a weighted version of the
initial states. A list of qualified particles (i.e. candidate particles
with the highest weights) are then selected for use in the
approximation of the marginal posterior density. Second, an
updating step, where particles are updated in function of the
newly captured RFID readings and the previous states.
To evaluate their framework, the authors conducted a set of
experiments in a simulated warehouse scenario. The presented
results showed that the proposed approach succeeded in pre-
dicating the correct location of a moving pallet even though
some readings were missing. Also, a comparison between the
runtimes of the optimized (i.e. using particle filtering) and non-
optimized approaches, showed that the first has better perfor-
mance than the latter.
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� Cleaning environmental sensing data streams based on in-
dividual sensor reliability (Zhang et al., 2014)
An incremental and reliability-based sensor data cleaning
method is proposed. Instead of using the usual mean or median
method, this approach incorporates the reliability of individual
sensors into data cleaning, while incrementally adapting each
sensor's reliability according to his performance (the quality of
produced readings) in each data collection iteration.
The presented method has two main processes: (i) a reliability-
based data cleaning, called Influence Mean Cleaning (IMC) and
(ii) an incremental reliability update model. The IMC is a
weighted mean for predicting true readings of a set of spatially
correlated sensors. In fact, each reported reading is weighted by
the reliability of its producing sensor. This way, readings
produced by more reliable sensors, intuitively considered more
accurate, will have greater impact on the predicted cleaned
value than readings produced by less-reliable sensors. On the
other hand, the reliability update model ensures that the
reliability level affected to each individual sensor accurately
describes its performances. At the end of each data collection
and cleaning iteration, the reliability of each sensor is recalcu-
lated. This way, both the decline and improvement in a sensor's
performance are captured and taken into account in the next
cleaning iteration. In fact, a reward or penalty function is used
to either increase the reliability of a sensor if its reported
reading is within a tolerance threshold from the predicted
value, or decreased otherwise. In other words, if a sensor
reports readings that are in accordance with its neighbors, its
reliability level increases. Otherwise, it is decreased.
This method does not require any knowledge on the technical
specification of the used sensors to specify an initial reliability
level. Instead, it sets an arbitrate reliability for each sensor and
updates it with each iteration to reflect the true reliability of
each sensor based on the readings it reports.
The authors reported experimentation results both on synthetic
and real datasets. In both cases, the results show that the IMC
outperforms both the median and the mean approaches, even
though it does need some iterations to accommodate the
reliability level of each sensor. It also demonstrates that the
reliability update model effectively tracks the performance of
each individual sensor both when it is declining and when it is
recovering.

� Automated sensor verification using outlier detection in the
internet of things (Javed and Wolf, 2012)
This technique starts from the observation that sensors gen-
erally monitor an attribute, typically smooth and continuous, in
the real world. In order to apply the presented technique for
outlier detection, a set of k variables of interest is considered.
These variables are sensed using a set of n sensors deployed in
a geographical area each of which is capable of sensing one or
multiple variable of interest. The sensed state of a particular
variable i at a given time t is represented by the set of values
sensed by the sensors involved:

( ) = { ( ) … ( )} ( )i t i t Xin tX X 1 , , 1

No relationships are assumed between the sets of variables of
interest (i.e., no domain specific expertise required) albeit they
might exist. For all the variables, the sets of sensed values are
considered as just sets of numbers. Furthermore, it is assumed
that, since the sensed physical phenomenon is continuous,
there is an existing underlying regularity. This regularity man-
ifests in the form of spatial and temporal patterns or models.
The combination of these two kinds of models makes it possible
to determine the expected values for each variable of interest at
any given spatial coordinates at any given instant of time.
This technique aims at automatically deriving a model for a
variable of interest according to other variables of interest and
spatial parameters (latitude, longitude, elevation) using multi-
ple regression statistical modeling. During the process of de-
riving the underlying model in data, an nth degree polynomial
is used to describe the relationship between data elements or
variables. The greater the polynomial degree is, the better the
formulated model is (i.e. there is a decrease in the error of data
fitness versus the formulated model, which is measured using
Standard Error and R-Squared). However, this does not indicate
whether the model itself is “good” or not. In fact, a calculated
model can fit greatly initial data (used to formulate the model)
but it might not be the case for non-initial data, i.e. overfitting.
To address this problem, datasets (initial values) are broken
into Training Samples and Testing Samples. Training Samples
are used to calculate the model and the Testing samples are
used to test its efficiency. A “good” model is one that performs
well both on Training Samples and Testing Samples (having an
acceptable statistical errors vis-à-vis a defined threshold). The
spatial model is calculated at each time step and used to detect
outliers which could be caused by either a sudden drastic
change in measures (e.g. a tornado, etc.) or erroneous reported
sensed values by sensor(s). The derived model can also be used
for spatial interpolation (e.g. to detect the outliers readings) or
for temporal extrapolation (e.g. to predict sensor values in the
near future).
This technique has shown promising results when applied in
the case of a weather application. One major benefit is that no
prior (domain-specific) knowledge is required to detect out-
liers. However, no further actions are taken after detecting the
outlier. In fact, no means has been specified to decide on the
real nature of the outlier. Also, this techniques uses multiple
regression to define a variable of interest (e.g. pressure) based
on other variables of interest (e.g. ambient temperature, etc.)
and positional variables (latitude, longitude and elevation)
which may pose problem when there is only one monitored
variable of interest. While it is true that a specific threshold is
defined at the very beginning, the technique itself is fully
automatic.

6.5.4.2. Declarative-based data cleaning techniques

� Towards reusing data cleaning knowledge (Almeida et al.,
2015)
The paper presents a generic and domain-agnostic data clean-
ing methodology. It is based on the reuse of previously-specified
cleaning rules across multiple data sources having potentially
different data models and schemas. The generality and reusa-
bility of cleaning knowledge of the proposed approach come
from the separation of abstract and concrete data cleaning
operations and data source models.
The system architecture is composed of three layers; (i) an
Abstract Data Layer (ADL), (ii) a Bridge Layer (BL) and (iii) a
Concrete Data Layer (CDL). In order to clean data using this
methodology, a domain expert specifies an abstract model of
data cleaning operations using a domain-independent vocabu-
lary and a set of references to a domain-specific conceptualiza-
tion that abstracts the data sources to be cleaned. The resulting
cleaning model is generic for all instances (i.e. data sources) of
the used domain-specific conceptualization. Then, a set of
transformations and mapping processes, contained in the BL,
are executed to lower the abstraction level of the cleaning
model specified in the ADL. In fact, a mapping process and two
transformation processes are described. The mapping links
concepts from the domain-specific conceptualization to con-
cepts in the concrete data source when they have a different
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schema or model. The resulting mapping is used to transform
data represented in different domain conceptualizations and
also to rewrite the specified abstract data cleaning operations
with respect to the concrete target data source. It is worth
noting that the mapping and transformation modules could also
be used to obtain an abstract domain conceptualization from a
concrete data source model. Finally, the concrete data cleaning
process is performed in the CDL by applying the rewritten data
cleaning operations over data in the concrete data source.
One of the advantages of this approach is that, if any new data
sources needs cleaning, only the mapping and transformation
processes contained in the BL need to be updated. Once done,
the data cleaning conceptual model defined by the domain
expert could be used to obtain a new set of data cleaning
operations for the new data source, i.e. reusing cleaning knowl-
edge.
Even though the proposed approach seems to be viable for
cleaning IoT data, the authors did not give any actual example or
experiments of cleaning data streams. In fact, the only described
hypothetical example scenario only dealt with static data.
Moreover, no implementation is given even though the authors
described the technologies that they envision to use in their
system (e.g. RDF/OWL ontologies at the ADL).

� RFID uncertain data cleaning framework based on selection
mechanism (Xia et al., 2012)
The paper proposes a novel framework for RFID data cleaning
which is supposed to reduce the time required to clean RFID
datasets. In fact, the proposed architecture provides a selection
mechanism where many potential data cleaning paths could be
taken depending on the inherent uncertainty of each particular
RFID reading. The authors presents the characteristics of un-
certain RFID data as a key element in the design of the proposed
approach.
The main components of this framework are: (i) a filter
component, (ii) a pretreatment component, (iii) a stack of
several optional data cleaning nodes and (iv) a sorting compo-
nent. It is worth noting that the authors did not give much
detail on the filter component besides being responsible of
cleaning dirty data. The pretreatment component classifies the
filtered data according to their tag number into processing units
with a defined size. The stack of cleaning nodes contains a node
for cleaning each of the major manifestations of uncertain RFID
data (i.e. false readings, positive readings and redundant read-
ings). Each processing unit is tested for a particular uncertainty
problem (e.g. negative readings). If that processing unit data is
affected with that particular problem, then that unit is passed
through the corresponding cleaning node (e.g. negative read-
ings cleaning node) to be cleaned, otherwise it passes on to the
next node. Again, the authors did not give details on how this
testing for all types of uncertainty problems is done. Moreover,
no details are given on which actual data cleaning algorithms
are implemented within each cleaning node. Finally, the
cleaned processing unit are sorted in order to be streamed to
the application layer.
The authors reported the results of testing their framework
with simulated data. The results show that this framework is
more time-efficient, compared to traditional RFID data cleaning
frameworks, when the number of uncertain RFID data is
significant.

� An improved RFID data cleaning algorithm based on sliding
window (L. Li et al., 2012)
The paper proposes an RFID data cleaning technique using a
sliding window for non-uniform RFID data streams. This algo-
rithm is an improvement of the SMURF approach (Jeffery et al.,
2006b). The authors noted that the equation defining whether
to change the window size or not, which is a key feature of the
SMURF approach, is tightly related to the average reading rate
of each reading cycle and that may cause problems. In fact, in
the case of non-uniform RFID data streams, the average reading
rate approach might not trigger changes in the window size
when needed.
To improve the existing approach and overcome the challenges
of non-uniform streams, the new approach suggests in-
corporating the average rate of the upcoming reading cycle as a
factor of window size changing. Also, a threshold parameter is
used to decide when to adapt the window size.
The authors analyzed the performance of their algorithm, the
SMURF algorithm and a fixed-length sliding window algorithm.
The results reported by the authors showed that their algo-
rithm is more time-efficient compared to the SMURF algorithm.
Moreover, while the SMURF and the improved algorithms
performed fairly the same when processing stable RFID data
stream, they both outperformed the fixed-length sliding win-
dow algorithm. Finally, when the RFID data stream is extremely
unstable, the reported results show that the improved algo-
rithm largely outperforms all the other algorithms.

6.5.5. Data cleaning techniques comparison overview
We summarize our comparison results in the following Ta-

bles 5,6. It is worth noting that reference (1) corresponds to Lei
et al. (2016), (2) to Thanigaivelan et al. (2016), (3) to Hole (2016),
(4) to Gill and Lee (2015a), (5) to Gill and Lee (2015b), (6) to Souza
and Amazonas (2015), (7) to Zhang et al. (2015), (8) to Sun et al.
(2015), (9) to Ma et al. (2014), (10) to Zhang et al. (2014), (11)
to Javed and Wolf (2012), (12) to Almeida et al. (2015), (13) to Xia
et al. (2012) and (14) to L. Li et al. (2012).
7. Open challenges and future research directions

According to our survey on DQ in IoT environments and exist-
ing data cleaning and outlier detection techniques for IoT data, it is
clear that many challenges still need to be tackled in order to
provide IoT-suited data cleaning infrastructure. In this section, we
introduce these challenges. We also present some possible future
directions for research that we believe can deliver efficient solu-
tions and approaches for enhancing DQ in IoT environment.

7.1. Challenges

Ensuring DQ in the context of IoT still faces many challenging
problems. In fact, most of the surveyed solutions lack the support
of many features (as depicted in Tables 5 and 6) which are im-
portant in the context of IoT paradigm. The challenging issues
caused by this design deficiency include:

� Scalability: IoT is expected to be deployed on a global scale with
an unprecedented distributed aspect, even larger than the scale
of the conventional Internet. However, most of the proposed
solutions for data cleaning (Almeida et al., 2015; Hole, 2016;
Javed and Wolf, 2012; L. Li et al., 2012; Sun et al., 2015; Xia et al.,
2012; Zhang et al., 2015, 2014) are centralized which, in contrast
of a distributed architecture, does not provide the needed
flexibility and scalability for a large scale deployment.

� Heterogeneity of data sources: Data generated in the IoT come
from different kind of “things” (e.g. sensors, RFID tags, etc.). Data
cleaning techniques designed for IoT should be able to take into
account heterogeneity of data sources especially WSN- and
RFID-enabled data streams. Also, the proposed techniques
should be able to handle different variables of interest to fulfill
IoT applications' requirements which will likely provide com-
plex services based on multiple parameters (e.g. adjust home



Table 5
Data cleaning techniques comparison – Part 1.

Approach base Scope Data stream Data characteristics

Model-based Declarative-based Outlier detection Data cleaning RFID Sensor Continuity Spatial correlation Temporal correlation

(1) √ √ √ √ √
(2) √ √ √ √
(3) √ √ √ √ √
(4) √ √ √ √
(5) √ √ √ √ √ √
(6) √ √ √ √ √
(7) √ √ √ √ √ √
(8) √ √ √ √ √
(9) √ √ √
(10) √ √ √ √
(11) √ √ √ √ √ √
(12) √ √ √ √
(13) √ √ √
(14) √ √ √
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temperature based on observed outer temperature, user habits,
energy management, etc.).

� Domain-agnostic/automated verification: In the IoT vision,
the “things” will communicate with one another autonomously
to provide services based on their collaboration. A domain-ag-
nostic approach for data cleaning will ensure that data trans-
ferred between the “things” are sound without the need for
human intervention, which is crucial for a smooth creation of
IoT services.

� Distributed architecture: Besides the scalability, a distributed
architecture also provides fault tolerance and resilience to node
failures. These features are important in the context of IoT as
they allow the continuity and availability of data cleaning in-
frastructure that feeds ubiquitous services even when a failure
occurs in a sub-system.

Moreover, another essential feature that lacks from most of the
surveyed techniques is the ability to distinguish outliers re-
presenting errors from those representing events (Table 6's “Error/
event separation” column). As we have already mentioned, both
events and errors could manifest as outliers. Lest of losing valuable
knowledge, thus, potentially losing the capacity to act and react
accurately, data cleaning techniques should be able to separate
errors from events and accurately suppress only errors. In fact, in
the context of IoT, where both the physical and the digital worlds
are linked, being able to accurately determine the source of an
outlier is particularly fundamental especially when acting on the
Table 6
Data cleaning techniques comparison – Part 2.

Mode Error/event separation Multiple variables of interest A

Online Offline

(1) √ √ √ √
(2) √ √
(3) √ √ √ √
(4) √
(5) √ √
(6) √ √ √ √
(7) √ √
(8) √ √
(9) √ √ √
(10) √ √ √
(11) √ √ √
(12) √
(13) √
(14) √ √
physical world based on perceived phenomenon, and above all,
when the system behavior involves critical tasks to be accom-
plished when such events occur (e.g. call emergency).

Further, most of the current surveyed techniques for data
cleaning and outlier detection adopt a binary approach when it
comes to classifying dataset's values i.e., a value is either an outlier
or not an outlier (Table 6's “Confidence” column). Another ap-
proach would be to compute a confidence value for each dataset
value (or for a group of values within a window, depending on the
chosen granule), based on which an informed decision could be
taken. The confidence approach would offer more flexibility for IoT
applications to set their own confidence thresholds and to decide
whether or not to accept or reject a particular element.

7.2. Future research directions

In this section, we present some possible future research di-
rections we believe have the potential to enhance DQ in IoT:

� IoT network traffic-based outlier detection: Techniques based
on network traffic analysis for anomaly and intrusion detection
have already been successfully designed and used for the con-
ventional internet (Giacinto and Roli, 2002; Li et al., 2006; Lu
and Ghorbani, 2009; Münz et al., 2007; Shon et al., 2005; Za-
nero and Savaresi, 2004). However, the characteristics of the
traffic generated and exchanged by the “things” in the IoT are
still unknown (Borgia, 2014). Further researches on IoT traffic
profiling are required in order to set the ground for an IoT
utomatic Domain-agnostic Distributed Fault tolerance Confidence

√ √ √
√ √ √ √
√ √
√ √

√
√ √ √

√ √
√

√
√

(window size)
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traffic-based outlier detector. With this kind of approach in
place, anomalous data packet, which do not conform to “nor-
mal” traffic patterns, sent by dysfunctional or malicious nodes
(e.g. fail dirty nodes, hijacked nodes, etc.) could be detected.

� Lightweight outlier detection techniques: in the IoT, the
“things” are mostly known for their scarce resources. For
“things” to be able to self-control the quality of data they gen-
erate, there is clearly two options: 1) building more capabilities
in smart things to be able to run existing data cleaning tech-
niques on board, or 2) designing lightweight solutions that
could be embedded in smart things. Implementing DQ control
within “things” level would make the cleaning infrastructure
capable of scaling and evolving with the same pace as IoT itself.

� DQ assessment-based outlier detection: All the outlier detec-
tion techniques we surveyed look for elements that differ from
others without considering any other parameter (e.g. source
sensor precision). DQ dimensions (e.g. preciseness, complete-
ness, etc.) could be used as indicators of how good the received
data are. An outlier detection approach that incorporates DQ
assessment could reinforce decisions taken about the nature of
dataset elements. Further, more research are needed to de-
termine which DQ dimensions are the most relevant in the
context of IoT data in order to achieve the best outlier detection
rates.

� Personalized DQ management platform: DQ is subjective.
Each data consumer has a unique vision of how “good” data
should be depending on its core business and needs. In IoT, the
number of pervasive applications (i.e. data consumers) in-
creases each day and so does their DQ requirements. We believe
that there is a need for an effective way to let each data con-
sumer manages its DQ according to its own specifications and
requirements without imposing too much constraints or
overheads.

� DQ management middleware: Heterogeneity of data sources
in IoT is unprecedented. Various types of smart things produce
different kinds of data, each of which may or may not follow a
pre-defined data model. In order to provide powerful ubiqui-
tous services, pervasive applications tend to extract insights
from data coming from various sources at once. Managing the
quality of all these different data is challenging. We need a so-
lution to abstract all this heterogeneity in dealing with the
quality of received data, so that the pervasive applications focus
on delivering their services.
8. Conclusion

IoT promises a great potential by interconnecting millions of
day-to-day objects in order to provide intelligent and ubiquitous
services in favor of human beings. The amount of generated data
from this global scale deployment is tremendous. The harvested
data will serve as a base to extract insights about people, entities
and phenomenon in order to provide IoT services. The quality of
data is a major concern in this scenario. In fact, data trustworthi-
ness is crucial for the user engagement and acceptance of the IoT
paradigm. In this article, we surveyed DQ in the context of IoT. We
identified data properties and their new lifecycle in the context of
IoT. The concept of DQ is introduced and a set of generic and do-
main-specific DQ dimensions fit for use in assessing IoT data are
selected. IoT-related factors endangering the quality of data are
investigated. Further, an exhaustive qualitative analysis of their
impact on various DQ dimensions, thus on the overall DQ, is pre-
sented. Moreover, we identified major DQ problems manifestation
forms such as data outliers, multi-source data inconsistencies, etc.
and we associated each manifestation class with its symptoms
with respect to the affected DQ dimensions. We further studied
data outliers as a major DQ problem and we investigated their
impact in the context of IoT and its applications. Several techni-
ques for enhancing DQ are presented. We focused on data cleaning
techniques that promise to purify IoT data, which is vital for IoT
acceptance. We reviewed and compared, using an extended tax-
onomy, these techniques to outline their characteristics and their
fitness for use in the IoT. Finally, we discussed open challenges and
possible future research directions we believe have the potential
to set the ground for more efficient solutions and approaches for
building IoT-suited cleaning infrastructures and enhancing DQ in
the context of IoT environment.

IoT is a promising paradigm which has already yielded pro-
mising and exciting results. DQ plays a vital role in this context.
Means for further DQ enhancement are to be further researched to
ensure a wide deployment and acceptance of IoT.
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