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Abstract

Multivariate time series forecasting is an important machine learning problem
across many domains, including predictions of solar plant energy output, elec-
tricity consumption, and traffic jam situation. Temporal data arise in these real-
world applications often involves a mixture of long-term and short-term patterns,
for which traditional approaches such as Autoregressive models and Gaussian Pro-
cess may fail. In this paper, we proposed a novel deep learning framework, namely
Long- and Short-term Time-series network (LSTNet), to address this open chal-
lenge. LSTNet uses the Convolution Neural Network (CNN) to extract short-term
local dependency patterns among variables, and the Recurrent Neural Network
(RNN) to discover long-term patterns and trends. In our evaluation on real-world
data with complex mixtures of repetitive patterns, LSTNet achieved significant
performance improvements over that of several state-of-the-art baseline methods.
The dataset and experiment code both are uploaded to Github.

1 Introduction

Multivariate time series data are ubiquitous in our everyday life ranging from the prices in stock
markets, the traffic flows on highways, the outputs of solar power plants, the temperatures across
different cities, just to name a few. In such applications, users are often interested in the forecasting
of the new trends or potential hazardous events based on historical observations on time series sig-
nals. For instance, a better route plan could be devised based on the predicted traffic jam patterns
a few hours ahead, and a larger profit could be made with the forecasting of the near-future stock
market.

Multivariate time series forecasting often faces a major research challenge, that is, how to capture
and leverage the dynamics dependencies among multiple variables. Specifically, real-world appli-
cations often entail a mixture of short-term and long-term repeating patterns, as shown in Figure 1
which plots the hourly occupancy rate of a freeway. Apparently, there are two repeating patterns,
daily and weekly. The former portraits the morning peaks vs. evening peaks, while the latter reflects
the workday and weekend patterns. A successful time series forecasting model should be capture
both kinds of recurring patterns for accurate predictions. As another example, consider the task of
predicting the output of a solar energy farm based on the measured solar radiation by massive sen-
sors over different locations. The long-term patterns reflect the difference between days vs. nights,
summer vs. winter, etc., and the short-term patterns reflect the effects of cloud movements, wind
direction changes, etc. Again, without taking both kinds of recurrent patterns into account, accu-
rate time series forecasting is not possible. However, traditional approaches such as the large body
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Figure 1: The hourly occupancy rate of a road in the bay area for 2 weeks
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Figure 2: An overview of the Long- and Short-term Time-series network (LSTNet)

of work in autoregressive methods [2, 12, 22, 32, 34] fall short in this aspect, as most of them do
not distinguish the two kinds of patterns nor model their interactions explicitly and dynamically.
Addressing such limitations of existing methods in time series forecasting is the main focus of this
paper, for which we propose a novel framework that takes advantages of recent developments in
deep learning research.

Deep neural networks have been intensively studied in related domains, and made extraordinary
impacts on the solutions of a broad range of problems. The recurrent neural networks (RNN) models
[9], for example, have become most popular in recent natural language processing (NLP) research.
Two variants of RNN in particular, namely the Long Short Term Memory (LSTM) [15] and the Gated
Recurrent Unit (GRU) [6], have significantly improved the state-of-the-art performance in machine
translation, speech recognition and other NLP tasks as they can effectively capture the meanings
of words based on the long-term and short-term dependencies among them in input documents
[1, 14, 19].In the field of computer vision, as another example, convolution neural network (CNN)
models [19, 21] have shown outstanding performance by successfully extracting local and shift-
invariant features (called ”shapelets” sometimes) at various granularity levels from input images.

Deep neural networks have also received an increasing amount of attention in time series analysis.
A substantial portion of the previous work has been focusing on time series classification, i.e., the
task of automated assignment of class labels to time series input. For instance, RNN architectures
have been studied for extracting informative patterns from health-care sequential data [5, 23] and
classifying the data with respect diagnostic categories. RNN has also been applied to mobile data,
for classifying the input sequences with respect to actions or activities [13]. CNN models have
also been used in action/activity recognition [13, 20, 31], for the extraction of shift-invariant local
patterns from input sequences as the features of classification models.

Deep neural networks have also been studied for time series forecasting, i.e., the task of using
observed time series in the past to predict the unknown time series in a look-ahead horizon – the
large the horizon, the harder the problem. Efforts in this direction range from the early work using
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naive RNN models [7] and the hybrid models [16, 33, 34] combining the use of ARIMA [3] and
Multilayer Perceptron (MLP), to the recent combination of vanilla RNN and Dynamic Boltzmann
Machines in time series forecasting [8].

Although the aforementioned work have shed lights on how to use deep neural networks to improve
time series analysis, none of them has offered good answers for the important questions below:

• How can RNN (LSTM and GRU) and CNN be effectively combined for dynamic modeling
of short-term and long-term dependency patterns in multi-variate time series data?

• How much can the combined deep learning approach (CNN + RNN) improve the perfor-
mance of representative autoregressive models?

• Can we further combine the deep learning models (CNN + RNN) and traditional autore-
gressive models to achieve better performance than that of using each type of the models
alone?

Answering the above questions are crucial for improving the state-of-the-art in time series forecast-
ing, and is the main contribution we aim in this paper. Specifically, we propose a novel deep learning
framework, namely Long- and Short-term Time-series Network (LSTNet), as illustrated in Figure 2.
It leverages the strengths of both the convolutional layer to discover the local dependency patterns
among multi-dimensional input variables, and the recurrent layer that captures complex long-term
dependencies. A particular recurrent structure, namely Recurrent-skip, is designed for capturing
very long-term dependence patterns and making the optimization easier as it utilizes the periodic
property of the input time series signals. Finally, the LSTNet incorporates a traditional autoregres-
sive linear model in parallel to the non-linear neural network part; which is similar to a highway
component [29]. Adding the linear model to this framework we aim to address a potential weak-
ness of the neural-network model, i.e., when/if the non-linear model is not sufficiently sensitive to
the scale changes in input data, the linear model provides a better (more sensitive) alternative. Our
evaluation results (Section 4.6) provide empirical evidence for this assertion.

The rest of this paper is organized as follows. Section 2 outlines the related background, includ-
ing representative auto-regressive methods and Gaussian Process models. Section 3 describe our
proposed LSTNet. Section 4 reports the evaluation results of our model in comparison with strong
baselines on real-world datasets. Finally, we conclude our findings in Section 5.

2 Related Background

One of the most prominent univariate time series models is the autoregressive integrated moving
average (ARIMA) model. The popularity of the ARIMA model is due to its statistical properties
as well as the well-known Box-Jenkins methodology [2] in the model selection procedure. ARIMA
models are not only adaptive to various exponential smoothing techniques [25] but also flexible
enough to subsume other types of time series models including autoregression (AR), moving average
(MA) and Autoregressive Moving Average (ARMA). However, ARIMA models, including their
variants for modeling long-term temporal dependencies [2], are rarely used in high dimensional
multivariate time series forecasting due to their high computational cost.

On the other hand, vector autoregression (VAR) is arguably the most widely used models in multi-
variate time series [2, 12, 24] due to its simplicity. VAR models naturally extend AR models to the
multivariate setting, which ignores the dependencies between output variables. Significant progress
has been made in recent years in a variety of VAR models, including the elliptical VAR model [27]
for heavy-tail time series and structured VAR model [26] for better interpretations of the depen-
dencies between high dimensional variables, and more. Nevertheless, the model capacity of VAR
grows linearly over the temporal window size and quadratically over the number of variables. This
implies, when dealing with long-term temporal patterns, the inherited large model is prone to over-
fitting. To alleviate this issue, [32] proposed to reduce the original high dimensional signals into
lower dimensional hidden representations, then applied VAR for forecasting with a variety choice
of regularization.

Time series forecasting problems can also be treated as standard regression problems with time-
varying parameters. It is therefore not surprising that various regression models with different loss
functions and regularization terms are applied to time series forecasting tasks. For example, linear

3



support vector regression (SVR) [4, 17] learns a max margin hyperplane based on the regression
loss with a hyper-parameter ε controlling the threshold of prediction errors. Ridge regression is yet
another example which can be recovered from SVR models by setting ε to zeros. Lastly, [22] applied
LASSO models to encourage sparsity in the model parameters so that interesting patterns among
different input signals could be manifest. These linear methods are practically more efficient for
multivariate time series forecasting due to high-quality off-the-shelf solvers in the machine learning
community. Nonetheless, like VARs, those linear models may fail to capture complex non-linear
relationships of multivariate signals, resulting in an inferior performance at the cost of its efficiency.

Gaussian Processes (GP) is a non-parametric method for modeling distributions over a continuous
domain of functions. This contrasts with models defined by a parameterized class of functions such
as VARs and SVRs. GP can be applied to multivariate time series forecasting task as suggested in
[28], and can be used as a prior over the function space in Bayesian inference. For example, [10]
presented a fully Bayesian approach with the GP prior for nonlinear state-space models, which is ca-
pable of capturing complex dynamical phenomena. However, the power of Gaussian Process comes
with the price of high computation complexity. A straightforward implementation of Gaussian Pro-
cess for multivariate time-series forecasting has cubic complexity over the number of observations,
due to the matrix inversion of the kernel matrix.

3 Framework

In this section, we first formulate the time series forecasting problem, and then discuss the details
of the proposed LSTNet architecture (Figure 2) in the following part. Finally, we introduce the
objective function and the optimization strategy.

3.1 Problem Formulation

In this paper, we are interested in the task of multivariate time series forecasting. More formally,
given a series of fully observed time series signals Y = {y1,y2, . . . ,yT } where yt ∈ Rn, and
n is the variable dimension, we aim at predicting a series of future signals in a rolling forecasting
fashion. That being said, to predict yT+h where h is the desirable horizon ahead of the current time
stamp, we assume {y1,y2, . . . ,yT } are available. Likewise, to predict the value of the next time
stamp yT+h+1, we assume {y1,y2, . . . ,yT ,yT+1} are available. We hence formulate the input
matrix at time stamp T as XT = {y1,y2, . . . ,yT } ∈ Rn×T .

In the most of cases, the horizon of the forecasting task is chosen according to the demands of the
environmental settings, e.g. for the traffic usage, the horizon of interest ranges from hours to a day;
for the stock market data, even seconds/minutes-ahead forecast can be meaningful for generating
returns.

Figure 2 presents an overview of the proposed LSTnet architecture. The LSTNet is a deep learning
framework specifically designed for multivariate time series forecasting tasks with a mixture of long-
and short-term patterns. In following sections, we introduce the building blocks for the LSTNet in
detail.

3.2 Convolutional Component

The first layer of LSTNet is a convolutional network without pooling, which aims to extract short-
term patterns in the time dimension as well as local dependencies between variables. The convolu-
tional layer consists of multiple filters of width ω and height n (the height is set to be the same as
the number of variables). The k-th filter sweeps through the input matrix X and produces

hk = RELU(Wk ∗X + bk) (1)

where ∗ denotes the convolution operation and the output hk would be a vector, and the RELU
function is RELU(x) = max(0, x). We make each vector hk of length T by zero-padding on the
left of input matrix X . The output matrix of the convolutional layer is of size dc × T where dc
denotes the number of filters.
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3.3 Recurrent Component

The output of the convolutional layer is simultaneously fed into the Recurrent component and
Recurrent-skip component (to be described in subsection 3.4). The Recurrent component is a re-
current layer with the Gated Recurrent Unit (GRU) [6] and uses the RELU function as the hidden
update activation function. The hidden state of recurrent units at time t is computed as,

rt = σ(xtWxr + ht−1Whr + br)

ut = σ(xtWxu + ht−1Whu + bu)

ct = RELU(xtWxc + rt � (ht−1Whc) + bc)

ht = (1− ut)� ht−1 + ut � ct

(2)

where� is the element-wise product, σ is the sigmoid function and xt is the input of this layer at time
t. The output of this layer is the hidden state at each time stamp. While researchers are accustomed
to using tanh function as hidden update activation function, we empirically found RELU leads to
more reliable performance, through which the gradient is easier to back propagate.

3.4 Recurrent-skip Component

The Recurrent layers with GRU [6] and LSTM [15] unit are carefully designed to memorize the
historical information and hence to be aware of relatively long-term dependencies. Due to gradient
vanishing, however, GRU and LSTM usually fail to capture very long-term correlation in practice.
We propose to alleviate this issue via a novel recurrent-skip component which leverages the periodic
pattern in real-world sets. For instance, both the electricity consumption and traffic usage exhibit
clear pattern on a daily basis. If we want to predict the electricity consumption at t o’clock for today,
a classical trick in the seasonal forecasting model is to leverage the records at t o’clock in historical
days, besides the most recent records. This type of dependencies can hardly be captured by off-the-
shelf recurrent units due to the extremely long length of one period (24 hours) and the subsequent
optimization issues. Inspired by the effectiveness of this trick, we develop a recurrent structure with
temporal skip-connections to extend the temporal span of the information flow and hence to ease
the optimization process. Specifically, skip-links are added between the current hidden cell and the
hidden cells in the same phase in adjacent periods. The updating process can be formulated as,

rt = σ(xtWxr + ht−pWhr + br)

ut = σ(xtWxu + ht−pWhu + bu)

ct = RELU(xtWxc + rt � (ht−pWhc) + bc)

ht = (1− ut)� ht−p + ut � ct

(3)

where the input of this layer is the output of the convolutional layer, and p is the number of hidden
cells skipped through. The value of p can be easily determined for datasets with clear periodic
patterns (e.g. p = 24 for the hourly electricity consumption and traffic usage datasets), and has to
be tuned otherwise. In our experiments, we empirically found that a well-tuned p can considerably
boost the model performance even for the latter case. Furthermore, the LSTNet could be easily
extended to contain variants of the skip length p.

We use a dense layer to combine the outputs of the Recurrent and Recurrent-skip components. The
inputs to the dense layer include the hidden state of Recurrent component at time stamp t, denoted
by hRt , and p hidden states of Recurrent-skip component from time stamp t− p+ 1 to t denoted by
hSt−p+1, h

S
t−p+2 . . . , h

S
t . The output of the dense layer is computed as,

hDt = WRhRt +

p−1∑
i=0

WS
i h

S
t−i + b (4)

where hDt is the prediction result of the neural network (upper) part in the Fig.2 at time stamp t.
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3.5 Autoregressive Component

Due to the non-linear nature of the Convolutional and Recurrent components, one major drawback
of the neural network model is that the scale of outputs is not sensitive to the scale of inputs. Un-
fortunately, in specific real datasets, the scale of input signals constantly changes in a non-periodic
manner, which significantly lowers the forecasting accuracy of the neural network model. A con-
crete example of this failure is given in Section 4.6. To address this deficiency, similar in spirit to
the highway network [29], we decompose the final prediction of LSTNet into a linear part, which
primarily focuses on the local scaling issue, plus a non-linear part containing recurring patterns. In
the LSTNet architecture, we adopt the classical Autoregressive (AR) model as the linear compo-
nent. Denote the forecasting result of the AR component as hLt ∈ Rn, and the coefficients of the AR
model as W ar ∈ Rqar

and bar ∈ R, where qar is the size of input window over the input matrix.
Note that in our model, all dimensions share the same set of linear parameters. The AR model is
formulated as follows,

hLt,i =

qar−1∑
k=0

W ar
k yt−k,i + bar (5)

The final prediction of LSTNet is then obtained by by integrating the outputs of the neural network
part and the AR component:

Ŷ t = hDt + hLt (6)

where Ŷ t denotes the model’s final prediction at time stamp t.

3.6 Objective function

The squared error is the default loss function for many forecasting tasks, the corresponding opti-
mization objective is formulated as,

minimize
Θ

∑
t∈ΩTrain

||Y t − Ŷ t−h||2F (7)

where Θ denotes the parameter set of our model, ΩTrain is the set of time stamps used for training,
|| · ||F is the Frobenius norm, and h is the horizon as mentioned in Section 3.1. The traditional linear
regression model with the square loss function is named as Linear Ridge, which is equivalent to the
vector autoregressive model with ridge regularization. However, experiments show that the Linear
Support Vector Regression (Linear SVR) [30] dominates the Linear Ridge model in certain datasets.
The only difference between Linear SVR and Linear Ridge is the objective function. The objective
function for Linear SVR is,

minimize
Θ

1

2
||Θ||2F + C

∑
t∈ΩTrain

n−1∑
i=0

ξt,i

subject to |Ŷ t−h,i − Y t,i| ≤ ξt,i + ε, t ∈ ΩTrain
ξt,i ≥ 0

(8)

where C and ε are hyper-parameters. Motivated by the remarkable performance of the Linear SVR
model, we incorporate its objective function in the LSTNet model as an alternative of the squared
loss. For simplicity, we assume ε = 01, and the objective function above reduces to absolute loss
(L1-loss) function as follows:

minimize
Θ

∑
t∈ΩTrain

n−1∑
i=0

|Y t,i − Ŷ t−h,i| (9)

In the experiment section, we carefully examine the effectiveness of both objective functions defined
in Equation 7 and Equation 9.

1One could keep ε to make the objective function more faithful to the Linear SVR model without modifying
the optimization strategy. We leave this for future study.
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3.7 Optimization Strategy

Our optimization strategy is the same as that in the traditional time series forecasting model. Sup-
posing the input time series is Y = {y1,y2, . . . ,yT }, we define a tunable window size q, and
reformulate the input at time stamp t as Xt = {yt−q+1,yt−q+2, . . . ,yt}. The problem then be-
comes a regression task with a set of feature-value pairs {Xt,yt+h}, and can be solved by Stochastic
Gradient Decent (SGD) or its variants such as Adam [18].

4 Evaluation

We conducted extensive experiments with 8 methods (including our new methods) on 4 benchmark
datasets for time series forecasting tasks.

4.1 Methods for Comparison

The methods in our comparative evaluation are the follows.

• AR stands for the autoregressive model, which is equivalent to the one dimensional VAR
model.
• LRidge is the vector autoregression (VAR) model with L2-regularization, which has been

most popular for multivariate time series forecasting.
• LSVR is the vector autoregression (VAR) model with Support Vector Regression objective

function [30] .
• TRMF is the autoregressive model using temporal regularized matrix factorization by [32].
• GP is the Gaussian Process for time series modeling. [11, 28]
• VAR-MLP is the model proposed in [34] that combines Multilayer Perception (MLP) and

autoregressive model.
• LST-L1 is our proposed LSTNet model (Section 3) with the absolute loss objective func-

tion.
• LST-L2 is our proposed LSTNet model with the square loss objective function.

For the single output methods above such as AR, LRidge, LSVR and GP, we just trained n models
independently, i.e., one model for each of the n output variables.

4.2 Metrics

We used three conventional evaluation metrics defined as:

• Root Relative Squared Error (RSE):

RSE =

√∑
(i,t)∈ΩTest

(Yit − Ŷit)2√∑
(i,t)∈ΩTest

(Yit −mean(Y ))2
(10)

• Relative Absolute Error (RAE)

RAE =

∑
(i,t)∈ΩTest

|Yit − Ŷit|∑
(i,t)∈ΩTest

|Yit −mean(Y )|
(11)

• Empirical Correlation Coefficient (CORR)

CORR =
1

n

n∑
i=1

∑
t

(
Yit −mean(Y i)

)(
Ŷit −mean(Ŷ i)

)√∑
t

(
Yit −mean(Y i)

)2(
Ŷit −mean(Ŷ i)

)2 (12)

where Y , Ŷ ∈ Rn×T are ground true signals and system prediction signals, respectively. For RSE
and RAE lower value is better, while for CORR higher value is better.
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Datasets T D L

Electricity 26,304 321 1 hour
Traffic 17,544 862 1 hour
Solar-Energy 52,560 137 10 minutes
Exchange-Rate 7,588 8 1 day

Table 1: Dataset Statistics, where T is length of time series, D is number of variables, L is the
sample rate.

4.3 Data

We used four benchmark datasets which are publicly available. Table 1 summarizes the corpus
statistics.

• Electricity2: The electricity consumption in kWh was recorded every 15 minutes from
2012 to 2014, for n = 321 clients. We converted the data to reflect hourly consumption;

• Traffic3: A collection of 48 months (2015-2016) hourly data from the California Depart-
ment of Transportation. The data describes the road occupancy rates (between 0 and 1)
measured by different sensors on San Francisco Bay area freeways.

• Solar-Energy4 : the solar power production records in the year of 2006, which is sampled
every 10 minutes from 137 PV plants in Alabama State.

• Exchange-Rate: the collection of the daily exchange rates of eight foreign countries in-
cluding Australia, British, Canada, Switzerland, China, Japan, New Zealand and Singapore
ranging from 1990 to 2016.

All datasets have been split into training set (60%), validation set (20%) and test set (20%) in chrono-
logical order. To facilitate future research in multivariate time series forecasting, we publicize all
raw datasets and the one after preprocessing in the Github.5

In order to examine the existence of long-term and/or short-term repetitive patterns in time series
data, we plot autocorrelation graph for some randomly selected variables from the four datasets in
Figure 3. Autocorrelation, also known as serial correlation, is the correlation of a signal with a
delayed copy of itself as a function of delay defined below

R(τ) =
E[(Xt − µ)(Xt+τ − µ)]

σ2

where Xt is the time series signals, µ is mean and σ2 is variance. In practice, we consider the
empirical unbiased estimator to calculate the autocorrelation.

We can see in the graphs (a), (b) and (c) of Figure 3, there are repetitive patterns with high autocorre-
lation in the Electricity, Traffic and Solar-Energy datasets, but not in the Exchange-Rate dataset.
Furthermore, we can observe a short-term daily pattern (in every 24 hours) and long-term weekly
pattern (in every 7 days) in the graph of the Traffic dataset, which perfect reflect the expected regu-
larity in highway traffic situations. On the other hand, in graph (d) of the Exchange-Rate dataset,
we hardly see any repetitive long-term patterns, expect some short-term local continuity. These ob-
servations are important for our later analysis on the empirical results of different methods. That is,
for the methods which can properly model and successfully leverage both short-term and long-term
repetitive patterns in data, they should outperform well when the data contain such repetitive patterns
(like in Electricity, Traffic and Solar-Energy). On the other hand, if the dataset does not contain
such patterns (like in Exchange-Rate), the advantageous power of those methods may not lead a
better performance than that of other less powerful methods. We will revisit this point in Section 4.7
with empirical justifications.

2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3http://pems.dot.ca.gov
4http://www.nrel.gov/grid/solar-power-data.html
5https://github.com/laiguokun/multivariate-time-series-data
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(a) Electricity dataset (b) Traffic dataset

(c) Solar-Energy dataset (d) Exchange-Rate dataset

Figure 3: Autocorrelation graphs of sampled variables form four datasets.

4.4 Experimental Details

We conduct grid search over all tunable hyper-parameters on the held-out validation set for each
method and dataset. Specifically, all methods share the same grid search range of the window size
q ranging from {20, 21, . . . , 29} if applied. For LRidge and LSVR, the regularization coefficient
λ is chosen from {2−10, 2−8, . . . , 28, 210}. For GP, the RBF kernel bandwidth σ and the noise
level α are chosen from {2−10, 2−8, . . . , 28, 210}. For TRMF, the hidden dimension is chosen from
{22, . . . , 26} and the regularization coefficient λ is chosen from {0.1, 1, 10}. For LST-L1 and LST-
L2, we adopted the training strategy described in Section 3.7. The hidden dimension of the Recurrent
and Convolutional layer is chosen from {50, 100, 200}, and {20, 50, 100} for Recurrent-skip layer.
The skip-length p of Recurrent-skip layer is set as 24 for the Traffic and Electricity dataset, and
tuned range from 21 to 26 for the Solar-Energy and Exchange-Rate datasets. The regularization
coefficient of the AR component is chosen from {0.1, 1, 10} to achieve the best performance. We
perform dropout after each layer, except input and output ones, and the rate usually is set to 0.1 or
0.2. The Adam[18] algorithm is utilized to optimize the parameters of our model. We publicize the
LSTNet code in the Github. 6

4.5 Main Results

Table 2 summarizes the evaluation results of all the methods (8) on all the test sets (4) in all the
metrics (3). We set horizon = {3, 6, 12, 24}, respectively, which means the horizons was set from
3 to 24 hours for the forecasting over the Electricity and Traffic data, from 30 to 240 minutes over the
Solar-Energy data, and from 3 to 24 days over the Exchange-Rate data. The larger the horizons,
the harder the prediction tasks. The best result for each (data, metric) pair is highlighted in bold face
in this table. The total count of the bold-faced results is 28 for LST-L1 (one version of the proposed
LSTNet), 10 for LST-L2 (the other version of our LSTNet), 5 for AR, 4 for LRidge, and between 0
to 2 for the rest of the methods.

6https://github.com/laiguokun/LSTNet
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Clearly, LSTNet has the dominating performance on the first three datasets (Electricity, Solar-
Energy and Traffic), especially in the settings with the large horizon, but slightly worse than AR
and LRidge on the Exchange-Rate dataset. Why? Recall that in Section 4.3 and Figure 3 we
used the autocorrelation curves of these datasets to show the existence of repetitive patterns in the
Electricity, Solar-Energy and Traffic datasets but not in Exchange-Rate. The current results
provide empirical evidence for the success of LSTNet models in modeling long-term and short-term
dependency patterns when they do occur in data. Otherwise, LSTNet performed comparably with
the better ones (AR and LRidge) among the representative baselines. The robustness of LSTNet is
also due to its inclusion of the autoregressive model as a component, which we will discuss further
in next section.

Dataset Electricity Solar-Energy Traffic Exchange-Rate

Horizon Horizon Horizon Horizon

Methods Metrics 3 6 12 24 3 6 12 24 3 6 12 24 3 6 12 24

AR RSE 0.0995 0.1035 0.1050 0.1054 0.2435 0.3790 0.5911 0.8699 0.5991 0.6218 0.6252 0.6293 0.0228 0.0279 0.0353 0.0445
RAE 0.0579 0.0598 0.0603 0.0611 0.1846 0.3242 0.5637 0.9221 0.4491 0.4610 0.4700 0.4696 0.0181 0.0224 0.0291 0.0378

(5) CORR 0.8845 0.8632 0.8591 0.8595 0.9710 0.9263 0.8107 0.5314 0.7752 0.7568 0.7544 0.7519 0.9734 0.9656 0.9526 0.9357

LRidge RSE 0.1467 0.1419 0.2129 0.1280 0.2019 0.2954 0.4832 0.7287 0.5833 0.5920 0.6148 0.6025 0.0184 0.0274 0.0419 0.0675
RAE 0.0900 0.0933 0.1268 0.0779 0.1227 0.2098 0.4070 0.6977 0.4965 0.5115 0.5198 0.4846 0.0144 0.0225 0.0358 0.0602

(4) CORR 0.8890 0.8594 0.8003 0.8806 0.9807 0.9568 0.8765 0.6803 0.8038 0.8051 0.7879 0.7862 0.9784 0.9702 0.9543 0.9305

LSVR RSE 0.1523 0.1372 0.1333 0.1180 0.2021 0.2999 0.4846 0.7300 0.5740 0.6580 0.7714 0.5909 0.0189 0.0284 0.0425 0.0662
RAE 0.0858 0.0816 0.0762 0.0690 0.1082 0.2451 0.4362 0.6180 0.4629 0.5483 0.7454 0.4761 0.0148 0.0231 0.0360 0.0576

(1) CORR 0.8888 0.8861 0.8961 0.8891 0.9807 0.9562 0.8764 0.6789 0.7993 0.7267 0.6711 0.7850 0.9782 0.9697 0.9546 0.9370

TRMF RSE 0.1802 0.2039 0.2186 0.3656 0.2473 0.3470 0.5597 0.9005 0.6708 0.6261 0.5956 0.6442 0.0351 0.0875 0.0494 0.0563
RAE 0.1064 0.1175 0.1571 0.2686 0.1481 0.2165 0.3717 0.6526 0.5887 0.5295 0.4479 0.5256 0.0302 0.0654 0.0464 0.0510

(0) CORR 0.8538 0.8424 0.8304 0.7471 0.9703 0.9418 0.8475 0.5598 0.6964 0.7430 0.7748 0.7278 0.9142 0.8123 0.8993 0.8678

GP RSE 0.1500 0.1907 0.1621 0.1273 0.2259 0.3286 0.5200 0.7973 0.6082 0.6772 0.6406 0.5995 0.0239 0.0272 0.0394 0.0580
RAE 0.0907 0.1137 0.1043 0.0776 0.1419 0.2189 0.4095 0.7599 0.5148 0.5759 0.5316 0.4829 0.0230 0.0239 0.0355 0.0547

(1) CORR 0.8670 0.8334 0.8394 0.8818 0.9751 0.9448 0.8518 0.5971 0.7831 0.7406 0.7671 0.7909 0.8713 0.8193 0.8484 0.8278

VARMLP RSE 0.1393 0.1620 0.1557 0.1274 0.1922 0.2679 0.4244 0.6841 0.5582 0.6579 0.6023 0.6146 0.0265 0.0304 0.0407 0.0578
RAE 0.0970 0.1171 0.1261 0.0883 0.1051 0.1635 0.3102 0.6084 0.4510 0.5434 0.4947 0.5474 0.0244 0.0268 0.0356 0.0520

(2) CORR 0.8708 0.8389 0.8192 0.8679 0.9829 0.9655 0.9058 0.7149 0.8245 0.7695 0.7929 0.7891 0.8609 0.8725 0.8280 0.7675

LST-L1 RSE 0.0906 0.0974 0.1007 0.1007 0.1944 0.2601 0.3408 0.4631 0.4983 0.5379 0.5460 0.5583 0.0226 0.0278 0.0356 0.0448
RAE 0.0519 0.0542 0.0567 0.0549 0.0981 0.1491 0.2159 0.2861 0.3509 0.3745 0.4132 0.4359 0.0180 0.0224 0.0294 0.0377

(28) CORR 0.9195 0.9077 0.9045 0.9041 0.9823 0.9676 0.9397 0.8794 0.8608 0.8432 0.8249 0.8350 0.9738 0.9659 0.9528 0.9349

LST-L2 RSE 0.0967 0.1013 0.1017 0.1010 0.1988 0.2726 0.3780 0.4928 0.4777 0.4893 0.4950 0.4973 0.0226 0.0280 0.0356 0.0449
RAE 0.0581 0.0598 0.0601 0.0600 0.1126 0.1796 0.2593 0.3124 0.3541 0.3830 0.3749 0.3887 0.0180 0.0226 0.0296 0.0378

(10) CORR 0.8941 0.8764 0.8765 0.8848 0.9826 0.9639 0.9255 0.8670 0.8715 0.8627 0.8614 0.8588 0.9735 0.9658 0.9511 0.9354

Table 2: Results summary (in RSE, RAE and CORR) of all methods on four datasets: 1) each row
has the results of a specific method in a particular metric; 2) each column compares the results of all
methods on a particular dataset with a specific horizon value; 3) bold face indicates the best result
of each column in a particular metric; and 4) the total number of bold-faced results of each method
is listed under the method name within parentheses.

4.6 Ablation Study

To examine the importance of each component in our framework, we conducted a set of ablation
tests. Let us use the following notation for different settings in the examination.

• LSTw/oskip: The LSTNet models (LST-L1 or LST-L2) without the Recurrent-skip compo-
nent.

• LSTw/oCNN: The LSTNet models (LST-L1 or LST-L2) without the Convolutional com-
ponent.

• LSTw/oAR: The LSTNet models (LST-L1 or LST-L2) without the AR component.

The test results measured using RSE are shown in Figure 57. Several observations from these results
are worth highlighting:

• The best result on each dataset is obtained with either LST-L1 or LST-L2; which of them
is better depends on the dataset.

• Removing the AR component (in LSTw/oAR) from the full model caused the most sig-
nificant performance drops on most of the datasets, showing the crucial role of the AR
component in general.

• Removing the Skip and CNN components in (LSTw/oCNN or LSTw/oskip) caused big
performance drops on some datasets but not all. All the components of LSTNet together
leads to the robust performance of our approach on all the datasets.

7We omit the results in RAE and CORR as they show similar comparison with respect to the relative
performance among the methods.
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As for why the AR component would have such an important role, our interpretation is that AR is
generally robust to the sudden changes in data. To empirically validate this intuition we plot one
dimension (one variable) of the time series signals in the electricity consumption dataset for the
duration from 1 to 5000 hours in Figure 4, where the blue curve is the true data and the red curve is
the system-forecasted signals. We can see that the true consumption suddenly increases around the
1000th hour, and that LST-L1 successfully captures this sudden change but LSTw/oAR fails to react
properly. In other words, the neural-network component in LSTNet may not be sufficiently sensitive
to random scale fluctuations in data (which is typical in Electricity data possibly due to random
events for public holidays or temperature turbulence, etc.), while the simple linear AR model can
make a proper adjustment in the forecasting.

In summary, this ablation study clearly justifies the efficiency of our architecture design. All com-
ponents have contributed to the excellent and robust performance of LSTNet.
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Figure 4: The predicted time series (red) by LSTw/oAR (a) and by LST-L1 (b) vs. the true data
(blue) on Electricity dataset with horizon = 24

4.7 Mixture of long- and short-term patterns

To illustrate the success of LSTNet in modeling the mixture of short-term and long-term recurring
patterns in time series data, Figure6 compares the performance of LSTNet and VAR on an specific
time series (one of the output variables) in the Traffic dataset. As discussed in Section 4.3, the Traffic
data exhibit two kinds of repeating patterns, i.e. the daily ones and the weekly ones. We can see
in Figure 6 that the true patterns (in blue) of traffic occupancy are very different on Fridays and
Saturdays, and another on Sunday and Monday. However, the VAR model (part (a) of the figure)
cannot learn such a distinction but predict the similar local patterns for both days instead. LSTNet,
on the other hand (part (b) of the figure), successfully captures both the different repeating patterns
on Mondays and Saturdays, and the local patterns within each day.

5 Conclusion

In this paper, we presented a novel deep learning framework (LSTNet) for the task of multivariate
time series forecasting. By combining the strengths of convolutional and recurrent neural networks
and an autoregressive component, the proposed approach significantly improved the state-of-the-art
results in time series forecasting on multiple benchmark datasets. With in-depth analysis and em-
pirical evidence we show that LSTNet indeed successfully captures both short-term and long-term
repeating patterns in data, and combines both linear and non-linear models for robust prediction.
For future research we would like to extend the LSTNet framework for anomaly detection from
time series data and for causality analysis based on the evolution of long- and short-term patterns.
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Figure 5: Results of LSTNet in the ablation tests
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Figure 6: The true time series (blue) and the predicted ones (red) by VAR (a) and by LSTNet (b) for
one variable in the Traffic occupation dataset. The X axis indicates the week days and the forecasting
horizon = 24. VAR inadequately predicts similar patterns for Fridays and Saturdays, and ones for
Sundays and Mondays, while LSTNet successfully captures both the daily and weekly repeating
patterns.
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