
Architecture of Real-Time Database in Cloud Environment for Distributed Systems

Sebastijan Stoja
Schneider Electric DMS NS

Novi Sad, Serbia
e-mail: sebastijan.stoja@schneider-electric-dms.com

Sr�an Vukmirovi�
Computing and Control Department

University of Novi Sad
Novi Sad, Serbia

e-mail: srdjanvu@uns.ac.rs

Bojan Jela�i�
Schneider Electric DMS NS

Novi Sad, Serbia
e-mail: bojan.jelacic@schneider-electric-dms.com

Darko �apko
Computing and Control Department

University of Novi Sad
Novi Sad, Serbia

e-mail: dcapko@uns.ac.rs

Nikola Dal�ekovi�
Schneider Electric DMS NS

Novi Sad, Serbia
e-mail: nikola.dalcekovic@schneider-electric-dms.com

Abstract— In every distributed system there is a need for a
real-time database when working with a large amount of data
and when quick response from a service is expected on the
client side. Cloud companies do not offer real-time databases,
therefore, in this paper we present the architecture of a real-
time database in cloud environment, as well as reviews of other
papers dealing with this topic, analyzing their advantages and
disadvantages. The above-mentioned real-time database
attempts to store different kind of data, and our proposed
solution is implemented in each distributed system service.
Unlike other solutions, this real-time database will not occupy
main memory-base because it is running in cloud environment.
Also, we are proposing which cloud environment services can
be used to implement this real-time database. As an example,
we are modeling one distributed system using Petri nets where
solution can be applied.

Keywords-real-time database; cloud computing; distributed
systems

I. INTRODUCTION
Companies that use cloud computing have resolved

problems like: equipment, licensing, buying large servers,
hardware and all of this can be returned back when is no
longer needed. Analysts have discovered that computers are
used in only 17% of the cases, which represents a great loss
for the business. Necessary savings, while improving
performance are possible using cloud computing, an option
that is becoming increasingly popular in the IT world.
Distributed systems in cloud environments are increasingly
common due to a number of advantages and novelty of this
approach. In modern distributed systems working with a
large amount of data, there is a need for a real-time database
if quick response from each service is expected. In this paper
we present the architecture of real-time database system in
cloud environment which is used for applications in
distributed systems.

One of the primary reason why this type of in-memory
real-time database has been avoided is that it takes a long
time to access the data. Recently, in cloud computing, there
is no need for a real-time database and applications in
distributed systems over the world more and more are
moving their solution in cloud environment. The in-memory
real-time database described in this paper is used in services
to locally store the required data and to allow its access to
other services.

This paper is organized as follows: Section I introduced
the topic, Section II examines available solutions for real-
time databases in the literature, and compares them with our
proposal. Section III describes real-time database and
transactions in real-time database. In section IV the term
cloud computing is described together with its benefits and
what offers. In section V we are proposing the architecture of
a real-time database. Section VI illustrates one example of
using this proposed solution in distributed system and at the
end in section VII conclusion of this paper

II. RELATED WORK
There are several existing solutions in the literature, and

we will mention the following: The Beehive real-time
database [1] which supports advanced real-time transaction
scheduling based not on transaction but on data deadline.
This real-time database is using to access audio, video, and
image data.

The second solution is leaning on message-based
approach to prototype the distributed real-time database
systems. It is similar to our solution in that it uses
client/server paradigm for process interaction [2], however,
is does not operate in cloud environment and requires strong
servers with good performances due to substantial memory
consumption.

Paper [3] presents a centralized and decentralized
database model using Petri nets in which they illustrate

2014 Second International Conference on Artificial Intelligence, Modelling and Simulation

978-1-4799-7600-3/14 $31.00 © 2014 IEEE

DOI 10.1109/AIMS.2014.54

258

reachability graph of the net but the state of the model is not
analyzed. That leaves questions like whether the Petri net is
alive, if agents fall into deadlocks, if tokens are bounded, etc.
unexplained.

All implemented solutions [1][2][4][5][6][7][8] take
main memory-based real-time database system approaches
which limits their application due to memory consumption.
Unlike these approaches, our proposed solution runs in cloud
environment, which will not take memory and thus increases
the speed of the server response.

III. REAL-TIME DATABASE
Computers are the most important part of real-time

systems, therefore real-time computing is an important
discipline in computer science and engineering [9].

In recent years, the importance of real-time systems has
been growing, which is a result of the increasing amount of
data and requirements for durability, security and
consistency of the processed data. As real-time systems
[21][22] evolve, their applications become more complex
and require access to more data. Such requirements are
called database systems. Furthermore, merging database and
real-time technology represents an integrated system, which
provides database operations with real-time constraints and
these are generally called real-time database systems. Like a
conventional database system, a real-time database system
functions as a repository of data, provides efficient storage,
and performs retrieval and manipulation of information.
However, as a part of a real-time system that are
characterized by time constraints, a real-time database
systems has the added burden of ensuring some degree of
confidence in meeting the system's timing requirements [10].
These systems (real-time database systems) are used in
applications which are running in real-time, in applications
for distributed systems where write/read speed is crucial due
to real-time processing.

A. Real-time transactions
A typical real-time system consists of several

transactions that must be executed concurrently. Each
transactions has a value, which is gained to the system if a
computation finishes in a specific time. Each transaction also
has a deadline, which indicates a time limit, when a result of
the computing becomes useless [11].

A real-time transaction is a transaction with additional
real-time attributes. There is an additional attribute for a real
time transaction. These attributes are used by the real-time
scheduling algorithm and concurrency control method. The
additional attributes are the following [10]:

• Timing constraints - e.g. deadline is a timing
constraint associated with the transaction.

• Criticalness - It measures how critical it is that a
transaction meets its timing constraints. Different
transactions have different criticalness. Furthermore,
criticalness is a different concept from deadline
because a transaction may have a very tight deadline
but missing it may not cause great harm to the
system.

• Value function - is related to a transaction’s
criticalness. It measures how valuable it is to
complete the transaction at some point in time after
the transaction arrives.

• Resource requirements - Indicates the number of I/O
operations to be executed, expected CPU usage, etc.

• Expected execution time. Generally very hard to
predict but can be based on estimate or
experimentally measured value of worst case
execution time.

• Data requirements - Read sets and write sets of
transactions.

• Periodicity - If a transaction is periodic, what its
period is.

• Time of occurrence of events - In which point in
time a transaction issues a read or write request.

• Other semantics - Transaction type (read-only, write-
only, etc.).

The real-time database system apply all three types of
transactions:

• Write-only transactions obtain the state of the
environment and write into the database.

• Update transactions derive a new data item and store
it in the database.

• Read-only transactions read data from the database
and transmit that data or derived actions based on
that data to the controlling system.

IV. CLOUD COMPUTING
Cloud computing [12][13][14] is the most important

technology in computing industry right now. It is similar like
electricity grid over a network. Cloud computing allows
users to migrate and from any physical location to access
their data. It provides following key characteristics: agility,
application programming interface (API), cost, device and
location independence, maintenance, multitenancy,
performance, productivity, reliability, scalability and
elasticity and security.

Some benefits using cloud computing in distributed
systems:

• Unlimited resources: platform provides users that has
unlimited resources. The user does not need to worry
about the potential lack of processing power and
limited storage space.

• Minimization of infrastructure risk: using cloud
reduces the risk that exists when purchasing the
necessary computer infrastructure and allows users
to easily expand and decrease depending on the
needs of the application.

• Scalability: enabled easy expandability amount of
resources needed for the execution of the client
application in order to handling a larger number of
users or remove unnecessary resources in case of a
small number of users.

• Pay as you go model: unlike traditional solutions,
working with cloud does not require any start-up
costs thanks to the scalability of the platform and can

259

be achieved the maximum level of hardware
efficiency and usability could be achieved.

Many cloud companies in the type of services offer three
models:

• IaaS – is a model that allows to rent hardware such
as servers, network technology, data storage and
computer centers as a service.

• PaaS – is a model which provides an environment
with defined programming languages and application
interface to support all phases of application
development from planning, design and development
to testing.

• SaaS – is a model which provides the ability to
access applications without requiring them to be
installed and run on its own computer.

Cloud services can be private, hybrid and public. The
standard of public cloud services offer their service
dependent on selected models of service resources from
public data centers. These services do not guarantee user
privacy in terms of installed hardware or software, as
opposed to private services where clients install the required
hardware and software that is used by registered users only.
In fact, private cloud computing means that cloud
architecture is located behind a firewall of organizations and
provides IT services for internal guide. Hybrid services offer
a combination of the two mentioned above, where one part,
not critical for the business, is held in a public data center
and the other part in a company.

Public cloud computing services are directed to consumer
services such as: searching on the internet, personal email
services (Yahoo, Gmail, and Hotmail), social networking,
etc. Small and beginner companies attract concept of
services provided by public cloud computing because it
allows the reduction of the initial investment in IT
equipment. However, for many large companies, IT
infrastructure is closely associated with the central area of
their operations and outsourcing of computer capacity would
represent a major business risk. Safety, reliability,
performance and compliance with standards are the most
important issues for managers of IT departments when
evaluating new technologies. Such companies can develop
an internal, private cloud computing network over which
they will have a greater control and achievement of security
in computer resources.

Companies present in the market which offer their cloud
offering among others are Microsoft (Windows Azure),
Google (App Engine), IBM (Smart Cloud), and Amazon
(Elastic Compute Cloud).

V. ARCHITECTURE DESIGN
In this section is presented the structure of one distributed

system [15] in cloud environment that uses in-memory real-
time database. From the Fig. 1, we can see that this system
contains clients which are using services that are running in
cloud environment. Client #1 communicates with services
from first row (Service #1, Service #2, Service #n), Client #2
communicates with services from the second row, etc.

Figure 1. Architecture of distributed system in cloud environment.

An in-memory real-time database is placed inside of each
service, so each service contains own in-memory real-time
database and she owns own data.

Such architecture is used because clients’ side needs
quick response from a service. Only with in-memory real-
time database distributed systems can work rapidly and they
will have faster response from a service. All services have
mutual communication among themselves and through that
communication they exchange data. In addition,
communications between services and between client and
services has to be very quick that it would go unnoticed on
the client’s side. Such communication of exchanging data is
made through mechanism called Publisher and Subscriber
[16] which is of great importance for distributed systems.

This in-memory real-time database of an each service it
has possibility to store data in a cloud database. Storing data
is most frequently doing in the following situations: when
service is shutting down, when service failure or depends on
mode (it can be configured) of a service which can store for
example once a day/ week, etc.

This in-memory real-time database is designed to be
modular. Most of the modules are optional. Modules can be
enabled/disabled depending on the requirements of the
service, which utilize the in-memory real-time database.

To support transactional behavior, in-memory real-time
database uses the command-pattern to implement operations.
This way bulk operations can be committed or rolled back, if
one of the operations failed.

In contrast with other solutions of real-time database, our
solution does not use computer memory because every
operation is done in a cloud environment and this represents
a major advantage.

In Fig. 2, the following concepts are represented:
communication from client to an in-memory real-time
database located in a service, communication in in-memory
real-time database, making query and types of operations.
The algorithm on Fig. 2 shows that the client first makes a
transaction or send query to get data from the in-memory
real-time database located in service. The query first arrives
in Message identification where it is investigated and
validated. Validation works as follows: first, the authenticity
of the query is checked. If false, an empty query is sent back
to the client. If the message is valid, next step is Message
identification. This in-memory real-time database supports

260

three types of message: add, update and delete. This allows
Message identification to also take care of the query
identification.

Figure 2. Algorithm of real-time database.

Next, depends the type of message, there are three
possibilities for further action: Message for adding, Message
for updating and Message for deleting. Through one of these
three branches, a query is prepared based on the message
type, which is then saved in in-memory real-time database. If
an error occurs during the access to the database, a rollback
will turn on and all data will be back to the initial state (prior
to database access). With this module, the loss of data that
may occur during the transaction is avoided. At the end, the
query from in-memory real-time database is sent to the

client. As mentioned above this transaction of sending data is
done with mechanism Publisher/Subscriber. When the
service is shutting down, all data from real-time database
services will be packed and sent in one query to a cloud
database where it will be stored on existing data.

Implementing proposed solution for cloud environment
can be used by companies that offer Platform as a Service,
and these are:

• Microsoft Windows Azure
o Azure Worker role which is a cloud

service and services can be run on it,
o Azure cache which is distributed, in-

memory, scalable solutions that enable you
to build highly scalable and responsive
applications by providing super-fast access
the data, and

o Azure SQL Database is relational
database-as-a-service that delivers
predictable performance, scalability,
business continuity, data protection, and
near-zero administration to cloud
developers and solution architects.

• Amazon Elastic Compute Cloud
o Services should be run in App Services

which is a fully-managed service in the
AWS Cloud that makes it simple and cost-
effective to set up, manage, and scale a
custom search solution for application,

o Elastic Cache it can scale an in-memory
cache in the cloud, and

o Amazon RDS which is a web service that
makes it easy to set up, operate, and scale
a relational database in the cloud.

• Or instead of using database from Azure and
Amazon, a cloud database can be designed [16] and
installed on servers.

VI. EXAMPLE USING REAL-TIME DATABASE IN
DISTRIBUTED SYSTEMS

On Fig. 3 is shown an example using real-time database
system in on distributed system.

Real-time database is located in each service that handles
different data. The meaning of each service and its type of
data is described below.

SSE - Service for static elements. In the real-time
database located in this service is stored only data of a model
that describes the static elements of the distributed system - a
network model which is based on CIM [18], but has been
adapted for use in power applications.

SDE - Service for dynamic elements. In this real-time
database is stored current dynamic state of the device (state
switchgear) in the electric power distribution system.

TS - Topology service. This real-time database located in
this service stores the representation (topology) of the
distributed system, which is based on the current state of the
switchgear equipment.

261

Figure 3. Example of using real-time database in distributed system.

SF - Service for functions. The Real-time database in this
service is responsible for executing real-time calculations,
which are triggered by the changes in other services.

SC - Service calculations. As the name suggests, this
service real-time database stores data of calculations.

Client - Making interactions including the review of the
current state of the device, control action, presenting and
processing of alarm confirmation, trending, etc.

During modeling a distributed system uses Petri nets
[19][20] with next case: in the system, the final numbers of
objects (static elements) are brought through SSE service,
while SDE is ignored and linked with other services.

When transforming distributed system into Petri net
form:

 Ν1 = (P,Τ,Α,W,Μ0). (1)

 Symbols from Fig. 4 have following meaning:
• px - static elements
• p1- model with static elements
• p2 - model with data
• p3 - job for calculation
• p4 - result of calculations
• p5 - topologic data
• p6 - real-time calculations
Following at Fig. 4, reachability graph and reachability

three can be obtained, and it can be concluded that this
system is finite, the number of tokens of every place in all
markings is bounded, there are not dead transitions, and it is
a live system - meaning that the interaction between the
agents does not fall into deadlocks.

Figure 4. Distributed system modeled with Petri net.

VII. CONCLUSION
The aim of this paper was to present the architecture of a

real-time database used in distributed systems. In this
research, better results are given when a solution is
implemented in each service of a distributed system that
works with different kinds of data. It is therefore truly
inferred that such a solution will give better performance
without overloading performances of the machine because of
it being applied in a cloud environment. The only deficiency
of this solution is that cloud technology has not been
sufficiently improved yet and access to services in the cloud
takes time, which is the main reason why the system can be
slow. This paper also discusses an example of a distributed
system which is modeled by Petri nets, which shows in that
the distributed system is a live, bounded, and finite and never
falls into deadlocks.

For further research, this solution will be implemented on
one of cloud platforms, it will measure performances and
compare with other solutions of real-time database in and out
of the cloud environment.

REFERENCES
[1] J.A. Stankovic, S.H. Son, and J. Liebeherr, “Beehive: Global

Multimedia Database Support for Dependable, Real-Time
Applications,” Proc. Second Int’l Workshop Active, Real-Time, and
Temporal Database Systems, 1998, pp. 51-72

[2] Son, S.H., " An environment for prototyping real-time distributed
databases", Proceedings of the First International Conference on
Systems Integration, 1990. Systems Integration '90., Apr. 1990,
pp.358-367

[3] Fricks, R.M., Puliafito, A. ; Trivedi, K.S., " Performance analysis of
distributed real-time databases ", Computer Performance and
Dependability Symposium, 1998. IPDS '98. Proceedings. IEEE
International, Sep. 1998, pp.184-194

[4] K.-D. Kang, J. Oh, and S.H. Son, “Chronos: Feedback Control of a
Real Database System Performance” Proc. 28th IEEE Int’l Real-
Time Systems Symp. (RTSS), Dec. 2007, pp.267-276

[5] B. Adelberg, “STRIP: A Soft Real-Time Main Memory Database
for Open Systems”, PhD dissertation, Stanford Univ., 1997.

262

[6] C.-S. Peng, K.-J. Lin, C. Boettcher, “Real-Time Database
Benchmark Design for Avionics Systems” Proc. First Int’l
Workshop Real-Time Databases: Issues and Applications (RTDB),
1997, pp.123-138

[7] Chenggang Zhen, Kai Li, "Memory management research based on
real-time database", Test and Measurement, 2009. ICTM '09.
International Conference on (Volume:1), Dec. 2009, pp.416-419

[8] Jianming Qiu, Jizhen Liu, Yuebin Hou, Jianhua Zhang, "Use of real-
time/historical database in Smart Grid", International Conference on
Electric Information and Control Engineering (ICEICE), Apr. 2011,
pp. 1883 - 1886

[9] Shin, Kang G, "Introduction to the Special Issue on Real-Time
Systems", Computers, IEEE Transactions on (Volume:C-36,Issue:
8), Aug. 1987, pp.901-902J. Clerk Maxwell, A Treatise on
Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68–73

[10] B. Kao and H. Garcia-Molina. An overview of real-time database
systems. In S. H. Son, editor, Advances in Real-Time Systems,
Prentice Hall, 1995, pp.463–486

[11] Fernandes, Y.M.P, Perkusich, A. ; Neto, P.F.R. ; Perkusich, M.L.B,
"Implementation of transactions scheduling for real-time database
management", Systems, Man and Cybernetics, 2004 IEEE
International Conference on (Volume:6), Oct. 2014, pp. 5136 -
5141 vol.6

[12] Simon Bradshaw, Christopher Millard, Ian Walden, "Contracts of
Cloud: Comparison and Analysis of the Terms and Conditions of
Cloud Computing Service", Queen Mary School of Law Legal
Studies Research Paper No. 63/2010

[13] Lamia Youseff, Maria Butrico, Dilma Da Silva, Toward a Unified
Ontology of Cloud Computing, Grid Computing Environments
Workshop, 2008. GCE '08 New York, Nov. 2008, pp. 1-10

[14] Radu Prodan and Simon Osterman, A Survey and Taxonomy of
Infrastructure as a Service and Web Hosting Cloud Providers, Grid
Computing, 2009 10th IEEE/ACM International Conference Austria,
Oct.2009, pp. 17-25

[15] Andrew S.Tanenbaum, Maarten Van Steen, Distributed Systems
Second Edition, Pearson Education, 2007J. Clerk Maxwell, A
Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:
Clarendon, 1892, pp.68-73

[16] Stoja S., Vukmirovic S., Jelacic B., "Publisher/Subscriber
Implementation in Cloud Environment", International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),
Oct.2013, pp.677-682

[17] Ferretti, L., Pierazzi, F., Colajanni, M., Marchetti, M., "Performance
and Cost Evaluation of an Adaptive Encryption Architecture for
Cloud Databases", Cloud Computing, IEEE Transactions on
(Volume:2 , Issue: 2), Apr.-June 2014, pp.143-155

[18] Alan W. McMorran, "An Introduction to IEC 61970-301 & 61968-
11: The Common Information Model", Univetsity of Strathclyde,
Glasgow UK, 2007

[19] T. Murata, “Petri nets: Properties, analysis and applications,
”Proceedings of the IEEE, vol. 77, no. 4, April 1989, pp. 541–580

[20] Celaya, J.R.,Desrochers, A.A.; Graves, R.J.,“Modeling and analysis
of multi-agent systems using petri nets“,IEEE Transactions on
Systems, Man and Cybernetics, October 2007, pp.1439-14

[21] Pelusi D., Mascella R., "Optimal control algorithms for second order
systems", Journal of Computer Science, 9 (2), 2013, pp. 183-197

[22] Pelusi D., "Improving settling and rise times of controllers via
intelligent algorithms", 14th International Conference on Modelling
and Simulation, UKSim, 2012, pp. 187-192

263

