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Steel plate girders with slender webs are particularly susceptible to severe damage when subjected to high
temperatures due to fire. Using nonlinear finite element (FE) models, this study examines the buckling strength
of steel plate girder webs subject to fire temperatures. The models were validated with experimental results
presented by other researchers, and the validation study resulted in recommendations for appropriate FE
representations of material properties and boundary conditions. The elastic shear buckling stress (τcr) and ulti-
mate shear buckling stress (τu) was then studied for web plates with various span-to-depth (a/D) ratios and a
range of temperatures representing fire conditions. The results of this parametric study were compared to
predictions given by the Basler–Thürlimann (BT) closed-form solution,whichwas originally developed to predict
τu at ambient temperature. Various representations of the elevated temperature stress, at the time of τu,
were used in the BT solution and compared to the FE results. It was found that the BT solution provides adequate
predictions of τu at elevated temperatures with appropriate substitutions for the yield stress.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Structural members composed of steel plates are potentially sus-
ceptible to web shear buckling, depending on the slenderness ratio,
D/tw, where D is the depth and tw is the thickness of the web plate.
Typically, web shear buckling is of particular concern for deep struc-
tures such as plate girder bridges and buildings with deep plate girders
used for long spans or to transfer columns. For both structures, the accu-
racy of existing analytical tools for calculating postbuckling shear
strength at elevated temperatures must be studied to determine the
vulnerability of these structural systems to web shear buckling during
a fire.

In the example of bridge structures, historical events show that fires
pose a significant hazard to highway bridges. Data collected by the New
York Department of Transportation (NYDOT) from voluntary submis-
sions of 18 US states found that of the total recorded bridge failures
up to and including the year 2011, 53 were due to fire compared to 18
due to earthquakes (seismically active states like California participated
in the study) [1,2]. The primary cause of bridge fires is vehicular acci-
dents occurring beneath or adjacent to the bridge. Themost devastating
of these fires are caused by accidents involving tanker trucks, whose
large volume of combustible fuel can cause severe damage or collapse
of nearby highway bridges (Fig. 1). Known as liquid pool fires, they
rlock), jdglassm@princeton.edu
can result in steel temperatures exceeding 1000 °C [3]. Should any
fuel leak from a damaged fuel tank and spread across the roadway,
this would only lead to an increase in the energy output of the liquid
pool fire and a larger fire load on the structure [4].

This hazard to highway bridges in particular is only compounded by
the lack of fire design guidelines and post-fire strength assessment
schemes [1,5]. The National Fire Protection Association (NFPA) requires
the consideration of high temperature loading for bridge design. NFPA
502: Standard for Road Tunnels, Bridges, and Other Limited Access
Highways requires a water standpipe system for situations where the
distance to a water supply exceeds 122 m (Section 6.5), and also re-
quires critical structural elements to protect from collision and high
temperature loading (Section 6.5) [6]. Despite these requirements, the
engineer receives no guidance regarding how to design a bridge that
withstands high temperature loading, nor how to assess the post-fire
strength of a bridge that has been damaged.

In contrast to bridges, building fires are fueled by paper, draperies,
and homeor office furnishings [7]. Further, buildings have combinations
of active and passive fire resistance. Fire sprinklers (active) activate au-
tomatically in the event of a fire, while thermal insulation (passive)
shields steel members from excessive heating. Fire is often a “second-
ary” event where the primary initiating event may be an earthquake,
blast, or impact. This primary event may render the active and passive
fire protection inoperable. Therefore, for important structural elements,
such as a deep girder supporting many loads, a fundamental under-
standing of their response under fire conditions is important.

A literature review of relevant research has shown extensive exper-
imental and FE studies of web shear buckling at ambient temperatures

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcsr.2014.05.021&domain=pdf
http://dx.doi.org/10.1016/j.jcsr.2014.05.021
mailto:mgarlock@princeton.edu
mailto:jdglassm@princeton.edu
http://dx.doi.org/10.1016/j.jcsr.2014.05.021
http://www.sciencedirect.com/science/journal/0143974X


Fig. 1. I-20/I-59/I-65 interchange in Birmingham, AL after a fire: (a) severe deflections in the steel girders, and (b) web shear buckling observed near the bent cap. Photos courtesy of the
Alabama DOT.
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(summary provided in [8]). Elevated temperature experimental and FE
studies were conducted at Nanyang Technological University in
Singapore on small-scale plate girders, the results of which are
discussed in Section 3 [9,10]. This paper differs from previous research
since the web plates studied are deeper than that of previous research
and are representative of bridges in service. Further, this paper exam-
ines the effects of material properties at elevated temperatures on the
development of tensile stresses within the web at ultimate shear
buckling.

The objective of this current study is to determine if an existing
closed-form solution (developed for ambient temperature) for deter-
mining the ultimate shear buckling stress, τu, of a steel web plate is
applicable at elevated temperatures. To accomplish this, τu values
from the closed-form solution were compared with those from finite
element (FE) analysis using the software Abaqus [11] for temperatures
between 20 °C and 1100 °C. These FE models were based on the 1982
Standard Plans prepared by the Federal Highway Administration
(FHWA) [12]. The FE models were validated with experimental data
published by other researchers. This work will benefit engineers in
evaluating the strength of steel plate girders in fire conditions.

2. Background

2.1. Elastic shear buckling at ambient temperature

To calculate the elastic critical buckling stress, τcr, of a rectangular
plate subjected to pure shear loading, the following equation can be
used [13]:

τcr ¼ k
π2E

12 1−ν2� �
D
�
tw

� �2 ð1Þ

where E is Young's modulus, ν is Poisson's ratio, D is the depth of the
plate, tw is the plate thickness, and k is the elastic shear buckling coeffi-
cient. The value of k is a function of the span-to-depth ratio (a/D) of the
plate and the boundary conditions supplied to its edges. When trans-
verse stiffeners are used, a represents the centerline spacing between
the stiffeners. D/tw is the slenderness ratio and indicates how suscepti-
ble the girder is toweb shear buckling. The elastic critical shear buckling
load, Vcr, is calculated by multiplying Eq. (1) by Dtw.

For a plate that is simply supported on all four edges, the elastic
shear buckling coefficient, kss, is calculated as [13–15]:

kss ¼ 4:00þ 5:34
a=D
� �2 fora=D b 1 ð2aÞ

kss ¼ 5:34þ 4:00
a=D
� �2 for a=D≥ 1 ð2bÞ
For a plate that is simply supported on two opposing sides and fixed
on the remaining two sides, the elastic shear buckling coefficient, ksf, is
calculated as [13–15]:

ksf ¼
5:34
a=D
� �2 þ 2:31

a�
D

� �−3:44þ 8:39 a�
D

� �
for a=D b 1 ð3aÞ

ksf ¼ 8:98þ 5:61
a=D
� �2 − 1:99

a=D
� �3 for a=D≥ 1 ð3bÞ

Transverse stiffeners are typically designed to provide simple sup-
port to the web and are idealized as such [15]. The web–flange juncture
realistically offers support to the web plate that exists somewhere
between a simple and fixed support. Various authors have elected to
idealize this web–flange juncture as simply supported, fixed, or half of
full fixity [8]. In the 1990s, finite element investigations were used to
develop a more robust means of characterizing the edge support at
the web–flange juncture by interpolating the value for the k coefficient
between the calculated values of kss and ksf depending on the flange-
thickness-to-web-thickness ratio, tf/tw [14,15]. Thus, the value of k
may be computed as:

k ¼ kss þ
4
5

ksf−kss
� �

1−2
3

2−
t f
tw

� �	 

for ½ ≤t f =tw< 2 ð4aÞ

k ¼ kss þ
4
5

ksf−kss
� �

for t f =tw≥ 2 ð4bÞ

2.2. Ultimate shear buckling at ambient temperature

Various theories have been developed to compute the ultimate
shear buckling stress, τu, of plate girder webs by accounting for the
postbuckling strength reserve for thin, rectangular plates loaded in
shear [8]. The theories discussed in [8] are based on the fundamental
assumption formulated through Wagner's 1931 published work,
which states that compressive stresses in the direction perpendicular
to the observed diagonal tension field do not increase once the elastic
critical buckling strength has been reached [16,17]. By accepting this as-
sumption, the subsequent tension field theories based the postbuckling
strength of the web on the additional amount of tension that can be
developed in the diagonal tension field.

The tension field theory proposed by Basler, which serves as the
basis of the AASHTO LRFD Bridge Design Specifications [18] and is notable
for balancing ease of use with accuracy [19], was selected as the analyt-
ical model against which to compare the finite element results to be
discussed later. Basler's work published in the early 1960s offered the
first postbuckling strength theory for steel plate girder webs [8,20]. In
developing his model, Basler assumed that the flanges were too flexible
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to provide anchorage for the horizontal component of the tension field
and instead relied on the transverse stiffeners to develop axial compres-
sion [16,20]. He conservatively assumed that the web–flange juncture
could be idealized as a simple support and treated the web as a rectan-
gular plate that was simply supported on all four sides.

Fig. 2 illustrates the assumptions of Basler's model. The tension field
with initial applied load V1 (V1 N Vcr), initial inclination θ1, and initial
width s1 will continue to increase in width up until s3, which is when
the ultimate shear buckling load has been reached. As the tension field
increases inwidth from s1 to s3, in order for the flexible flanges assump-
tion to be maintained, the inclination of the tension field must change
from θ1 to θ3 such that the vertical transverse stiffeners anchor the
tension field.

The Basler–Thürlimann solution presented in Eq. (5) is an amended
form of the original published solution based on the work of several
authors such as Gaylord, Fujii, and Selberg [8,21–24]. The modifications
to the original equations were made so that the true width of the ten-
sion field was considered, resulting in:

τu ¼ τcr þ σyw 1− τcr
τyw

 !
sinθd

2þ cosθd

� �
ð5Þ

where τcr is the value computed from Eq. (1), σyw is theweb yield stress
in tension, τyw is the web yield stress in shear, and θd is the angle of the
panel diagonal. τyw is calculated as 0.6 σyw based on the AISC Steel
Construction Manual [25]. Inelastic buckling is assumed to occur if τcr
calculated from Eq. (1) is greater than 0.8τyw; in this case, τcr in
Eq. (5) is replaced with:

τcr;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:8τcrτyw

q
ð6Þ

where τcr in Eq. (6) is calculated from Eq. (1).
Following the development of the Basler model, Porter et al. (1975)

developed a more robust analytical model accounting for the contribu-
tion of theflexural capacity of the flanges to determine the postbuckling
shear strength. Theirmodel, known as the Rockeyor Cardiff model, forms
the basis of British Standard 5400 (1982) [16], and assumes that ultimate
shear buckling strength occurs when plastic hinges form in the flanges,
resulting in a collapse mechanism [8,26]. The Basler model is a special-
ized case of the Rockeymodel. By assuming that the flanges are too flex-
ible to resist flexure, the Rockey model simplifies to the Basler solution
[26].

3. Validation study: finite element models

Finite element (FE) models will be used to evaluate the adequacy of
Eq. (5) at elevated temperatures, which are validated based on previous
experiments [9,10,20,27]. This section gives details of the FE models,
Fig. 2. Tension fieldmodel as proposed by Basler [8,20]. θi and si (i=1, 2, 3) are the angle andw
represents the appliedpure shear loading. As τi increases from τ1 (τ1 N τcr) to τ3, s1 increases to s3
tension field to be resisted entirely by the transverse stiffener.
which are used in the validation and parametric studies to evaluate
the adequacy of Eq. (5). The results of the validation study are presented
in Section 4.

3.1. Prototypes

Researchers from Nanyang Technological University published data
in 2007 fromphysical experiments designed to test theweb shear buck-
ling capacity of steel plate girders at elevated temperatures [10,9]. The
plate girders they tested had web plates with depths ranging from
139mmto 305mm, thicknesses of 1.5mmto 6.1mm, andweb slender-
ness ratios of 22.8 to 203.3. These test specimens had web depths that
were significantly smaller than bridge plate girders, which typically
have depths in excess of 1 m [12].

Of the five test girder (TG) specimens that were tested, TG3 and TG4
were selected for the FE model validation due to their size and high
slenderness ratios. TG5 was not selected due to its very thin, 1.5 mm-
thick web. A web plate with a 1.5 mm thickness is substantially thinner
than the smallest allowable fillet weld size in the AISC Steel Construction
Manual [25]. TG3 and TG4 also usedweb plates that are thinner than the
smallest allowable fillet weld size, but they were used for the model
validation because their webs are the thickest of the plate girders tested
in [10]. TG1 and TG2 were neglected because they had small slender-
ness ratios (less than 23) and were not susceptible to web shear
buckling.

The dimensions of the TG3 and TG4 test specimens are presented in
Table 1, where a is the span, D is the depth (clear distance between
flanges), tw is the web thickness, bf is the width of the flange, and tf is
theflange thickness. Ew and Ef refer to the ambient temperature Young's
modulus values of the web and flange, respectively, while σyw and σyf

refer to the ambient temperature yield strength of the web and flange,
respectively.

The TG3 and TG4 specimens had unusually small dimensions due to
the test furnace setup. To ensure confidence in the FE methods
employed in this paper, additional model validations were conducted
at ambient temperature with two test girders from experiments con-
ducted at Lehigh University in the early 1960s by Basler et al. [20,27].
The two girders selected for our model validation were G6 and G7
since the dimensions (see Table 1) of these test specimens were readily
available. The dimensions reported in Table 1 were converted from US
customary; the D/tw values were directly taken from the published re-
port [20].

For TG3, experimental data for the ultimate shear buckling load, Vu,
was collected at 20 °C, 400 °C, 565 °C, and 690 °C (approximated as
700 °C in the FE model). For TG4, experimental data was collected at
20 °C, 400 °C, 550 °C, and 700 °C. At 550 °C, the authors in [10] noted
that there was an error with the experimental setup, thus experimental
results at this temperature were not compared with the TG4 FE model.
For G6 and G7, Vu data was only collected at 20 °C.
idth of the tension field, respectively. All four edges are assumed to be simply supported. τi
and the corresponding θimust decrease from θ1 to θ3 to allow the vertical component from

image of Fig.�2


Table 1
Dimensions and material properties for TG3 and TG4, based on [10].

Web Flange

a D tw a/D D/tw Ew σyw bf tf Ef σyf

(m) (m) (m) (GPa) (MPa) (mm) (mm) (GPa) (MPa)

TG3 0.305 0.305 0.002 1 152.5 200 287.8 0.08 0.006 204 274.5
TG4 0.305 0.305 0.0027 1 112.9 200 232.8 0.08 0.006 204 277
G6 1.905 1.27 0.005 1.5 266.7 200 250 305 19 200 250
G7 1.27 1.27 0.005 1 266.7 200 250 305 19 200 250
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3.2. Mesh and boundary conditions

Two FE models, “Flange” and “SS”, were studied. The Flange model
explicitly considers the contribution of the flanges to the buckling
strength and the SSmodel assumes simply supported boundary condi-
tions for the top and bottom flanges. All of the FE models were meshed
with S4 (doubly curved, general-purpose, finite membrane strains)
shell elements [11]. A mesh convergence study was conducted using
an eigenvalue extraction analysis at 20 °C. The mesh densities shown
in Fig. 3 had less than 1% error compared to the value of τcr computed
from Abaqus with the value obtained from Eq. (1). The percent error
was calculated from:

%error ¼
τcr

FE−τcr
Eq: 1ð Þ

��� ���
τcr

Eq: 1ð Þ�� �� � 100 ð7Þ

Fig. 3 also shows the boundary conditions used in both FE models. It
will be shown later that the boundary conditions of Fig. 3 result in good
correlation with τcr of Eq. (1). Also, these boundary conditions allow a
state of pure shear to develop; when side ❷ is loaded in the y-direction,
themagnitude of the principal stresses in the plate equals themagnitude
of the applied shear stress. Previous researchers that have studied web
shear buckling for a simply supported plate [16] proposed boundary con-
ditions that differ from those presented in Fig. 3. These researchers con-
structed a FE model for a plate with a/D = 1.0. While their proposed
boundary conditions performed well at a/D = 1.0, we found that these
boundary conditions were not robust for span-to-depth ratios greater
than 1.0. For example, results obtained from an eigenvalue extraction
analysis for a/D=1.4, 2.0, and 3.0 show that τcr values from the FE anal-
yses are larger than those calculated using Eq. (1) if boundary conditions
based on [16] were used.

3.3. Material model

The Eurocode material model [28], which specifies temperature-
dependent reduction factors for the yield strength (σy) and Young's
(a) (b)

Fig. 3. Mesh and boundary conditions for the FE models: (a) Flange mesh; (b) SSmesh; (c) bo
modulus (E), was assumed for the FE models. The authors in [10] as-
sumed an elastic–perfectly plastic material model in their FE studies
(also using Eurocode); therefore, the Eurocode reduction factor for the
proportional limit stress, σp, was not included in their FE models.
Using a “fully nonlinear” material model accounts for the develop-
ment of nonlinear behavior betweenσp andσy at elevated temperatures
(i.e., σp

T and σy
T, where the superscript “T” refers to elevated temperature

values). This current study, therefore, examines the effect of neglecting
this nonlinear range that develops at σp

T by comparing the results of FE
models assuming elastic–perfectly plastic material properties to those
with fully nonlinear material properties.

Fig. 4(a) shows plots of the Eurocode reduction factors for yield and
proportional stress, ky,T and kp,T, respectively, as a function of tempera-
ture. For T ≤ 100 °C, ky,T and kp,T are both 1.0, thereby exhibiting elas-
tic–perfectly plastic behavior in this range of temperatures. As the
temperatures increase above 100 °C, kp,T becomes less than 1.0; for all
T ≥ 100 °C, kp,T continues to be smaller than ky,T, meaning that a non-
linear behavior exists before the yield strain is reached.

The fully nonlinear material model is represented by the stress–
strain curves shown in Fig. 4(b). Strain hardening is allowed by the
Eurocode up to 400 °C [28] and is shown in Fig. 4(b) for 20 °C. Previous
studies, however, have shown that allowing strain hardening does not
significantly contribute to the mechanical behavior at elevated temper-
atures [29]. The yield stress,σy

T, is assumed to be reached at a yield strain
of 0.02. For the remainder of this paper, wheneverσy

T is used (or, similar-
ly, σyw

T for the elevated temperature value of the web yield stress), this
value is based on the Eurocode assumption of yield strain equal to 0.02.

3.4. Geometric imperfection

Buckling is a stability problem in which a bifurcation exists in the
load–displacement curve, which exists because the initial defined ge-
ometry of theweb plate is “perfect,” i.e. the plate ismodeled as perfectly
flat. Since a postbuckling analysis requires advancing the numerical so-
lution beyond the bifurcation point in order for the ultimate shear buck-
ling strength to be determined, the original perfect geometry of theweb
plate is perturbed with a small displacement field. A small scale of the
UX UY UZ URX URY URZ

(c)

undary conditions for the models where a “●” indicates a restrained degree of freedom.
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Fig. 4. Plots of (a) ky,T and kp,T versus temperature based on [28], and (b) stress–strain curves at 20 °C, 400 °C, 565 °C, and 700 °C for TG3 and TG4, where the stress is normalized by σy at
ambient temperature, for the “fully nonlinear” material properties based on the Eurocode [28].
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buckling mode shape typically associated with the lowest eigenvalue is
used to create an imperfection in the original geometry, thus smoothing
the load–displacement response of the structure and allowing the
numerical solver to advance beyond the bifurcation [11]. Reference is
made in the literature to the possibility of using a linear superposition
of multiple buckling mode shapes to develop an appropriate initial im-
perfection [11]. This becomes important when the eigenvalues are
closely spaced together; for the FE models studied in this paper, this is
not the situation.

The imperfection magnitude in the FE models was generated by
multiplying the lowest positive eigenmode shape (that has a maximum
displacement of 1.0) by a scale factor. Previous work has suggested
using a scale factor of 0.001*tw, where tw is the web thickness, which
proved sufficient for axial compression in plates exposed to fire [30].
For the current study, a scale factor of D/10,000 was used since it was
found to be acceptable for advancing the nonlinear solver for the pure
shear loading case considered in this study. This scale factor is consistent
with previous work that has also studied theweb shear bucklingmech-
anism [16]. These previous researchers also investigated large scale fac-
tors up toD/100 and found that using a scale factor this large caused the
nonlinear postbuckling analysis to predict a lower ultimate shear buck-
ling strength and higher lateral displacements in the web plate.
4. Validation study: results

The FE model defined in Section 3 is used to predict both Vcr and Vu,
both of which are then compared to the experimental results of TG3,
TG4, G6, andG7. Vcr is calculated based on an eigenvalue extraction anal-
ysis. Vu is determined by the maximum value of the load–displacement
curve as described in detail in Section 5.
Table 2
Comparison of FE Vcr (kN) andVu (kN) values from the current studywith the experimental resu

Vcr (kN)

Model T (°C) FE model Experiment

Flange SS

TG3 20 56.69 44.85 53.35
400 39.69 31.40 30.08
565 23.36 18.48 19.87
700 7.37 5.83 7.05

TG4 20 139.5 110.6 101.4
400 97.61 77.4 58.9
700 18.13 14.4 10.59

G6 20 181.53 127.16 121.9
G7 20 217.46 167.28 167.3
4.1. Using elastic–perfectly plastic material properties

Table 2 compares the buckling values computed using the FEmodels
with elastic–perfectly plastic material properties with the experimental
values published in [10]. Results for both the SS and Flange models are
shown. The table shows that the Flange FE model Vcr values are larger
than those of the SS FEmodels, indicating that the flange has some stiff-
ening effect on the FE Vcr results. The effect of the flange on the FE Vu

results, however, is significantly less and essentially negligible. These re-
sults indicate that in the postbuckling range (from elastic critical to ulti-
mate buckling), the flange-to-web juncture for these particular models
possesses little rotational stiffness, behavingmore like a simple support.

For both TG3 and TG4, the experimental Vcr values correlated better
with the SSmodels compared to the Flangemodels, except that at 20 °C
and 700 °C for TG3, the Flange FEmodel had better correlation. It is pos-
sible that the weld connection of the very thin webs to the flange may
have contributed to the observed simply supported behavior during
the experiments. The G6 and G7 SS specimens also had good agreement
between the FE and experimental Vcr values.

For the comparison of Vu, Table 2 shows that again the Vu experi-
mental values agree more closely to the SS FE model values than the
Flange model. At 565 °C for TG3, and at 400 °C and 700 °C for TG4,
both the Flange and SS FE models predict a substantially larger Vu

value compared with the reported experimental value. These observa-
tions can be clearly seen from the performance ratios that compare
the Vu values determined from the Flange and SS FEmodels with the Ex-
periment value (Flange/Exp and SS/Exp). The G6 and G7 specimens,
which were only tested at 20 °C, have Vu FE values that are in good
agreement with the experimental data.

We hypothesized that these large discrepancies in performance
ratios may be due to the simplified elastic–perfectly plastic material
lts published in [10] for TG3and TG4 assuming elastic–perfectly plasticmaterial properties.

Vu (kN) Vu performance ratios

FE model Experiment Flange/Exp SS/Exp

Flange SS

83.06 81.87 79.85 1.04 1.03
79.26 77.57 67.63 1.17 1.15
45.95 44.99 34.34 1.34 1.31
17.68 17.18 17.15 1.03 1.00
106.3 102.9 111.8 0.95 0.92
99.1 96.5 77.1 1.29 1.25
21.9 21.4 15.94 1.37 1.34
552.8 538.0 516 1.07 1.04
672.8 643.2 645 1.04 1.00

abbas
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Table 3
Comparison of FE Vu (kN) values from the current study with experimental results
published in [10] for TG3 and TG4 assuming a fully nonlinear material model.

Vu (kN) Performance ratios

Model T (°C) FE model Experiment Flange/ExP SS/Exp

Flange SS

TG3 20 83.06 82.37 79.85 1.04 1.03
400 83.14 69.40 67.63 1.23 1.03
565 48.15 40.16 34.34 1.40 1.17
700 18.83 15.75 17.15 1.10 0.92

TG4 20 106.30 102.95 111.8 0.95 0.92
400 101.63 82.92 77.1 1.32 1.08
700 22.93 18.87 15.94 1.44 1.18

G6 20 552.8 538.0 516 1.07 1.04
G7 20 672.8 643.2 645 1.04 1.00
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model assumed in the FE analyses. As noted earlier, this material model
ignores large nonlinear behavior that develops well in advance of the
yield strain as shown in Fig. 4(b). Therefore, the current study was re-
peated using the fully nonlinearmaterial properties of steel as discussed
next.

4.2. Using fully nonlinear material properties

Table 3 compares the FE and experimental values of Vu where the
fully nonlinear material model was used in the FE analyses. From
Table 3, it can be seen from the performance ratios that the experimen-
tal Vu values correlated better with the SS FE models than the Flange FE
models. Further, comparison of Tables 2 and 3 shows that the FEmodels
with fully nonlinearmaterial properties (Table 3) have performance ra-
tios closer to 1.0— especially the SS FEmodels. The results for G6 andG7
are the same as those reported in Table 2 because nonlinear elastic be-
havior does not occur in the Eurocode model at 20 °C. All FE Vu results
are in good agreement with their published experimental values at
20 °C, suggesting that the FE methods used in this paper are validated
at ambient temperature.

4.3. Effect of uncertainties in elevated temperature steel material properties

The last column of Table 3 shows that the FE models that assume
simple supports typically comewithin 8% of the experimentalVu. Excep-
tions are TG3 at 565 °C and TG4 at 700 °C, which yield results that are
17% and 18% larger than the experiments, respectively. One such reason
for these discrepancies is the large uncertainty inherent in the material
Fig. 5.Monte Carlo τu values (y-axis) compared to deterministic τu values, both calculated from
Monte Carlo simulation results.
properties of steel at elevated temperatures. This section examines the
effects of steel material property uncertainties at elevated temperatures
on the value of τu.

Previous work has been done to develop a probabilistic,
performance-based framework for the evaluation of steel members in
buildings subjected to fire [31]. As part of this framework, probabilistic
models of steel material properties were developed to account for ob-
served variations in these material properties at ambient and elevated
temperatures [31,32]. More specifically, probabilistic equations for the
E and σy reduction factors as a function of temperature (ky,T_probabilistic
and kE,T_probabilistic, respectively) were proposed:

ky;T probabilistic ¼ exp ln ky;T
� �

–0:0421þ 0:1464� ε
h i

ð8Þ

kE;T probabilistic ¼ 1:08

�
exp 2:93−3:2� 10−3−3:2� 10−6T2 þ 0:317ε

� �
exp 2:93−3:2� 10−3−3:2� 10−6T2 þ 0:317ε þ 1

� �
ð9Þ

In both equations, T refers to the temperature in Celsius; ky,T refers to
the deterministic, temperature-dependent σy reduction factor from
[28]; and ε is a standard normal variable with mean of 0 and standard
deviation of 1. The value of ε was randomly selected for each iteration
of the Monte Carlo simulation based on the prescribed constraints.
While Eq. (8) is based on the Eurocode [28], it corrects the deterministic
ky,T to fit measured data. Therefore, if ky,T_probabilistic were derived based
on NIST's deterministic model for ky,T [32], the new Eq. (8) would have
yielded similar results since the same data is used to correct the deter-
ministic model.

Fig. 5 shows the results from the Monte Carlo simulation based on
specimens TG3 and TG4. The deterministic (x-axis) values are based
on Eq. (5) using Eurocode material properties [28]. The Monte Carlo
(y-axis) τu values are also based on Eq. (5), but use Eqs. (8) and (9)
for the material properties. These values are based on a four-sided sim-
ply supported web plate since Eq. (5) is based on the assumption that
the flange–web juncture is idealized as a simple support.

Fig. 5 also shows how the experimental and FE results compare with
their respective probability density functions developed from the
Monte Carlo simulations. It is seen that both the FE τu values (based
on the SS model with fully nonlinear material properties) and experi-
mental τu values are within the stochastic range of τu values.
Eq. (5): (a) TG3 and (b) TG4. Probability distribution functions are drawn based on the
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4.4. Conclusions of validation study

Three key conclusions are drawn from the validation study presented
in this section and form the basis for the FEmodel to be used in the stud-
ies to follow:

(1) At elevated temperatures, it is best to use the fully nonlinearma-
terial model and not simplify the analysis with elastic–perfectly
plastic properties. In the range of elevated temperatures expect-
ed in a fire, steel becomes nonlinear before the Eurocode defined
yield strain (=0.02) is reached. With plate buckling limit states
in particular, including this early nonlinear behavior is important.
This conclusion was also observed in axial buckling studies of
steel plates at elevated temperature [30]. If elastic–perfectly plas-
tic properties are used, a careful evaluation of the definition of
“yield stress” needs to be made. The parametric studies to follow
will therefore use the fully nonlinear material model.

(2) For the experiments used in this validation study, the FE models
that used simply supported boundary conditions (SS models)
correlated better to the test results than themodels that explicit-
lymodeled the flanges (Flangemodels). The reason that the SS FE
models correlated better to test results could be related to the
web–flangeweld connection of these particular specimens. At el-
evated temperatures, this connection may have had little or no
rotational restraint. In the parametric studies to follow, simple
supports will be used to represent the flanges.While the authors
recognize that in some cases the flange–web connection may
show some rotational restraint, to assume that it does not is rea-
sonably conservative.

(3) The results of theMonte Carlo simulation study have shown that
considering the uncertainties of yield stress andmodulus of elas-
ticity of steel at elevated temperatures results in a relatively large
range of possible τu values. This effect of material uncertainty
should be considered qualitatively, if not quantitatively, in evalu-
ations of plate buckling at elevated temperature.

5. Effects of a/D and Temperature on plate buckling

With the model that was discussed in Section 3, and validated as
shown in Section 4, a study of plate buckling is discussed in this section
with the parameters being a/D ratio and temperature. This study
forms the basis for evaluating the adequacy of Eq. (5) at elevated
temperatures.

5.1. FE models

FE models of simply supported rectangular web plates were devel-
oped based on the physical parameters for a typical 90 foot (27.43 m)
span of a steel plate girder bridge [12]. Theweb depth,D, andweb thick-
ness, tw, were specified as 1.47m and 0.011m, respectively, and the cor-
responding slenderness ratio (D/tw) was 134 [12]. The span-to-depth
ratios (a/D) varied in the study as follows: 1.4, 2.0, and 3.0. The span,
a, represents the spacing of transverse stiffeners in a bridge girder. The
a/D value of 1.4 corresponds with the recommended transverse
Fig. 6. Geometry and mesh used in the pa
stiffener arrangement [12], while the values of 2.0 and 3.0were selected
to study the effect of increasing the span-to-depth ratio. The accuracy of
Eq. (5) is known to decrease significantly when a/D≥ 3.0 [33], thus our
study did not include larger a/D values. A sketch of the three FE models
and their geometry is shown in Fig. 6.

The boundary conditions are the same as those validated in
Section 3: simple supports on all edges as represented in Fig. 3. Fully
nonlinear material properties of steel were used as demonstrated in
Fig. 4. A36 steel was selected based on a previous case study [34,35].
At ambient temperature, σyw and E were taken as 250 MPa and
2e11 N/m2, respectively, and ν=0.3. The elevated temperaturemateri-
al properties for E and σyw were calculated using Eurocode reduction
factors [28]. The initial imperfection was modeled as explained in
Section 3.

Nonlinear postbuckling analyses are a computationally expensive
means of determining the optimized mesh [30], while the eigenvalue
extraction analysis is fast and allows mesh convergence to be checked
against τcr values calculated using Eq. (1). Therefore, mesh convergence
studies were conducted on all three FEmodels using the results from an
eigenvalue extraction analysis at 20 °C with S4 shell elements [11]. The
mesh chosen for the parametric study was selected based on percent
error (Eq. (7)) coupledwith required computational effort (represented
by the number of elements). The selected meshes have 609, 1711, and
1850 elements corresponding to a/D of 1.4, 2.0, and 3.0, respectively,
as shown in Fig. 6. Percent errors equal 2.4, 4.1, and 2.0 corresponding
to a/D values of 1.4, 2.0, and 3.0, respectively.
5.2. Elastic critical shear buckling stress, τcr, at elevated temperatures

The theoretical (computed from Eq. (1)) and FE τcr values were
calculated at 20 °C, 100 °C, and 100 °C increments up to 1100 °C
(at 1200 °C, the Eurocode assumes the values of E and σyw are zero).
All analyses were conducted at steady state, thus the FE model was
considered uniformly heated. This steady state analysis is consistent
with previous experimental work that tested web shear buckling at
elevated temperatures [10,9].

A comparison of the FE results with those computed from Eq. (1)
shows that for all three FEmodels, the numerical and closed-form solu-
tion τcr values are in good agreement. Ratios of theoretical τcr values to
FE τcr values equal 0.99, 0.95, and 0.97 for a/D=1.4, 2.0, and 3.0, respec-
tively, for the full temperature range. These results indicate that the
existing elastic theory is applicable at the higher temperatures of inter-
est, which is not surprising since the only variable in Eq. (1) that varies
with temperature is Young's modulus, E, and both the FE analyses and
Eq. (1) use the Eurocode [28] reduction factors to compute E at elevated
temperatures.

Fig. 7 shows the displacement fields from an eigenvalue extraction
analysis conducted at 20 °C for the simply supported web plates ana-
lyzed. Due to symmetry, the two lowest eigenvalues that are extracted
will be negative inverses of each other, which physically implies that
the web plate will buckle at the same load regardless of the direction
of the shear load vectors shown in Fig. 7. To create the initial geometric
imperfection for the nonlinear postbuckling analysis, the displacement
rametric study of plate girder webs.
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(a) a/D=1.4 (b) a/D=2.0 (c) a/D=3.0

Fig. 7. Displacement field results from an eigenvalue extraction analysis at 20 °C. The arrows represent the direction of the shear load vectors.
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fields shown in Fig. 7 were multiplied by the D/10,000 scale factor as
discussed in Section 3.

5.3. Ultimate shear buckling load, Vu, at elevated temperatures

Vu, was determined by examining the load–displacement plots. For
illustration, Fig. 8 plots the load–displacement curves of (1) the vertical
(y) displacementmeasured at the bottom right-hand corner of the web
plate (Δcorner) and (2) the out-of-plane (x) displacement measured
approximately at the center of the diagonal buckle (δcenter) for a web
plate with a/D = 2.0 and a temperature of 20 °C. Fig. 8(a) plots load–
displacement of the full analysis run (meaning the nonlinear solver
runs until it no longer converges or completes the number of analysis
steps input by the user). Determining the sufficient number of analysis
steps to capture Vu was done in a heuristic manner.

Fig. 8(b) zooms in on Fig. 8(a) on the smaller areas of displacement
where the first change in slope is observed in the load versus Δcorner

plot. The first change in stiffness of this load–displacement curve (at
approximately 1.08e6 N) corresponds with Vcr. Vu was determined as
the pointwhere the load–displacement curve becomes horizontal or re-
verses slope. Fig. 8(a) shows that both the center and corner nodesmark
Vu at the same value. Fig. 8(b) focuses on load versus Δcorner because Vcr
may be easily read from this plot. Vcr is more difficult to interpret from
the load versus δctr plot because the first change in stiffness is sensitive
to the location where δctr is measured on the diagonal tension field.

Table 4 shows the results of the FE analysis at the postbuckling stage.
Since the length of each plate, a, varied, Δcorner/a is also shown for com-
parison of the corner displacement of the three plates and essentially
represents the plate slope at failure. The slope at failure is typically
0.002 for temperatures less than 400 °C and 0.001 for temperatures
greater than 800 °C. For temperatures from 400 °C to 800 °C the
slope, aswell as δctr, aremuch larger compared to the other temperature
Fig. 8. Load–displacement curves for a/D = 2.0 at a temperature of
ranges. This range coincideswith temperatureswhere the values of ky,T/
kp,T (see Fig. 4(a)) are larger than at other temperatures. In this range,
the steel material loses stiffness well before the yield strain. Therefore,
larger displacements occur before Vu is reached.

Fig. 9 shows images of plate deformations when Vu is reached for
a/D = 1.4, 2.0, and 3.0 at 200 °C (lower temperature range), 500 °C
(mid-temperature range), and 800 °C (upper temperature range),
respectively. Notice that the diagonal buckles in Fig. 9(b) and (c) are
quite pronounced,while the diagonal buckle in Fig. 9(a) is present, albe-
it less distinct.
5.4. Summary of a/D study

The FE analyses are capable of predicting τcr well, compared to the
theoretical solution of Eq. (1), for all a/D ratios and temperatures. At
the postbuckling stage, it is observed that Vu decreases with increasing
temperature in correlation with the elevated material properties.
Some trends for Vu are not the same for all temperatures, however.
For example, in the mid-range (400 °C to 800 °C) where kp,T/ky,T values
are the largest, the plate deformation at Vu is larger than at other tem-
peratures. This relationship between Vu and the material is examined
next.
6. Evaluation of Basler–Thürlimann's theoretical equation at
elevated temperatures

Using the results of the a/D study, the Basler–Thürlimann theoretical
equation for predicting the τu value of plates (Eq. (5)) is evaluated at
elevated temperatures. This is done by replacing σyw with the stress at
the ultimate condition,σyw

T . Hence, τyw in Eq. (5) is then equal to 0.6σyw
T .
20 °C: (a) full analysis, and (b) zoom-in of Fig. 8(a) for Δcorner.
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Table 4
Postbuckling results.

a/D = 1.4 a/D = 2.0 a/D = 3.0

T (°C) Vu δcenter Δcorner Δcorner/a Vu δcenter Δcorner Δcorner/a Vu δcenter Δcorner Δcorner/a

(kN) (m) (m) (kN) (m) (m) (kN) (m) (m)

20 1787 0.026 0.004 0.002 1574 0.029 0.005 0.002 1515 0.023 0.009 0.002
100 1787 0.026 0.004 0.002 1574 0.029 0.005 0.002 1515 0.023 0.009 0.002
200 1544 0.033 0.006 0.003 1364 0.030 0.005 0.002 1314 0.024 0.009 0.002
300 1829 0.159 0.189 0.092 1486 0.214 0.237 0.081 1108 0.024 0.009 0.002
400 1486 0.115 0.095 0.046 1251 0.185 0.178 0.061 1107 0.093 0.127 0.029
500 1164 0.114 0.092 0.045 1014 0.225 0.251 0.085 872 0.021 0.007 0.002
600 697 0.117 0.098 0.048 605 0.224 0.251 0.085 517 0.027 0.010 0.002
700 339 0.120 0.104 0.050 299 0.239 0.287 0.098 250 0.112 0.191 0.043
800 165 0.113 0.091 0.044 146 0.017 0.003 0.001 123 0.018 0.006 0.001
900 82 0.019 0.003 0.001 78 0.015 0.003 0.001 74 0.016 0.005 0.001
1000 55 0.025 0.004 0.002 52 0.015 0.003 0.001 49 0.017 0.005 0.001
1100 27 0.013 0.002 0.001 26 0.015 0.003 0.001 25 0.016 0.005 0.001
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6.1. Replacing σyw with ky,Tσyw

τu versus temperature for FE models is compared to predictions of
Eq. (5) with σyw replaced with σyw

T = ky,Tσyw (this solution is referred
to as BT-ky) in Figs. 10(a), (b), and (c) for a/D=1.4, 2.0, and 3.0, respec-
tively. While both the FE and BT-ky solutions follow the same general
trend, there are some differences to be noted.

Fig. 10(d) plots the BT-ky/FE ratio to clearly show the difference be-
tween the two solutions. It shows that Eq. (5) appears to underestimate
τu for all temperatures less than about 800 °C. This underestimation
generally is less than 20%.

Observing Fig. 10(a), (b), and (c), a ‘wave’ in the τu-temperature plot
is seen between 200 °C and 400 °C for the FE results, but thiswave is not
present in the BT-ky plots. It will be shown later that this wave is due
to σyw

T values at 200 °C and 300 °C that do not equal ky,Tσyw (in the FE
solutions) when Vu is reached.

Selamet and Garlock [30] studied steel plate buckling under axial
loads at elevated temperature. They observed that the postbuckling
stress at the edge of the plate, σe,T, is significantly smaller than the
yield stress at 0.02 strain (σy,2%) and the edge strains are significantly
lower than 0.02. Predictive equations based on an edge stress equal to
σe,T = k0.2,T σy,2%, or σe,T =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ky;Tkp;T

p
σy,2% (rather than σy,2%) were

found to offer a better correlation in plate postbuckling strength at ele-
vated temperature when compared to the FE results. k0.2,T is a tempera-
ture-dependent 0.2% offset yield strength reduction factor given in the
Eurocode [28]. In light of previous research and observations from the
current study, alternative substitutions for σyw in Eq. (5) are examined
next.
(a) a/D=1.4 (b) a/D=2.0

Fig. 9. Deformations when Vu is reached at 500
6.2. Replacing σyw with kp,Tσyw

τu versus temperature for the FE models is compared to predictions
of Eq. (5)withσyw replacedwithσyw

T = kp,Tσyw (this solution is referred
to as BT-kp) in Fig. 11 for a/D= 1.4, 2.0, and 3.0. For all FE models from
20 °C up to and including 800 °C, the BT-kp/FE values are less than 1.0
and more conservative than the BT-ky/FE values from Section 6.1.
From 900 °C up to and including 1100 °C, the BT-kp solution comes
close to the FE values except for a/D = 1.4.

6.3. Replacing σyw with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ky;Tkp;T

p
σyw

Based on the previous work by Selamet and Garlock [30], σyw

in Eq. (5) was replaced with σyw
T =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ky;Tkp;T

p
σyw. This solution,

BT-√(kpky), is compared with the FE τu values in Fig. 12 for a/D = 1.4,
2.0, and 3.0. It is seen that the BT-√(kpky) solution comes closer to the
FE solutions than the BT-kp values for T ≤ 800 °C, but for T N 800 °C
the BT-kp solution comes closer to the FE values.

6.4. Replacing σyw with maximum von Mises stress in the tension field

The analytical solution presented in Eq. (5) is based on the assump-
tion that the maximum stress in the tension field at Vu is the yield
strength of the web steel, σyw. This section replaces σyw with the stress
observed in the FE analyses when Vu is recorded. For each of the FE
models, the von Mises stresses (σMises) were extracted at an element
located within the center of the diagonal tension field (Fig. 13), which
is the location where, theoretically, the stresses are largest.
(c) a/D=3.0

Y

Z X

°C for a/D = (a) 1.4, (b) 2.0, and (c) 3.0.
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Fig. 10. Comparison of FE versus Eq. (5) predictions of τuwith σyw replacedwithσyw
T = ky,Tσyw in Eq. (5) (BT-ky). (a) a/D=1.4, (b) a/D=2.0, (c) a/D=3.0, and (d) ratio of differences for

all a/D studies and all temperatures.
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Fig. 14 illustrates how σMises at Vu was determined. The figure plots
load–displacement curves from the a/D = 1.4 FE model at 200 °C,
along with corresponding plots of σMises versus number of increments
up until Vu is reached. The horizontal dotted line labeled Vu in the
load–displacement curves of Fig. 14(a) indicates the estimated Vu

value for the FE models. The vertical dotted line in Fig. 14(b) indi-
cates that the σMises versus increment plot was truncated at the in-
crement where Vu was read from the corresponding load–
displacement curve.

SP:1 and SP:5 in Fig. 14(b) refer to section points 1 and 5. In
Section 3.2, it was stated that S4 shell elements were used for the FE
analysis in Abaqus [11]. Each shell element has 4 integration points,
and each integration point has 5 section points through the thickness
of the shell. When σMises is extracted at each of the elements shown in
Fig. 13, Abaqus displays the results at SP:1 and SP:5 for each integration
point. To construct the plots shown in Fig. 14(b), the σMises values
corresponding to SP:1 and SP:5 for each of the four integration points
are averaged. When SP:1 and SP:5 are not equal, it is an indication of
bending in the plate (in this case due to buckling deformation).

Table 5 documents the temperature-dependent ky,Tσyw values for
each FEmodel and the correspondingσMises values recorded from the el-
ements highlighted in Fig. 13 when Vu is reached. Only σyw

T = ky,Tσyw is
compared in this section since it had the best correlation with the FE
results as shown previously (see Fig. 10). For most temperatures, the
Fig. 11. Ratio of Eq. (5) versus FE predictions of τuwith σyw replacedwithσyw
T = kp,Tσyw in

Eq. (5) (BT-kp).
σMises values recorded up to Vu match exactly the σyw
T value. At 200 °C,

300 °C, 900 °C, 1000 °C, and 1100 °C, it was observed that the maxi-
mum σMises value for the element in the middle of the diagonal tension
field up toVuwas typically less thanσyw

T . This implies that for some tem-
peratures, the assumption in Eq. (5) that the steel in the diagonal ten-
sion field has reach σyw

T is not correct. Further, for a/D = 1.4 and 2.0 at
300 °C it is noted that σMises is larger than σyw

T due to strain hardening
of the material as allowed by the Eurocode [28].

Table 6 compares predictions of the BT solutions (Eq. (5)) with FE
solutions through ratios, where BT-σMises represents the value of τu
predicted from Eq. (5) by replacing σyw in Eq. (5) with the maximum
σMises observed in the elements shown in Fig. 13 for the three FE
models. For temperatures 900 °C and greater, BT-σMises/FE is closer to
1.0 compared to BT-ky/FE. These are the temperatures where σMises is
less than ky,Tσyw as observed in Table 5. At 200 °C, using the maximum
σMises value resulted in a decreased correlation between Eq. (5) and the
FE models, but this change was not large.

6.5. Summary of Basler–Thürlimann (BT) equation study

It was found that substituting σywwith σyw
T = ky,Tσyw in the BT solu-

tion (Eq. (5)) yields results that are closest to the FE solution. Substitut-
ing σyw

T = kp,Tσyw or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ky;Tkp;T

p
σyw leads to more conservative solutions

(where the BT solution values are much smaller than the FE solutions).
Fig. 12. Ratio of Eq. (5) versus FE predictions of τu with σyw replaced with σyw
T =

√(kp,Tky,T) ∗ σyw in Eq. (5) (BT-√(kpky)).
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Fig. 13. Displacement fields at Vu at 700 °C for, from left to right, a/D of (a) 1.4, (b) 2.0, and (c) 3.0. The black square located approximately in the center of the buckled shape is also
approximately at the center of the diagonal tension field and is the location where σMises values were extracted.

Fig. 14. (a) Load–displacement curve for a/D = 1.4 at 200 °C, and (b) corresponding σMises plot up to Vu.
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When the von Mises stresses (σMises) were examined when Vu is
reached, it is found that these stresses typically equal ky,Tσyw except at
temperatures of 200 °C, 300 °C, and 900 °C to 1100 °C. In this range,
Vu is reached at lower stresses (except for a/D = 1.4 and 2.0 at 300 °C
where higher stresses are observed due to strain hardening).

Overall, it was found that the BT solution is sufficiently adequate at
elevated temperatures provided that appropriate substitutions are
made for σyw. For 20 °C ≤ T ≤ 800 °C, substituting σyw with σyw

T = ky,
Tσyw in the BT solution leads to results that agree well with the FE solu-
tion. For T N 800 °C, the FE studies show that Vu is reached before σyw

T =
ky,Tσyw. In this range, best correlation is found when σyw is substituted
with kp,Tσyw.
7. Summary and conclusions

The primary goal of this current study was to evaluate the Basler–
Thürlimann (BT) equation (presented in Eq. (5)) at elevated tempera-
tures by comparing ultimate shear buckling stress (τu) values predicted
from this equation with those from finite element (FE) analyses. This
Table 5
Temperature-dependent σyw values and corresponding σMises values for a/D = 1.4, 2.0,
and 3.0.

T (°C) σyw (N/m2) σMises (N/m2)

a/D = 1.4 a/D = 2.0 a/D = 3.0

20 2.50E + 08 2.50E + 08 2.50E + 08 2.50E + 08
100 2.50E + 08 2.50E + 08 2.50E + 08 2.50E + 08
200 2.50E + 08 2.32E + 08 2.20E + 08 2.22E + 08
300 2.50E + 08 3.13E + 08 3.13E + 08 1.94E + 08
400 2.50E + 08 2.50E + 08 2.50E + 08 2.50E + 08
500 1.95E + 08 1.95E + 08 1.95E + 08 1.95E + 08
600 1.18E + 08 1.18E + 08 1.18E + 08 1.18E + 08
700 5.75E + 07 5.75E + 07 5.75E + 07 5.75E + 07
800 2.75E + 07 2.75E + 07 2.75E + 07 2.75E + 07
900 1.50E + 07 1.15E + 07 1.06E + 07 1.10E + 07
1000 1.00E + 07 7.94E + 06 7.04E + 06 7.39E + 06
1100 5.00E + 06 3.58E + 06 3.52E + 06 3.67E + 06
analytical solution had originally been developed at ambient tempera-
ture assuming elastic–perfectly plastic material properties. The FE in-
vestigations carried out in this paper characterized the postbuckling
shear strength of web plates assumed to be simply supported at
uniform, elevated temperatures. Working with a simply supported
plate allowed for a direct comparison of FE results with those from the
BT solution.

The following points summarize the findings of this study:

(1) At elevated temperatures, FE models should use the fully nonlin-
earmaterialmodel andnot simplify the analysiswith elastic–per-
fectly plastic properties. In the range of elevated temperatures
expected in a fire, steel becomes nonlinear before the “yield”
strain is reached, where yield, as defined by the Eurocode for
example, is the ultimate or maximum stress reached at a strain
of 0.02. With plate buckling limit states in particular, including
this early nonlinear behavior is important.

(2) The Monte Carlo simulation study indicated that considering the
uncertainties of yield stress and modulus of elasticity of steel
at elevated temperatures results in a relatively large range of
Table 6
Comparison of BT-ky/FE and BT-σMises/FE for all three FE models.

T (°C) a/D = 1.4 a/D = 2.0 a/D = 3.0

BT-ky/FE BT-σMises/FE BT-ky/FE BT-σMises/FE BT-ky/FE BT-σMises/FE

20 0.91 0.91 0.89 0.89 0.80 0.80
100 0.91 0.91 0.89 0.89 0.80 0.80
200 1.00 0.98 0.97 0.93 0.86 0.84
300 0.80 0.87 0.84 0.90 0.95 0.89
400 0.94 0.94 0.93 0.93 0.88 0.88
500 0.97 0.97 0.94 0.94 0.92 0.92
600 0.92 0.92 0.88 0.88 0.86 0.86
700 0.87 0.87 0.82 0.82 0.80 0.80
800 0.99 0.99 0.95 0.95 0.95 0.95
900 1.26 1.19 1.15 1.08 1.06 1.01
1000 1.25 1.19 1.15 1.08 1.06 1.01
1100 1.27 1.19 1.15 1.08 1.06 1.01
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possible τu values. This effect of material uncertainty should be
considered qualitatively, if not quantitatively, in evaluations of
plate buckling at elevated temperatures.

(3) The FE analyses are capable of predicting elastic shear buckling
stress (τcr) well, compared to the theoretical solution of Eq. (1),
for the a/D ratios studied (1.4, 2.0, 3,0) and elevated tempera-
tures (20 °C ≤ T ≤ 1100 °C).

(4) At the postbuckling stage, it is observed that the ultimate shear
buckling load, Vu, decreases with increasing temperature in cor-
relation with the elevated material properties. Some trends for
Vu are not the same for all temperatures, however. For example,
in the mid-range (400 °C to 800 °C), where the ratio of propor-
tional limit stress to yield stress values at elevated temperatures
(kp,T/ky,T) is the largest, the plate deformation at Vu is larger
than at other temperatures.

(5) FE results indicate that at temperatures of 200°C, 300°C, and
900°C to 1100°C, Vu is reached at stresses lower than the yield
(except for a/D = 1.4 and 2.0 at 300 °C where higher stresses
are observed due to strain hardening).

(6) Overall, the BT solution adequately predicts Vu (and therefore τu)
at elevated temperatures provided that appropriate substitutions
are made for σyw at elevated temperatures. It is recommended
that for 20 °C ≤ T ≤ 800 °C, σyw be substituted with ky,Tσyw. For
T N 800 °C, σyw be substituted with kp,Tσyw.

The models presented thus far have only used simply supported
boundary conditions in lieu of the flanges and have assumed a uniform
temperature distribution across the web. Future work will include the
flanges and will study web shear buckling in the presence of a thermal
gradient. Additionally, the interaction of the transverse stiffeners with
the web at high temperatures will be investigated to develop a more
robust understanding of the web shear buckling mechanism.
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