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Several approaches to systems thinking have been proposed to understand and model complex socio-
technical systems and potential accidents, including the System-Theoretic Accident Model and Processes
(STAMP) with the associated hazard analysis method System Theoretic Process Analysis (STPA), and the
Functional Resonance Analysis Method (FRAM). It is argued that these approaches are suitable for the
risk analysis of complex socio-technical systems. The purpose of this paper is to look more closely into
this thesis, with a special focus on the treatment of uncertainty and potential surprises linked to the
operation of such systems. A key finding is that these approaches may, indeed, reduce the potential for
surprises by increasing the system and risk understanding but need to be supplemented with other
approaches to adequately support the decision-making on risk issues.
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1. Introduction

A major contemporary issue for risk analysts and managers is
how to deal with unexpected potential accidents (or more broadly,
‘unintended consequences’) in complex systems, such as the
power grid and the financial system. Such complex systems are
affected by pervasive uncertainty, which may lead to surprising
behavior; see for example Meadows [39], Helbing [20] and
McDaniel and Driebe [38].

An underlying characteristic of complex systems, as defined by
for example Ottino [43], Dulac [17], Mitchell [41], Perrow [45],
Weaver [53] and Johansen and Rausand [27], is that such systems
do not allow the understanding of the system logic and the pre-
diction of the system behavior based on the understanding and
prediction of the behavior of its components.

A potential accident in a complex system cannot, then, be
adequately predicted by looking at the series of component fail-
ures (event chains) that may occur [32,33]. Such a view of acci-
dents as event chains is a key idea in traditional risk analysis tools,
e.g. the Domino model [19], the Swiss cheese model [47], and
related techniques such as Failure Mode and Effect Analysis
(FMEA), fault trees and event trees.

An important issue with modeling accidents using event chains
is that dependencies (interactions) among components are not
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adequately taken into account. These dependencies can be of lin-
ear but also non-linear nature and may contribute to escalating
systemic consequences. To illustrate, consider a financial crisis.
Banks are one type of component in the financial system. One
bank associated with escalating the 2007-8 US subprime mort-
gage crisis into a global financial crisis is Lehman Brothers when
filing for bankruptcy in 2008 [40]. The consequences when Leh-
man failed extended far beyond Lehman's financial value or the
many Lehman employees losing their jobs. The effects cascaded
throughout the worldwide financial system, bringing it to its knees
and spreading to other major sectors like the car industry. The
banks are all tightly connected in large and intricate networks of
dependency, with interdependency links to other sectors.

Various approaches have been proposed in the literature to try
to meet the challenges of complex system risk analysis; see for
example Rasmussen [46], Apostolakis and Lemon [2], Brown et al.
[13], Mohaghegh and Mosleh [42], Kroger and Zio [30], Hollnagel
et al. [25], Leveson [33] and Hollnagel [23]. In this paper the focus
is on two main current approaches, the:

— Functional Resonance Accident Model/Functional Resonance
Analysis Method (FRAM) [22,23], referred to as ‘the FRAM
approach’, and the

— System Theoretic Accident Model and Processes (STAMP) with
the associated hazard analysis method System Theoretic Process
Analysis (STPA) [32,33], here referred to as ‘the STAMP
approach’.
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Both of these approaches give attention to dependencies, and
aim to cover a range of system aspects, such as of technical and
social character. Indeed, the analysis methods FRAM and STPA
produce potential accident scenarios and hazards that extend be-
yond more traditional tools; cf. Leveson [33], Leveson et al. [35],
Hollnagel [24], Ishimatsu et al. [26], Belmonte et al. [10], Song [49]
and Rosa et al. [48].

The FRAM and STAMP approaches have been complementary
to more traditional risk analysis approaches [10,29], and in the
planning and execution processes for various complex systems
and operations. As will be made clear though, the approaches ar-
chitects, Leveson and Hollnagel, are very dismissive of the use of
probabilities in relation to complex-socio technical systems
[23,33,34]. Traditionally, probability has been a cornerstone in risk
analysis [28], but many researches along with Leveson and Holl-
nagel acknowledge challenges and limitations on its use, see for
example Aven and Zio [7].

However, from a decision-maker's perspective one might ask:
‘which of the identified accident scenarios is more likely? Are
there uncertainties? Can we have surprises? ' Some judgments
have to be made during the analysis on what is likely and what is
less likely. The STAMP and FRAM approaches can imply not re-
sorting to probability, but is this a sound judgment, and what is
the alternative proposed? It can be gathered that the alternative
advocated in these two approaches is to focus on understanding
and identification of potential accidents (and remedies) in com-
plex systems. The claim is that a better model and more com-
prehensive list of systemic accidents is what matters to better
understand the system and, thus, prevent failures and surprises.
However, limiting the use of probabilities and focusing only on the
model of systemic behavior and accidents does not entirely elim-
inate uncertainties, nor does it avoid the fact that surprises may
still occur.

This paper discusses the use (or abandonment) of probability in
the FRAM and STAMP approaches and more generally how un-
certainties and potential surprises are treated. The thesis is that
the FRAM and STAMP approaches may reduce the surprise po-
tential and uncertainty in complex systems, but some degree of it
still remains and is not adequately handled in the analysis nor
communicated to a decision maker in current practice.

The remainder of this paper is structured in the following way.
Section 2 presents briefly the FRAM and STPA methods. Section 3
investigates the use/abandonment of probability in the FRAM and
STAMP approaches. Section 4 discusses the findings and re-
commends some possible improvements. Section 5 concludes the

paper.

2. The FRAM and STAMP approaches

To explain the FRAM and STAMP approaches we will look into
an expedient risk analysis case involving a complex system. The
case is constructed, and can be considered fictive, but is inspired
by a major disturbance in the European electrical grid that took
place in 2006, c.f. UCTE [51] and Castle [14]. The setting is as
follows.

A large ship sailing down a river has to pass under a trans-
mission line mounted on two pylons on each side of the river.
There is little clearance between the line and the ship, and there is
obvious risk associated with the high voltage current. Therefore,
the line has to be switched off, while the ship is passing under-
neath. The captain has to request the switch-off prior to passage
and also inform the controller about when the ship is in the clear.
The controller of the line, responsible for the off- and on-switch-
ing, relies on a technical switchboard and technical sensors sig-
naling the status of the line. The case involves different human/

organizational and technical elements (and also natural elements)
and dependencies between the elements.

Before introducing the two approaches, it is in place to say that
even though they are both used in relation to risk analysis of
complex systems, there are some key overall differences. FRAM
can be considered a method to develop a model of the system and
system behavior, including potential accidents, while STAMP is a
generic accident model that can be used for analyzing potential
accidents using the hazard analysis method STPA, c.f. Hollnagel
[23]. Note also that the two approaches can be used for accident
analysis (ex-post), though the attention here is a risk analysis
context (ex-ante).

2.1. FRAM
The key elements of FRAM used for risk analysis are [23]:

1. Identify and describe essential system functions

2. Assess variability for each function

3. Assess how the variability of multiple functions can be coupled
and lead to non-linear outcomes (what is referred to as func-
tional resonance).

4. Identify countermeasures

Step 1 of the method essentially provides a qualitative, textual
model of the system in question and how it operates in a daily
(‘accident free’) manner. The model is constructed around the
concept of ‘functions’ (rather than components). In the FRAM
analysis for the case considered, transmission of electricity is one
function, provided by the transmission lines, and control of the
transmission is another function, provided by the line operator.
Dependencies between the functions are referred to as ‘couplings’
in the FRAM world. Couplings are not fixed in the model, i.e. there
can be many ways in which the functions can couple under given
circumstances. Nevertheless, usual couplings in daily operations
are made visible, for example information-couplings and control-
action-couplings between the transmission of electricity and its
operation. The model can be illustrated as in Fig. 1. Hexagons il-
lustrate functions, lines illustrate couplings.

In steps 2 and 3, functional variability is central, including the
sources and outcomes of this variability, and how multiple func-
tions’ variability can be coupled (non-linearly) and cause an acci-
dent. Functional (performance) variability, in particular for hu-
mans and organizations, is smooth adjustments that aim to deal

Transmit
electricity

Operate
electricity
transmission

Fig. 1. Illustration of the FRAM model (in case of an accident there will be a cou-
pling between sailing (function embedded in the ship) and the transmission of
electricity (function embedded in the transmission line)). Built using the free
software: FRAM Model Visualizer. T: time, P: preconditions, I: input, R: resources,
O: output and C: control.
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with every day challenges in a complex world [23]. These ad-
justments can sometimes be well intended to ensure safety and
reliable deliveries, but there will be uncertainties about the out-
comes of such adjustments, and sometimes, despite good inten-
tions, the very source for why things goes wrong.

For each of the functions in our case there can be variability,
and for many different reasons. For example, for the control-the-
ship-function, the captain can be late in requesting a switch-off
due to sleep deprivation. The electricity-transmission-operation-
function can miss responding to the request when there is stress
and competing tasks. For the electricity-transmission-function, a
sensor can indicate that the line is off when it is not, due to
technical failure under high loads. High loads can also mean that
the lines are sagging. Now, each of these variabilities may not be
an issue by themselves, these are just ‘normal’ variations, but oc-
curring simultaneously they can produce excessive variability and
an accident.

Step 3 investigates potential realistic accident scenarios, called
instantiations, as excessive coupled variability under some realis-
tically assumed conditions (e.g. high loads) and realistically as-
sumed individual variability (e.g. sagging). Changing assumed
conditions and variability will give different instantiations. The
future occurrence of a specified instantiation is however uncertain.
What are realistic/likely conditions and variability assumptions is
based on a wider knowledge base, including understanding of the
system and the situation in hand, and experience with similar
systems. The method (FRAM) produces a model of the system and
specific potential systemic accident scenarios (instantiations). This
model and scenarios, along with countermeasures, can be pre-
sented to the decision maker.

2.2. STPA

STPA analysis has the following structure (based on Leveson
[33], and Leveson et al. [35]):

1. Identify the accidents to be considered, the system level ha-
zards, safety constraints and functional requirements

2. Create a model of the functional control structure for the system
in question

3. Identify the potential unsafe control actions (unsafe control of
the system)

4. Determine how each potentially hazardous control action from
step 3 could occur, i.e. the scenarios leading to unsafe control

To exemplify, we return to the risk analysis case considered. In
step 1, we can identify that the high voltage line represents a
system hazard to the ship. Therefore, the safety constraint is that
the transmission line be switched off before passage. An accident
can occur if this safety constraint is not upheld. The next steps
essentially revolve around the safety constraint and how it can fail
to be upheld. To investigate this, the control structure of the sys-
tem is derived in step 2. Fig. 2 is a simple illustration of the control
structure for the high voltage line in this case. Dependencies are
illustrated by lines.

Step 3 is to identify potential inadequate control actions that
could lead to hazardous states. Four generic types of hazardous
states can occur [33]:

1. Control action not provided or not followed

2. An unsafe control action is provided

3. A potentially safe control action is provided too late or too early
or in wrong sequence

4. A control action is stopped too soon or applied too long

Table 1 below illustrates the control action of switching the

Operators
«
Switch line off Line 1s off
Switch line on Line 1s on
Switch- Monitors/
board Sensors
&
Transmis-
sion line

Fig. 2. Control structure diagram.

transmission line on and off, and when it becomes unsafe.

Step 4 is to identify further how potentially hazardous control
actions can occur, i.e. identify the causes. For each hazardous
control action, the control loop in Fig. 3 is circled; compare with
the similar control structure in Fig. 2. Many of the generic causes
depicted in Fig. 3 are relevant to, say, the unsafe control action:
‘line-switch on while ship is underneath’. Under point 3 in the
Figure, we can identify ‘feedback delays’ and ‘incorrect process
models’ as relevant causes of an unsafe line switch-off. In step 4,
considerations should also be made for how controls could de-
grade over time (cf. Dekker [15]), but the time span in the example
is too short for it to be considered here.

The result of the analysis is essentially a list bearing scenarios
of hazardous control actions, conditions for when they become
unsafe, and causes of these hazards (potentially accompanied by
judgments on, for example, severity and mitigation potential). The
list can be used to suggest and evaluate mitigating measures. In
last instance, the list including mitigating measures is handed over
to the decision maker.

3. Probability and uncertainty in FRAM and STAMP

Section 2 recalled briefly the FRAM and STAMP (STPA) ap-
proaches, with reference to the risk analysis case above defined.
Central in both approaches are models of the system and potential
accidents. A key output provided by the application of these
methods is potential accident scenarios/hazards, which can be
presented to a decision maker. But how likely (uncertain) are the
scenarios? A list/model of scenarios or hazards in itself indicates
little on this matter, though some likelihood judgments are in-
evitably made, in the decision process, on which scenarios to
consider. The information about uncertainty should be conveyed
to the decision maker. The information can be useful for deciding
how to prioritize scenarios to consider, and how much of the re-
sources should be spent to prevent some scenarios or hazards. In
risk analysis, it is usual to resort to probabilities to say something
about the uncertainty linked to scenarios and hazards. However,
the STAMP and FRAM approaches largely exclude the use of
probability.

Indeed, STAMP/STPA's architect and proponent, Leveson, is very
skeptical regarding the use of probabilities in relation to complex
systems, largely because of uncertainties (for example when going
to Mars), and biases:

“While severity can usually be evaluated using the worst pos-
sible consequences of that hazard, likelihood is almost always
unknown and arguably, unknowable for complex systems...”
([33], p.320).
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Table 1
Hazardous system behavior.

Control action Not providing Providing Too early, too late, or out of order Stopped too soon or applied too long
Switch line off While ship is underneath Not hazardous Too late: While ship is underneath Too soon: While ship is underneath
Switch line on Not hazardous While ship is underneath Too early: While ship is underneath Too long: While ship is underneath
Control input or
extermal information
wrong or missing
Controller
@ Inadequate Control
Algorithm
| ) ) Process Model ]
(Flaws in creation, inconsistent
process changes, incomplete, or
incorrect modification incorrect.
or adaptation
Inappropriate, P ) Ipaqequate or
ineffective or missing missing feedback
control action
Feedback Delays
Actuator Sensor
®Inadequate @
operation Inadeqt.Jate
Operation
Incorrect or no
Delayed information provided
operation Measurement
inaccuracies
Controlled Process
Feedback delays
Controller 2 @ Component failures

Conflicting control actions

Changes over time

e e

Process input
missing or wrong

Unidentified or

Process output
contributes to
system hazard

out-of-range
disturbance

Fig. 3. Causal factors leading to hazards [32].

Further down Leveson states:

“There are no known or accepted rigorous or scientific ways to
obtain probabilistic or even subjective likelihood information
using historical data or analysis in the case of non-random
failure and system design errors... When forced to come up
with such evaluations, engineering judgment is usually used,
which in most cases amount to pulling numbers out of the air,
often influenced by political or nontechnical factors” ([33],
p.320).

Leveson's practical conclusion is that, in many cases, one
should abandon probability altogether and rather focus on the
understanding of accidents and use, for example, severity and
mitigation potential for decision support [33].

As for FRAM, one motivation for its development stems from
the claimed inadequacy of many Probabilistic Risk Assessments
(PRAs) and Human Reliability Assessments (HRAs) for analyzing
human errors and computing human error probabilities (HEPS).
Many technical components can be viewed as performing in a
stable manner and with fixed dependencies among components.
Many components can be adequately represented as in a state of
failure or not, and probabilities for each of the states can be cal-
culated. However, humans and organizations do not usually fail as
such, nor perform in a stable manner, or have fixed relations. Ra-
ther, there is continuous performance variability to adapt to a

changing environment. The purpose of FRAM is to represent the
performance variability of the system rather than to calculate
some failure probability [23].

In FRAM, variability is described using qualitative descriptions,
including qualitative likelihood judgments on variability
outcomes:

“There is no established tradition for [expressing variability
quantitatively] in PRA or HRA, which at best supply prob-
abilities with uncertainty intervals (lower and upper bounds).
An uncertainty interval is however an expression of range ra-
ther than variability” ([23], pp.93-94).

Hollnagel's conclusion is essentially that it is inappropriate to
talk about human error; hence, human error probability and
quantification of likelihood (probability) may also not be useful in
the FRAM world.

We will argue that both Leveson and Hollnagel have some valid
points concerning probabilities and issues linked to their use in
risk analysis of complex systems [8,56]; yet, their practical con-
clusion of effectively abandoning probability is not sound, as the
consequence can be that important aspects of risk and uncertainty
are ignored, thus leading to poor decision-making.

To elaborate further, we need to indulge in the use and
meaning of probability, which has different schools. It is possible
to distinguish between probabilities used to:
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i. Describe variation in large populations (thought constructed or
real)

ii. Represent uncertainty, also about variation (i.) and performance
variability

Variation (in a large population of similar constituents) is often
referred to as stochastic/aleatory/irreducible uncertainty, and un-
certainty as epistemic/reducible uncertainty in a risk context. The
distinction is, however, instrumental; all uncertainty is epistemic
and reducible [1,54]. In a risk assessment, there are essentially two
ways to understand a probability: as a frequentist probability or as
a subjective (knowledge-based, judgmental) probability [3]. These
are linked to variation and uncertainty, respectively.

Note that variability and variation are two closely linked terms.
For example when searching for ‘variability’ in the Merriam-
Webster dictionary, it returns ‘variable’ and defines it as ‘able or
apt to vary: subject to variation or changes < variable
winds > < variable costs > [52]. The outcome of a dice throw, or
the performance of technical tools and equipment is subject to
variation, so is also human and organizational behavior. A sharp
distinction can however be made, on the variation in a large po-
pulation of similar constituents with known outcome space, and
variation of a more rare/unique, and often unprecedented char-
acter. Typically, repeated dice throws is an example of the former,
and relative fractions representing the variation can be established
for the different outcomes (1-6 pips). For other cases, for example
human performance, it can be much more difficult to specify in
advance all the performance outcomes, and to establish accurate
fractions for different performances.

A frequentist probability P{A) is the fraction of times an event/
outcome A occurs if the experiment is repeated a huge number of
times under similar conditions (e.g. dice throws). Usually the
fraction PgA), is unknown and must be estimated (as noted in
Leveson [33], referring to the fraction as likelihood). The estimate
can be hard to justify when there is little relevant data, as is the
case when going to Mars.

Frequentist probability models can be used to model variation
in complex systems, at both the component level and the system
level. See e.g. Hines et al. [21] and Lewis [36] for the latter. Var-
iation can be illustrated, for example in the number of outages of a
certain size in an electrical grid. Say over six years we observe a
series of (3, 4, 3, 0, 2, 6) outages. The number of outages is not the
same from year to year; there is variation. Assuming independence
between the years, we can use a Poisson model and calculate, say
P{0), which is the fraction of years in the long run with zero
outages. It is, however, clear that ‘similar conditions’ require a
somewhat stable process; cf. Bergman [11]. This is the case for
many technical components but, in comparison, not for humans
and dependencies. A frequentist probability model may be hard to
justify.

The other meaning of probability is a subjective (knowledge-
based, judgmental) probability, P(A), which expresses the asses-
sor's degree of belief that A will happen with reference to an urn
standard [28,37]. For example P(A)=0.1 expresses that the asses-
sor's uncertainty about A occurring is comparable to drawing a
favorable ball out of an urn containing one favorable and nine
unfavorable balls. The event A can also be a proposition about a
variation pattern, a parameter or performance variability. There is
no reference to a true fraction that is unknown, as is the case for
the frequentist interpretation. Subjective probabilities can be used
for technological endeavors with no historical data or variable
human performance, i.e. even unique cases.

The subjective probability, P(A), expresses uncertainty, but
conditioned on some background knowledge, K, in the form of
expert opinions, phenomenological understanding, assumptions,
models and data. This dependency can be denoted as P(AIK), and K

can contain ‘hidden’ risks. Likelihood judgments on performance
variability can serve to illustrate. Say we assume that it is very
unlikely, i.e. a very small probability, that the operator of the lines
misses operating the off-switch when there is little stress. Effec-
tively, this is not an interesting scenario to either develop or
safeguard against. This can of course be wrong: the operator could
intentionally want to cause an accident to the ship, something that
would mean that an inadequate off-switch is very likely. The (ta-
cit) assumption that the probability judgment condition on, is that
the operator is not a terrorist.

4. Discussion

As explained in Section 3, there are many reasons why prob-
ability can be discarded. In fact, communicating probabilities
when these reasons are valid seems futile and can seriously mis-
guide a decision maker. But the underlying issue of risk is essen-
tially also about uncertainty and this cannot easily be swept under
the carpet. It can be argued that the FRAM and STAMP approaches
reduce the uncertainty, by generating more insightful models of
the system behavior/accidents, causality and variability. If prob-
ability is used as a model of variation which is inadequate/in-
accurate, it can be discarded in favor of a better model of variation,
causality, or both; cf. Winkler [54].

However a model is exactly that: a model, and not the system it
represents. There will always be uncertainty about how well the
model matches the system behavior. Assumptions have to be
made on resolution, system boundaries, etc. In FRAM for example,
many assumptions about reasonable variability and conditions are
made. A STAMP analysis will also make many assumptions, for
example about how a system is, or will be, organized (see also
[34]). Nevertheless, an assumption may not be as sound as initially
thought. In one of the largest power outages ever recorded in
Europe on November 4th, 2006 [14,51], a transmission line op-
erator assumed deliberately under high stress that a certain grid-
action would lead the grid to behave in one way (redirect the
current), yet the opposite happened, causing a cascade of tripping
lines.

Shaky assumptions are only one of several issues. STAMP/STPA
is, for example, used in relation to novel technology endeavors.
Clearly, these are cases with very limited operational experience
and little or no data, and perhaps depending on inaccurate models
of, say, the environment on Mars. Shaky assumptions, little data
and inaccurate models are epistemic uncertainty factors that
should be important to account for when making a decision.
Knowledge-based probability is a tool that can be used to char-
acterize this type of uncertainty, yet the issues of limited data and
shaky assumptions imply that little weight can be given to an
assigned number (it can in some way be considered ‘a number
pulled out of the air’). Nevertheless, the solution when using
probability to describe uncertainty is not to make better models
and descriptions to reduce uncertainty as such but to de-camou-
flage and characterize uncertainty better.

We can contrast two views on how to proceed in the case of an
uncertain/inadequate probability model:

A. Reduce uncertainty by better modeling of the system
B. Characterize uncertainty better

In case A, the accuracy of the model is important, but there will
always be uncertainty about how well the model matches the
system's behavior. In case B the key focus is exactly this un-
certainty; the accuracy of the model is of less importance, yet
better models of a system are of course sought and applauded. In
practice both A and B are needed. A model's accuracy in predicting
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scenarios or hazards cannot be judged without taking into account
the uncertainty about how well the model with scenarios/hazards
matches the system. The FRAM and STAMP approaches in its
current form essentially targets A, and so there will be un-
certainties and potential for surprises that are not addressed or
communicated to the decision maker. Better understanding and
modeling of the system and variation is the key aim in many
complex systems, e.g. using (improved) stochastic jump processes
in the financial industry to better predict future stock prices.

In theory, for case B, one could still use a probability model of
human variability, and for complex technological endeavors with
little data. But along with the model there has to be a statement on
uncertainties, to judge its accuracy. One way of doing this is pre-
sented in Bjerga et al. [12]. In that paper, the difference between
the true variation pattern F (which can be known with time) and
the probability model of variation G(X) (X being a parameter) is
called the model error, i.e. the model error is F-G(X), and the un-
certainty about the magnitude of the model error is called model
uncertainty. Based on model uncertainty analysis, a model can be
accredited or remodeled, or at the very least the analysis produces
a statement on the uncertainties which can be presented to the
decision maker. Different models can also be compared on the
basis of the model uncertainty analysis. In the case of qualitative
models, conceptually the model error still exists, but it is difficult
or impossible to quantify it. Yet, the uncertainty level can still be
addressed using a more qualitative approach, for example by ad-
dressing and making judgments on the strength of the background
knowledge [4,18]. Aspects considered in such a judgment are [6]:

® The degree to which assumptions made represent strong
simplifications

The availability of relevant data

The degree of agreement/consensus among experts

The degree of understanding of the phenomena involved

The existence of accurate models

The issue with complex systems is that they cannot be under-
stood on the basis of components, even if components can be
‘perfectly’ modeled, e.g. by a probability model. In other words, the
whole is more than the sum of the parts. Missing in the summa-
tion are interconnections or relationships among parts. These re-
lationships can be of linear or non-linear nature and may con-
tribute to escalating systemic consequences. Another thing omit-
ted from the summation is a system's function or purpose. Also,
many technical risk assessments are oriented towards technical
components, giving less weight to organizational and human
factors. Parts (of any nature), interconnections and functions are
all important determinants for system behavior [39]. The FRAM
and STAMP approaches address many of these issues. However,
also missing in the equation is the uncertainty linked to what we
know about dependencies, the system behavior, components, and
purposes, which may be limited. It could therefore be useful to
address the knowledge strength for different aspects. Table 2 is a
first attempt, which can be used for that purpose and commu-
nicated to the decision maker.

Assumptions are of particular importance in FRAM and STAMP,

Table 2
Strength of knowledge addressing different aspects of complex systems.

Is the strength of knowledge on dependencies (linear/non-linear) good?
Is the strength of knowledge on parts (of any nature) good?

Is the strength of knowledge on functions/purposes good?

Is the strength of knowledge on the system's environment good?

Is the strength of knowledge on variation/variability in the system good?
Is the strength of knowledge on the system as a whole good?

for which, there can be separate assessments of assumption-de-
viation-risk [4]. Assumptions for example about variability or de-
pendencies need to be stated and then evaluated as to: what de-
viations can occur, how likely the deviations are, potential con-
sequences, and the strength of the background knowledge. Other
qualitative approaches are also available to address assumptions,
e.g. Assumption-Based Planning by Dewar [16], cf. Leveson [34].

It can also be relevant to address potential surprises relative to
the knowledge/beliefs held. If the surprises carry extreme con-
sequences, they are called black swans [5,50]. These can be ad-
dressed using, for example, red teams, and monitoring of signals
and warnings [6,44]. A red team in a risk analysis would consist of
an ‘outside’ analysis group, whose job is to challenge the models,
assumptions and judgments made by the initial group. A list of
potential black swans can then be handed to the decision maker.
Practice have shown that a red team exercise can be very bene-
ficial, but that the usefulness of red teams can easily be impaired,
for example by a corporate culture that does not appreciate criti-
cism [31]. It is a research area how to improve and use these
methods in practice.

Returning to probabilities, it can for complex systems be very
challenging to give precise probabilities, say P(A)=0.16, where A is
some event. The number may seem too precise, given the un-
certainty linked to complex systems. It is possible to use qualita-
tive scales and statements, for example. ‘unlikely’, ‘possible’,
‘likely’, as in Hollnagel [23]. But what does, for example, ‘possible’
mean? In usual parlance, ‘possible’ could mean that the probability
is above zero, or that it is some narrower unspecified range. The
point is that qualitative probability scales without being linked to
specified intervals and meaning, can be vague and difficult to use.
An alternative is to use imprecision intervals, say [0.1,0.3], with the
upper and lower assignments interpreted as subjective prob-
abilities: the assigner states that his/her degree of belief in A oc-
curring is greater than the urn chance of 0.1 (the degree of belief of
drawing a specific ball out of an urn containing 10), and less than
the urn chance of 0.30. The analyst is not willing to make any
further judgments. Imprecise probability intervals capture some
uncertainty beyond precise probability assignments but still con-
ditioned on some background knowledge, which also needs to be
addressed.

Another quantitative alternative is fuzzy set theory and fuzzy
logic after Zadeh [55] which have been proposed as descriptions of
variability in FRAM [23]. It is a research question if and how fuzzy
descriptors can be used in practice. The interpretation of fuzzy
descriptions are difficult as discussed in Bedford and Cooke [9].

Lastly, a relevant question is, if the decision makers in reality
want the information about uncertainties and potential surprises,
and if it in practice makes a difference to decision making. From
the perspective of a risk analyst the aim should be to communicate
both what is known and what is not known-both the model and
the model uncertainties. It is from that perspective of less im-
portance how the decision-maker chooses to make use of the in-
formation, though the position taken in this paper is that good risk
decision making is based on proper understanding and treatment
of uncertainties. It is however, a research challenge how to convey
both what is known and lack of knowledge to the decision-maker
in a best possible way. It is also a general research question how a
manager should think and act when facing uncertainty. And of
course it is a question about the manager's values and priorities.

5. Conclusion
This paper has considered complex system risk analysis and the

use of the FRAM and STAMP approaches. Focus has been on the
treatment of uncertainty in these approaches, as probability is
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largely discarded. Rather, the focus of the FRAM and STAMP ap-
proaches is on better qualitative modeling and description of
systemic behavior and accidents, giving due attention to de-
pendencies. Better modeling can be a way to gain better under-
standing of the system and potential systemic accidents, and thus
reduce uncertainty. Yet, without addressing uncertainties the
models and descriptions of potential scenarios and hazards iden-
tified should not be confidently used by a decision maker. Both
better modeling and identification of possible complex system
accidents using tools like FRAM and STAMP, and better char-
acterization of uncertainties are advocated. Some ways to address
and characterize uncertainties, knowledge aspects and surprises,
also in qualitative ways, have been discussed in relation to that.
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