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To date, no specific framework has been developed to guide composite structure designers to select the op-

timum fiber types and fabric weave patterns for a given application. This article aims to, first, investigate the

effect of weighting methods in multiple criteria decision making (MCDM) and then arrive at a systematic

framework for optimum weave pattern selection in fiber reinforced polymer (FRP) composites. Namely, via

measured data from an industrial case study, the TOPSIS MCDM technique has been applied to choose the best

candidate among different polypropylene/glass laminates. As an input to TOPSIS, different types of subjec-

tive and objective weighting methods were initially compared to assess the role of relative importance values

(weights) of design criteria. These included the Entropy method, the modified digital logic (MDL) method, and

the criteria importance through inter-criteria correlation (CRITIC) method. Next, two new subjective weight-

ing methods, named ‘Numeric Logic (NL)’ and ‘Adjustable Mean Bars (AMB)’ methods, were introduced to

give more practical and effective means to the decision makers during the weighting of criteria. In particular,

compared to the MDL, the NL method increased the accuracy of assigned weights for an expert DM. On the

other hand, the AMB provided a more interactive, visual approach through MCDM weighting process for less

experienced DMs. Finally, a generalized combinative weighting framework is presented to show how differ-

ent types of weightings may be combined to find more reliable rankings of alternatives. The combinative

weighting could specifically accommodate different scenarios where a group of designers are involved and

have different levels of experience, while given a large number of alternatives/criteria in highly nonlinear

applications such as impact design of composite materials.

© 2015 Elsevier Ltd. All rights reserved.
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Abbreviations

AE Absorbed Energy

AMB Adjustable Mean Bars weights

CRITIC Criteria Importance through Inter-criteria Correlation

CM Combinative Weights

DM Decision Maker

EVD Exterior Visible Damage

EW Equal Weights

FEA Finite element analysis

ID Interior Damage

RLFT Relative Loss of Flexural Toughness due to impact
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LUFS Relative Loss of Ultimate Flexural Strength due to impact

CD Maximum Central Deflection

CDM Multi-Criteria Decision Making

DL Modified Digital Logic method

L Numeric Logic weights

T Flexural Toughness (of healthy sample)

FS Ultimate Flexural Strength (of healthy sample)

W Plain Woven

M Project Manager

F Reaction Force

OC Rank Order Centroid weights

R Rank Reciprocal weights

S Rank Sum weights

W Twill Woven

D Unidirectional

W Unbalanced Woven

PM Weighted Product Model

MT X-ray Microtomography Technique
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ariables

Ai Alternatives or materials (i = 1, . . . , m)

A∗ Positive-Ideal Solution

A− Negative-Ideal Solution

Cj Criterion j or material properties ( j = 1, . . . , n)

C∗
i

Similarities to Positive-Ideal Solution

Cjk Comparative Weight

rij Normalized element of decision matrix

S∗
i

Separation from Positive-Ideal Solution

S−
i

Separation from Negative-Ideal Solution

vij Weighted normalized element of decision matrix

wj Weight or importance of criteria j

xij Elements of decision matrix, ith alternative or material, jth

criterion

quations

Equal weights

Rank sum weights

Rank reciprocal weights

Rank order centroid weights

Adjustable mean bars weights

Modified digital and numeric logic weights

–10 Entropy weighting method

1–12 CRITIC weighting method

3 Combinative weights

4 Modified combinative weights

5–19 Modified combinative weights for 3 scenarios

1–A7 TOPSIS formulation

. Introduction

Despite several advantages offered by fiber reinforced polymer

FRP) composites, such as low weight and yet high mechanical per-

ormance, their optimum use in specific applications including high-

peed impact still requires development of new design method-

logies, along with accurate numerical modeling and prediction

ools (Alemi-Ardakani, Milani, Yannacopoulos, & Borazghi, 2015a).

urrently, in order to avoid severe impact failures in composite struc-

ures, trial and error methods are most often employed by manufac-

urers through varying design parameters such as the composite lay-

p and the shape of structures. In addition, most design decisions are

ade under multiple, often conflicting and inter-dependent, criteria. To

xemplify this state of complexity in impact design of FRPs, the recent

xperimental case study (Alemi-Ardakani, Milani, Yannacopoulos, &

hokouhi, 2015b) suggested that the application of ‘Multiple Criteria

ecision Making’ (MCDM) methods is paramount to select structures

hat can satisfy a multitude of design criteria at the same time.

Industrial practitioners and researchers frequently employ differ-

nt MCDM and criteria weighting techniques through their design

f expert systems. For example, Monghasemi, Nikoo, Khaksar Fasaee,

nd Adamowski (2015) used a multi-objective algorithm incorporat-

ng the NSGA-II (non-dominated sorting generic algorithm) during

highway construction project to find optimum design alternatives.

n the weighting process, they used Shannon’s entropy technique to

eigh the conflicting criteria of time, cost and quality. In another

esearch, Cobuloglu and Büyüktahtakın (2015) proposed a stochas-

ic analytical hierarchy process (AHP) weighting method for MCDM

n design of an expert system for sustainable biomass crop selec-

ion. Their selection matrix included 16 sub-criteria from three main

ustainability criteria categories; namely economic, environmental

nd social categories. Yavuz, Oztaysi, Cevik, and Kahraman (2015)

sed a hierarchical hesitant fuzzy linguistic model to utilize the lin-

uistic evaluation of multiple experts in selection of alternative-fuel

ehicles. Different MCDM approaches such as ELECTRE, TOPSIS and

he Grey Theory were studied and compared in the work by Özcan,

lebi, and Esnaf (2011), specifically for expert selection of warehouse
ocations. The results of TOPSIS and ELECTRE appeared to be similar,

espite their very different calculation algorithms. However, given

he high sensitivity of criteria weights in most design case studies

imilar to those above, it has not been shown how different ‘sub-

ective’, ‘objective’ and ‘combinative’ criteria weighting methods in

CDM would differently capture the expertise of the same (given)

esigner, along with statistical characteristics of the measured data.

To address and exemplify the above effect, in the present work

set of common weighting methods from the literature (Modified

igital Logic, CRITIC, and Entropy methods) have been selected and

ested against a same composite designer and the same data matrix

rom a FRP impact design case study. In addition, two new weight-

ng methods, namely an adjustable mean bars (AMB) method and a

odified digital logic (NL) method, have been introduced for the first

ime, along with a new generalized framework for combining differ-

nt types of weighting methods, to accommodate different experi-

nce levels of decision makers. It is argued that the NL can increase

he accuracy of weighting for an expert designer, while the AMB can

rovide a more intuitive direction through weighting process for a

ecision maker with potentially less experience/information, espe-

ially for complex design problems such as FRP impact where the un-

erlying mechanical theories are still under development. For the se-

ection/ranking stage of MCDM problem, among various techniques,

he TOPSIS (Technique for Order Preference by Similarity to Ideal So-

ution) (Hwang & Yoon, 1981) has been employed owing to its pop-

larity and efficiency. Examples of other common selection meth-

ds in the reported literature include Lexicographic (Paul Yoon &

wang, 1995), Elimination by Aspect (Tversky, 1972), Simple Addi-

ive Weighting (SAW) (Fishburn, 1967), Weighted Product Method

Bridgman, 1922), ELECTRE (Roy, 1991), Median Ranking (Cook &

eiford, 1978), PROMETHEE (Vincke & Brans, 1985), and Analytic Hi-

rarchy Process (AHP) (Saaty, 1980).

.1. Case study description

The MCDM problem herein is based on the experimental data ob-

ained by Alemi-Ardakani et al., 2015b via an industrial case study

here the ultimate goal is to choose the most promising fiber re-

nforcement architecture for impact applications. Four thermoplastic

omposite candidates have been presented: plain woven (PW), twill

oven (TW), unbalanced woven (UW), and unidirectional fiber tape

UD). Nine attributes (design criteria) were recommended including

he reaction force during impact (RF), absorbed impact energy (AE),

he maximum central deflection of the laminate (MCD), areal frac-

ion of induced interior damage (ID), the exterior visible damage area

EVD), ultimate flexural strength of the healthy (non-impcated) sam-

le (UFS), the relative loss of ultimate flexural strength due to impact

RLUFS), flexural toughness of healthy sample (FT), and the relative

oss of flexural toughness due to impact (RLFT). Table 1 summarizes

he matrix of experimental data obtained from drop tower impact

esting, four-point flexural testing, and non-destructive damage eval-

ation (visual inspections and x-ray microtomography). For a general

mpact-resistant structure such as a roadside barrier (Fig. 1), the cri-

eria AE, UFS and FT would be benefit-like (i.e., the higher the better),

hile RF, MCD, ID, EVD, RLUFS and RLFT would be cost-like (i.e., the

ower the better). Table 2 shows the order of preference of candidate

aterials within each column (design attribute) of Table 1; i.e., one-

actor-at-a-time (OFAT) optimization based on the objective related

o each specific criterion. Notably, the order of preference of candi-

ate materials is not identical between any two columns in Table 2,

howing the highest level of criteria conflicts, hence the critical need for

robust weighted MCDM approach in composite impact optimiza-

ion problems. Methodological considerations of the proposed meth-

ds are presented in Section 2, followed by the case study results and

iscussions in Section 3. Section 4 includes concluding remarks and

otential future work.



428 M. Alemi-Ardakani et al. / Expert Systems With Applications 46 (2016) 426–438

Table 1

Decision matrix of the MCDM case study based on the drop weight tower, visual damage inspection, x-ray microtomography and four-point

flexural bending experiments conducted by Alemi-Ardakani, Milani, Yannacopoulos, and Shokouhi, 2015; The criteria AE, UFS and FT are assumed

to be benefit-like (i.e., the higher the better), while RF, MCD, ID, EVD, RLUFS and RLFT are cost-like (i.e., the lower the better).

Materials Impact test (dynamic properties) Nondestructive evaluation Pre- and post-impact flexural test (quasi-static properties)

RF (N) AE (J) MCD (mm) ID (%) EVD (mm2) UFS (Mpa) RLUFS (%) FT (kN/m2) RLFT (%)

PW 32,018 36.15 11.87 0.413 3.50 262.22 18.60 358.12 17.83

TW 34,121 37.21 12.43 0.322 3.03 222.67 7.34 294.41 11.08

UW 31,286 42.76 13.22 0.504 3.07 225.80 20.17 226.04 14.70

UD 29,514 69.14 12.37 0.173 0.44 206.59 31.95 148.25 29.79

Fig. 1. Prototype of a semi-rigid PP/glass guardrail with four given material options for the composite plies.

Table 2

Ranking of candidate materials based on individual criteria (i.e., single objective optimizations).

Materials Impact test (dynamic properties) Nondestructive evaluation Pre- and post-impact flexural test (quasi-static properties)

RF AE MC ID EVD UFS RLUFS FT RLFT

PW 3 4 1 3 4 1 2 1 3

TW 4 3 3 2 2 3 1 2 1

UW 2 2 4 4 3 2 3 3 2

UD 1 1 2 1 1 4 4 4 4
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2. Methods

2.1. TOPSIS multiple criteria decision making

TOPSIS (Technique for Order Preference by Similarity to Ideal So-

lution) was originally proposed by Hwang and Yoon, 1981 and later

modified by Yoon, 1987 and Hwang, Lai, & Liu, 1993. The concept of

this method is to find the optimum alternative in a given decision

space such that it has simultaneously the shortest distance from the

so called ‘positive-ideal solution’ and the farthest distance from the

‘negative-ideal solution’. The positive- and negative-ideal solutions

are often artificial (infeasible practically) and are merely hypothe-

sized in TOPSIS for ensuring the best performance of the chosen al-

ternative. It should also be noted that TOPSIS is among the compen-
atory type of MCDM methods where trade-offs between decision

ttributes (criteria) are allowed. More specifically, a good perfor-

ance of a material candidate under one design attribute can com-

ensate the poor performance of the material under some other

ttributes. This feature of the method can be suitable in near-

he-end stages of a design process where short-listed material

andidates have met the minimum design requirements and the

uestion remained is which material can maximize the overall per-

ormance of the structure under ‘all’ given criteria. Due to its sim-

licity and efficiency, TOPSIS has been widely used in the past in a

iverse range of areas. As a few examples, this technique was used

y Davoodi, Sapuan, Ahmad, Aidy, and Khalina, (2011), for the design

f a car bumper beam made of hybrid bio-composites, by Pakpour,

lishevska, Prasher, Milani, and Chénier, 2013, for optimum DNA
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xtraction from agricultural soil samples, and by Jee and Kang, 2000

or the material selection of a flywheel. Behzadian, Khanmohammadi

taghsara, Yazdani, and Ignatius, 2012 reviewed 266 scholarly arti-

les on the use of TOPSIS in other applications such as (a) supply chain

anagement and logistics, (b) design, engineering and manufactur-

ng systems, (c) business and marketing management, (d) health,

afety and environment management, (e) human resources manage-

ent, (f) energy management, (g) chemical engineering, (h) and wa-

er resources management. The review referred to 103 different jour-

al publications between 2000 and 2012. Implementation steps of

he TOPSIS method can be found in Appendix A.

.2. Criteria weighting

In order to successfully apply any standard compensatory MCDM

olution method such as TOPSIS, some critical assumptions should

e taken into account: (1) the decision matrix must satisfy design re-

uirements, (2) the desired attribute values are normally in a mono-

onically increasing or decreasing form (i.e., the higher the better, or

he lower the better), (3) measured units should be commensurable

Behzadian et al., 2012) otherwise test data should be normalized, (4)

riteria weights should be assigned by the designer as related to each

iven application, and (5) in the case of changes in the decision ma-

rix (e.g., adding/removing one material), the entire calculation pro-

ess must be repeated as it can affect the final ranking scheme. Per-

aps the most critical input in TOPSIS, similar to most other MCDM

ethods, is the assignment of criteria weights which can be based on

ubjective, objective, or combinative techniques.

Subjective weighting methods rely on the expert-opinion while

he emphasis of the objective methods is on the statistical evalu-

tion of data given in a decision matrix. Each of these techniques

as its own advantages and disadvantages. Potential uncertainty in

xpert judgment is the main disadvantage of the subjective meth-

ds, while the objective methods do not benefit from the expertise

nd experience of designers. Examples of the well developed sub-

ective weighing techniques include the Digital Logic and Modified

igital Logic methods (Dehghan-Manshadi, Mahmudi, Abedian, &

ahmudi, 2007); Weighted Least-Square Method (Chu, Kalaba, & Sp-

ngarn, 1979); Delphi method (Hwang & Lin, 1987); Simple Multiat-

ribute Rating Technique (SMART) (Edwards, 1977) and its modified

ersions including SMARTS (von Winterfeldt & Edwards, 1986) and

MARTER (Barron & Barrett, 1996a, 1996b; Edwards & Barron, 1994);

imos’ procedure (Simos, 1990); Revised Simos’ procedure (Figueira

Roy, 2002) for single decision making and the extended version for

roup decision making (Shanian, Milani, Carson, & Abeyaratne, 2008).

hese techniques specify the weights solely based on the preferen-

ial judgments of the decision maker (DM) and as the number of at-

ributes increases, they can become intricate. As stated earlier, due

o several conditions such as the lack of experience, imprecise infor-

ation, limited capability of the DM for analyzing and correlating

ttributes and intangible nature of criteria, sometimes the DM may

ot be able to assign precise weights to criteria (Kahneman, Slovic,

Tversky, 1982; Weber, 1987). In order to solve this problem, well-

tablished objective weighting techniques such as Entropy (Hwang

Yoon, 1981) and Criteria Importance through Intercriteria Correla-

ions (CRITIC) (Diakoulaki, Mavrotas, & Papayannakis, 1995) are em-

loyed to extract statistical (unbiased) weights through dispersion

nalyses of a given decision matrix. Such objective methods, how-

ver, ignore the valuable input that can be gained from the DM’s ex-

ertise via subjective weighting. Accordingly, some researchers such

s (Jahan, Mustapha, Sapuan, Ismail, & Bahraminasab, 2011, 2011b)

ighly recommend ‘combinative weighting’ methods to account for

oth types of subjective and objective weighting and arrive at a sin-

le, aggregated set of criteria weights.

In the present work, next to employing the MDL, CRITIC, and

ntropy methods, two new subjective techniques (a Numeric Logic
ethod and an Adjustable Mean Bars method) are proposed with the

oal of simplifying the judgment process for DMs with different levels

f experience, especially when the number of criteria in the decision

pace becomes large. In addition, the combinative weighting method

roposed by Jahan et al., 2011 has been slightly modified to adjust

o different levels of experience of DMs, or for group decision mak-

ng environments. Finally the discussed weighting methods and the

OPSIS technique are integrated to develop the strategy for impact

ptimization of FRP composite structures.

.2.1. Adjustable Mean Bars (AMB) direct weighting method

The simplest method of objective weighting is the direct complete

eight elicitation (Hwang & Yoon, 1981) where a highly experienced

M is able to assign the relative importance values for all criteria at

nce. This method may not be advised for all the DMs because of its

ighly intuitive nature and potential inaccuracies in final ranking. Ac-

ordingly, less experienced DMs often opt to give an equal weighting

EW) to criteria; however this approach can then become too conser-

ative in some sensitive applications. Ordinal weighting techniques

ave been proposed in the literature to address this problem and as-

ist the DMs; such as the rank sum (RS) weighting and rank recip-

ocal (RR) weighting (Stillwell, Seaver, & Edwards, 1981), as well as

he rank order centroid weighting (ROC) (Edwards & Barron, 1994).

n these techniques, the DM first ranks the attributes based on their

riorities and then assigns weights in a descending order (w1 > w2

��� > wn), starting from the most important to the least impor-

ant attribute. (Barron & Barrett, 1996b) compared the efficiency of

he EW, RS, RR and ROC techniques based on Eqs. (1)–(4) using more

han 10,000 test cases. They reported that ROC outperforms the other

echniques with the order of ROC > RR > RS > EW.

j(EW) = 1

n
(1)

j(RS) = 2(n + 1 − Rj)

n(n + 1)
(2)

j(RR) = 1/Rj∑n
j=1 1/Rj

(3)

j(ROC) = 1

n

n∑
k= j

1

k
(4)

represents the number of attributes ( j = 1, 2, . . . , n) and Rj is the

referred rank of attribute j; Rj = 1 represents the most important

ttribute. In Eq. (4), k indicates the number of alternatives to be found

s optimum (usually k = 1). In order to satisfy
∑n

j=1 w j = 1, the RS

nd RR weights should be normalized, e.g., with respect to the sum of

eights.A limitation within the above objective weighting methods

ay be that they are merely based on criteria ranks and, thus, the

istance between each consecutive criteria weights remains constant

i.e., the DM cannot give an extra emphasis to some specific criteria).

or example, Table 3 shows the ROC weights for several cases with

ifferent number of attributes ranging from 2 to 9. As it can be seen

hese set of weights are constant and independent of the opinion of

M and data values.

An ‘Adjustable Mean Bars’ (AMB) weighting method is proposed

n this section with the goal of keeping the simple nature of di-

ect weighting method, while allowing the DM to interactively as-

ign more emphasis on specific criteria of interest. Depending on the

otal number of attributes (n), this method can take up to n − 1 sub-

eighting steps. In each step, the DM picks the most important at-

ribute(s) and assigns a numeric weight between 0 and 1 according

o Eq. (5):

j, AMB = 1 − ∑m
i=1 wi

n − m
+ kj

1

n2
(5)

i represents the weight of attribute i calculated in the previous steps

nd m is the total number of attributes weighted in the previous
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Table 3

ROC weights for different number of attributes.

Rank j Number of attributes

2 3 4 5 6 7 8 9

1 0.7500 0.6111 0.5208 0.4567 0.4083 0.3704 0.3397 0.3143

2 0.2500 0.2778 0.2708 0.2567 0.2417 0.2276 0.2147 0.2032

3 0.1111 0.1458 0.1567 0.1583 0.1561 0.1522 0.1477

4 0.0625 0.0900 0.1028 0.1085 0.1106 0.1106

5 0.0400 0.0611 0.0728 0.0793 0.0828

6 0.0278 0.0442 0.0543 0.0606

7 0.0204 0.0335 0.0421

8 0.0156 0.0262

9 0.0123∑wj 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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steps. 1
n2 is the minimum step size (unit vector) allowed for adjusting

the weights, and kj is the emphasis factor of criteria j defined by the

DM. This method is named adjustable mean bars (AMB) because, in

each step, the DM sets the height of (m − n) number of mean bars

equal to the average of the remaining weights (
1−∑m

i=1 wi
n−m ) and then

adjusts the weight of the most important attribute(s) by increasing

their height(s) by (k j
1

n2 ). It is also to note that the DM gives a posi-

tive integer value to kj according to the required emphasis of criteria

j, with a constraint that the calculated weight in each step must be

smaller than the assigned weights in the previous steps. For instance,

kj = 1 would mean that the DM would like to raise the relative im-

portance of criteria j only one unit step (quantified as 1
n2 ) compared

to the previous step. The second constraint is that the summation of

all final weights should be equal to one (
∑n

j=1 w j,AMB = 1).

Fig. 2 visually illustrates how this method works, as an example

where the total number of attributes is n = 7. The solid and hollow

bars in each step in Fig. 2 demonstrate the weighted and yet-to-be-

weighted attributes, respectively. The heights of the solid bars show

the AMB weights. For better clarity, the procedure of weighting in this

example is outlined below:

Step 0 (Default condition): all attributes are equally important.

Thus, the default height of mean bars is w = 1
7

∼= 0.14. The step

size is calculated to be 1
72

∼= 0.02.

Step 1: the DM specifies that attributes 3 and 7 are the most

important attributes with the relative emphasis factor of 3

(k3 = k7 = 3). This means that the DM considers three unit

step rise for attributes 3 and 7 compared to the other at-

tributes. As a result, the new weights for attributes 3 and 7

became: w3 = w7 = 0.14 + (3)(0.02) = 0.20.

Step 2: the remaining weights with a total value of 0.6 (i.e., 1 −
2(0.2) = 0.6) should be distributed between the unweighted

attributes (1, 2, 4, 5, 6). So, the height of current hollow

bars is set to 0.6/5 = 0.12. Then, according to DM’s opinion,

the second most important group of factors are attributes 1, 2

and 5 with the importance factor of one unit step more than

attributes 4 and 6. Accordingly, the corresponding weights

are adjusted based on Eq. (5) as: w1 = w2 = w5 = 1−2(0.2)
5 +

1(0.02) = 0.14

Step 3: the mean height of the two remaining bars (i.e., for at-

tributes 4, 6) becomes 1−[2(0.2)+3(0.14)]
2 = 0.09. Between these

attributes, the DM specifies one unit higher importance for

attribute 6; i.e., k6 = 1. Subsequently, the AMB weight for at-

tribute 6 becomes:

w6 = 1 − [2(0.2) + 3(0.14)]

2
+ 1(0.02) = 0.11

Step 4: the weight of the remaining attribute (w4) is calculated as:

7∑
j=1

wj = 1 → w4 = 1 − [2(0.2) + 3(0.14) + 0.11] = 0.07
t

It should be noted that after completing one round of weighting,

he DM can compare the weights distribution to verify whether it is

atisfactory based on his/her initial perception. In the case of dissatis-

action, he/she can go back to any of the above steps and change the k

alues and repeat the procedure until a suitable distribution is found.

.2.2. Modified Digital Logic (MDL) method

For applications in which the number of design attributes is fairly

arge (similar to the current impact optimization case with 9 criteria),

ssigning the importance weights among multiple criteria simulta-

eously may be difficult for the DM. The Digital Logic (DL) method

as been developed to address this problem by suggesting pair-wise

omparisons of criteria (which is essentially similar to the approach

ehind the Analytic Hierarchy Process/AHP (Saaty, 1980)). The DL

ethod has proven to be successful in increasing the reliability of

ecision results to a large extent, while providing a simple intuitive

rocedure for implementation purposes. In this method, two criteria

re compared at a time and receive binary scores of 0 or 1 depend-

ng on their level of priority to the decision maker (1 for more im-

ortant criterion, 0 for the less important one). Dehghan-Manshadi

t al., 2007 developed a Modified Digital Logic (MDL) method and

thers researchers including Diakoulaki et al., 1995 and Chakraborty

nd Chatterjee, 2013 employed it to (a) give the possibility to the de-

ision maker to assign equal weights to two attributes, and (b) not

o eliminate the least important criterion from the decision matrix.

his enhancements were achieved by changing the aforementioned

inary scoring scheme from {0 and 1}, to a digital scoring scheme of

1, 2 and 3} to represent the less (1), equal (2), or more important (3)

riteria. After all pair-wise comparisons are made, the MDL weights

re calculated as:

j, MDL =
∑n

k=1 Cjk∑n
j=1

∑n
k=1 Cjk

, j and k = {1, . . . , n} and j �= k (6)

If two criteria j and k are equally important, then Cjk = Ck j = 2,

therwise Cjk = 3 and Ck j = 1 if the attribute k is more important

han the attribute j. If the attribute k is less important than the at-

ribute j, then Cjk = 1 and Ck j = 3.

.2.3. Numeric Logic (NL) method

A slight modification is applied to the MDL method to allow the

ore experienced DMs apply more precise weighting among criteria.

n the proposed Numeric Logic (NL) method, during each pair-wise

omparison, the decision maker can assign any numeric weight (w1)

etween 0 and 1 to the first criterion, and w2 = 1 − w1 becomes the

eight of the other criterion. In other words, in this case, weights dur-

ng pair-wise comparisons are not limited to 0.25, 0.50 and 0.75 as in

he MDL method. The final NL weights can be calculated again via the

ame Eq. (6) with the only difference being that Cjk this time repre-

ents the arbitrary numeric weights between criteria j and k (rather

han digital scores).
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Fig. 2. Adjustable Mean Bars (AMB) weighing steps for a hypothetical example with 7

attributes: (a) initial state with equal weighing, (b) attributes 3 and 7 are weighted, (c)

next attributes 1, 2 and 5 are weighted, and (d) finally attributes 4 and 6 are weighted;

solid and hollow bars demonstrate the weighted and yet-to-be weighted attributes in

each step, respectively.
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.2.4. Entropy method

Depending on a given application, the term “entropy” has differ-

nt meanings. For example, in physics it implies the level of disor-

er in a system, and in transportation models it shows the disper-

al of trips between two locations (Islam & Roy, 2006). For some

vents or applications it quantifies the degree of randomness or fuzzi-

ess (Güneralp, Gertner, Mendoza, & Anderson, 2007). In MCDM, en-

ropy relates to the degree of diversity within an attribute dataset.

he greater the degree of the diversity, the higher the weight of

hat attribute. In another words, the smaller the entropy within the

ata associated to the attribute, the greater the discrimination power

f the attribute in changing the ranks of alternatives. The steps for
alculating Entropy weights are summarized below (Hwang & Yoon,

981; Lotfi & Fallahnejad, 2010).

Step 1. Normalization

Since measured data under different criteria can be of different

nits or scales, a given decision matrix (e.g., Table 1) should be first

ransformed into a dimensionless space via:

pi j = xi j∑m
i=1 xi j

; i = 1, . . . , m & j = 1, . . . , n (7)

here xij is an element of the decision matrix corresponding to the ith

lternative and the jth criterion. m is the total number of alternatives

here m = 4; i.e., materials PW, TW, UW and UD). n is the number of

riteria (here n = 9; i.e., the nine impact design criteria).

Step 2. Calculation of the entropy (Ej) and the degree of diver-

ity (dj)

Entropy within the datasets of the normalized decision matrix for

he jth criterion can be calculated via:

j = − 1

ln(m)

m∑
i=1

pi j ln pi j (8)

The degree of diversity (dj) is calculated as:

j = 1 − Ej (9)

Step 3. Calculation of objective weights (wj)

The last step is the linear normalization of dj to find the relative

eight of each criterion:

j,entropy = dj∑n
k=1 dk

(10)

.2.5. Criteria Importance through Inter-criteria Correlation (CRITIC)

ethod

In addition to the contrast intensity of attribute datasets in the de-

ision matrix (the notion that was quantified by the Entropy method),

here is another concept that is more recently taken into consider-

tion by MCDM researchers. Diakoulaki et al., 1995 noticed that the

igher the level of interdependency between attributes, the larger er-

or in the ranking outcome. Criteria importance through inter-criteria

orrelation (CRITIC) was proposed by Diakoulaki et al., 1995, as a new

bjective weighting method that can consider correlations between

ll given criteria. The method by Diakoulaki et al., 1995 also included

he contrast intensities (by means of standard deviations of criteria)

nd combined them with the weights from correlation analysis. Al-

ernatively, the model by Jahan et al., 2011 employed the Pearson

roduct-moment correlations only and excluded the standard devia-

ions of criteria in weighting formulations. Since in the present work

he contrast intensities will be taken into account by means of the

ntropy method, we follow the same formulation as by Jahan et al.,

011 to calculate the correlation weights as follows .

Step 1. Finding the correlation coefficients

Rjk values via the Pearson product-moments represent the corre-

ation between the criteria j and k:

jk =
∑m

i=1 (xi j − x̄ j)(xik − x̄k)√∑m
i=1 (xi j − x̄ j)

2 ∑m
i=1 (xik − x̄k)

2

; (j & k = 1, . . . , n) (11)

here m, x̄ j and x̄k are the number of materials and the average val-

es of criteria j and k, respectively. Rjk close to +1 or –1 indicates

ighly correlated criteria, while Rjk close to 0 indicates no correlation.

Step 2. Calculating the CRITIC weights

The next step is to calculate the weight of each criterion using its

orrelation to all other criteria:

j =
∑n

k=1 (1 − |Rjk|)∑n
j=1 (

∑n
k=1 (1 − |Rjk|)) ; j and k = 1, 2, . . . , n; k �= j (12)
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Note that the above correlation weighting formulation is regard-

less of the type of criteria (i.e., they can be of the higher the better, or

the lower the better type).

2.2.6. A Modified Combinative Weighting (MCW) framework

Based on the above presented weighting methods, since there are

more than one set of weights (some subjective and some objective),

for a final decision making it is needed to assemble these weights

into one single set. Jahan et al., 2011 proposed a combinative weight-

ing (CW) method to combine three sets of weights corresponding to

subjective, objective, and correlation weights (wj, 1, wj, 2 and wj, 3) via

the following formulation:

wj,CW = [(wj,1).(wj,2).(wj,3)]
1/3

∑n
j=1 [(wj,1).(wj,2).(wj,3)]

1/3
, j = {1, 2, . . . , n} (13)

The assumption of Eq. (13) is that the authority/power of all three

sets of weights is equal. A Modified Combinative Weighting (MCW)

method is proposed in this work to enable the analyst to assign differ-

ent powers, αp, to different weighting systems. The MCW suggests:

wj,MCW = [(wj,1)
α1 .(wj,2)

α2 · · · .(wj,m)
αp ]

1/(α1+α2+···+αp)

∑n
j=1 [(wj,1)

α1 .(wj,2)
α2 · · · .(wj,m)

αp ]
1/(α1+α2+···+αp)

,

j = {1, 2, . . . , n} (14)

where p and n are the number of weighting methods and attributes,

respectively. This method may also be used during group decision

making if, for example, the project manager is interested to give more

power to the weights from a more experienced designer/DM in the

group.

3. Case study results and discussions

The above described multi-criteria material selection ap-

proach and weighting methods are now applied on the de-

cision making case study of the laminate impact optimiza-

tion problem (Table 1), with a potential application of the

selected material, e.g., in a composite highway guardrail

(Fig. 1). In doing this, the five fundamental methods of AMB,

MDL, NL, Entropy, and CRITIC are considered. For different objective

methods (AMB, MDL, and NL), a DM (designer) with the same level

of experience was employed. In addition, to mimic more real life

decision-making circumstances, four scenarios are presumed based

on how the project manager (let’s say the final decision maker) would

combine the set of weights under the MCW framework depending

on his/her experience in systems engineering, as well as the level of

confidence he/she has on the expertise of the company’s designer in

the composites impact field. Each ensuing set of combinative weights

are then used as an input in the TOPSIS solution method to find the

best laminate among the given four candidates (UD, UW, PW, TW).

It is known that roadside barriers can be categorized into three

different groups according to their performances: (1) rigid, (2) semi-

rigid, and (3) flexible barriers (Bank & Gentry, 2001). A flexible barrier

is allowed to deform up to 4 m off of the roadway to stop the vehicle.

The maximum acceptable deflection for a semi-rigid guardrail system

is 1 m, whereas for a rigid system, no deflection is allowed and the er-

rant vehicle should be redirected into traffic. The American Associa-

tion of State Highway and Transportation Officials (AASHTO)—which

is the institute in charge of developing standards on specifications,

test protocols and guidelines for highway design and construction

in the United States (Wikipedia, 2015)- in the report AASHTO M-180

(entitled “Corrugated Sheet Steel Beams for Highway Guardrails”) rec-

ommends semi-rigid steel guardrail systems for highways (AASHTO,

2008). Accordingly, criteria weightings by the DM in our case study

are selected based on a semi-rigid design of composite guardrail
Fig. 2). AASHTO in collaboration with Federal Highway Administra-

ion (FHWA), has published a NCHRP Report 350 (Ross, Sicking, Zim-

er, & Michie, 1993) entitled “Recommended Procedures for the Safety

erformance Evaluation of Highway Features”. In that report the post-

mpact vehicular trajectory, the maximum velocity and ride down ac-

eleration that occupants experience during the crash has been men-

ioned among the main safety factors. Clearly these requirements can

ave roots in the impact reaction force, energy absorption, mechani-

al properties, and damage characteristics of the material used in the

uardrail structure.

.1. Adjustable Mean Bars (AMB) weights

Considering the above guardrail design guides, the DM for

MB weighting ranked the importance of attributes in Table 1

s: wPIUFS = wLUFS = wPIFT = wLFT > wAE > wRF > wMCD > wEV D >

ID with kPIUFS = kLUFS = kPIFT = kLFT = kAE = kRF = 3&kMCD =
&kEV D = kID = 1. The subsequent AMB weighting procedure is

ummarized in Table 4 and shown graphically in Fig. 3.

.2. Modified Digital Logic (MDL) weights

For the MDL method, the DM compared each two attributes at a

ime and assigned digital scores of 1, 2, or 3 to them, based on his/her

erception of their relative importance. The results, using Eq. (6), are

hown in Tables 5 & 6.

.3. Numeric Logic (NL) weights

In contrast to the MDL approach where the DM assigned digital

cores to the attributes, in the numeric logic (NL) method, he/she

ould assign any relative weights in a continuous scale during pair-

ise comparisons. The results of this method are shown in Tables 7

nd 8.

.4. Entropy weights

In order to find the entropy weights, first it was needed to nor-

alize the decision matrix data as they were measured in different

nits/scales. Linearly normalized values using Eq. (7) are given in

able 9. Next, the entropy, the degree of diversity and the final ob-

ective weights (Table 10) were calculated according to Eqs. (8)–(10).

.5. Criteria Importance through Inter-criteria Correlation (CRITIC)

eights

Table 11 shows the inter-criteria Pearson correlations between the

ice design criteria (Rjk) calculated via Eq. (11). The CRITIC weights

ere calculated using Eq. (12) and results are presented in Table 12.

or illustrative purposes, Table 13 shows the results of TOPSIS and

anks of alternative materials based on different individual sets of

eights presented in Table 12. It is clear that individual objective and

ubjective methods do not always agree.

.6. Modified Combinative Weighting (MCW) method: different

ractical scenarios

Individual set of weights (wAMB, wMDL , wNL , wEntropy and wCRITIC)

alculated in the previous sub-sections, resonate differences between

ifferent weighting methods, given that the DM has been the same

or all of them. The last step of weighting procedure is to aggregate

hese set of weights and arrive at one resultant set of weights to

mplement in the TOPSIS model and rank the alternative materials.
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Table 4

Steps of the AMB weighting by the DM in the impact optimization case study.

Step # Attribute(s) to be

weighted

Weighted attributed in

previous steps (m)

Emphasis factor (kj) AMB weights (wj) Height of remained mean

bars (unweighted attributes)

initial — — — — 0.111

1 UFS, RLUFS, FT, RLFT 0 3 0.147 0.082

2 AE 4 3 0.118 0.074

3 RF 5 3 0.110 0.061

4 MCD 6 2 0.085 0.050

5 EVD 7 1 0.062 0.037

6 ID 8 1 0.037 —

Fig. 3. The AMB weighing procedure for the impact optimization case study with 9 attributes; solid and hollow bars demonstrate the weighted and yet-to-be weighted attributes,

respectively.
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Table 5

MDL weighting by the DM in the present case study.

Attributes Relative Digital Weights (Cjk)

RF 1 3 3 3 1 1 1 1

AE 3 3 3 3 2 2 2 1

MCD 1 1 3 3 1 1 1 1

ID 1 1 1

EVD 1 1 1

UFS 3 2 3

RLUFS 3 2 3

FT 3 2 3

RLFT 3 3 3

Table 6

Continuation of Table 5.

Attributes Relative digital weights (Cjk) #Positive decisions Weighting factors

RF 14 0.097

AE 19 0.132

MCD 12 0.083

ID 1 1 1 1 1 8 0.056

EVD 3 1 1 1 1 10 0.069

UFS 3 3 2 1 1 18 0.125

RLUFS 3 3 2 1 1 18 0.125

FT 3 3 3 3 2 22 0.153

RLFT 3 3 3 3 2 23 0.160

Table 7

NL weighting by the DM in the present case study.

Attributes Relative numeric weights (Cjk)

RF 0.3 0.8 0.9 0.9 0.2 0.2 0.1 0.1

AE 0.7 0.8 0.9 0.9 0.5 0.5 0.5 0.4

MCD 0.2 0.2 0.8 0.6 0.2 0.2 0.1 0.1

ID 0.1 0.1 0.2

EVD 0.1 0.1 0.4

UFS 0.8 0.5 0.8

RLUFS 0.8 0.5 0.8

FT 0.9 0.5 0.9

RLFT 0.9 0.6 0.9

Table 8

Continuation of Table 7.

Attributes Relative numeric weights (Cjk) Positive decisions Weighting factors

RF 3.5 0.097

AE 5.2 0.144

MCD 2.4 0.067

ID 0.4 0.1 0.1 0.1 0.1 1.2 0.033

EVD 0.6 0.2 0.2 0.1 0.1 1.8 0.050

UFS 0.9 0.8 0.5 0.4 0.4 5.1 0.142

RLUFS 0.9 0.8 0.5 0.4 0.4 5.1 0.142

FT 0.9 0.9 0.6 0.6 0.5 5.8 0.161

RLFT 0.9 0.9 0.6 0.6 0.5 5.9 0.164

Table 9

Normalized decision making matrix (pij); note that the criteria become dimensionless.

Materials Impact testing (dynamic properties) Nondestructive evaluation Pre- and post-impact flexural testing (quasi-static properties)

RF AE MCD ID EVD UFS RLUFS FT RLFT

PW 0.25 0.20 0.24 0.29 0.35 0.29 0.24 0.35 0.24

TW 0.27 0.20 0.25 0.23 0.30 0.24 0.09 0.29 0.15

UW 0.25 0.23 0.26 0.36 0.31 0.25 0.26 0.22 0.20

UD 0.23 0.37 0.25 0.12 0.04 0.23 0.41 0.14 0.41

Table 10

Calculated entropy (E), degrees of diversity (d) and weights of importance (w) for different criteria

according to the Entropy method.

Measures RF AE MCD ID EVD UFS RLUFS FT RLFT

Ej 0.999 0.972 0.999 0.953 0.886 0.997 0.922 0.965 0.950

dj 0.001 0.028 0.001 0.047 0.114 0.003 0.078 0.035 0.050

wEntropy 0.004 0.079 0.003 0.131 0.319 0.009 0.216 0.098 0.140
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Table 11

Inter-criteria correlation factors (|Rjk|) according to the CRITIC method.

Attributes RF AE MCD ID EVD UFS RLUFS FT RLFT

RF 1 0.83 0.12 0.34 0.73 0.34 0.99 0.72 0.89

AE 1 0.06 0.76 0.99 0.71 0.86 0.89 0.92

MCD 1 0.41 0.01 0.50 0.02 0.49 0.24

ID 1 0.85 0.58 0.43 0.52 0.70

EVD 1 0.75 0.77 0.87 0.88

UFS Sym. 1 0.33 0.89 0.38

RLUFS 1 0.70 0.93

FT 1 0.66

RLFT 1

Table 12

Summary of the four subjective (EW, AMB, MDL and NL) and the two objective (Entropy & CRITIC) weighting methods.

Weights RF (N) AE (J) MCD (mm) ID (%) EVD (mm2) UFS (Mpa) RLUFS (Mpa) FT (kN/m2) RLFT (kN/m2)

wEW 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111

wAMB 0.110 0.118 0.085 0.037 0.062 0.147 0.147 0.147 0.147

wMDL 0.097 0.132 0.083 0.056 0.069 0.125 0.125 0.153 0.160

wNL 0.097 0.144 0.067 0.033 0.050 0.142 0.142 0.161 0.164

wEntropy 0.004 0.079 0.003 0.131 0.319 0.009 0.216 0.098 0.140

wCRITIC 0.109 0.071 0.221 0.123 0.077 0.126 0.106 0.081 0.086

Table 13

TOPSIS results based on the individual subjective and objective weighting sets presented in Table 12.

TOPSIS scores (C∗) Ranks

EW MDL NL AMB Entropy CRITIC EW MDL NL AMB Entropy CRITIC

PW 0.44 0.55 0.54 0.56 0.319 0.45 3 2 2 2 4 3

TW 0.57 0.68 0.66 0.67 0.494 0.61 1 1 1 1 2 1

UW 0.38 0.49 0.49 0.50 0.325 0.37 4 3 3 3 3 4

UD 0.48 0.31 0.35 0.31 0.560 0.48 2 4 4 4 1 2
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ased on Eq. (14), the following general formula may be written for

he present case study:

j,MCW = [(wj,sub jective)
α
.(wj,Entropy)

β
.(wj,CRIT IC)

γ
]

1/(α+β+γ )

∑n
j=1 [(wj,sub jective)

α
.(wj,Entropy)

β
.(wj,CRIT IC)

γ
]

1/(α+β+γ )
,

j = {1, 2, . . . , n} (15)

Four different scenarios were proposed to use Eq. (15) by the

roject manager (PM) based on the background and the level of ex-

ertise of the original DM (designer), as well as the level of complex-

ty that the PM would like to include in a sensitive application such

s roadside barrier. These scenarios are as follows.

Scenario I: the DM has a relatively low level of experience and as

result he/she is not fully confident in assigning subjective weights.

ence, the PM opts to select the most conservative approach and as-

ign equal weights to all criteria (i.e., the EW method in Eq. (1)). In

his case, in Eq. (15) we have α = 1 and β = γ = 0, and the MCW

eights are equal to the EW weights:

j,MCW−I = wj,EW , j = {1, 2, . . . , n} (16)

Scenario II: the DM has a high level of experience and, there-

ore, is capable of assigning subjective/application-based weights.

epending on his/her level of confidence, from low to high, he/she

ight use the MDL, NL or AMB techniques. Still, the PM does not take

nto account the statistical/objective weights (Entropy and CRITIC)

nd merely relies on the designer’s input. Parameters in Eq. (15) for

his case again are α = 1 and β = γ = 0, and the MCW weights are

qual to one of subjective weights (MDL, NL or AMB):
j,MCW−II =

⎧⎪⎪⎨
⎪⎪⎩

wj,MDL

or
wj,NL

or
wj,AMB

⎫⎪⎪⎬
⎪⎪⎭, j = {1, 2, . . . , n} (17)

Scenario III: the PM is interested to include equally powered sets

f objective weights into the final weighting scheme, with the aim of

rriving at more accurate results. Hence, α = β = γ = 1, and the final

eights are calculated as:

j,MCW−III = [(wj,NL).(wj,Entropy).(wj,CRITIC)]
1/3

∑n
j=1 [(wj,NL).(wj,Entropy).(wj,CRITIC)]

1/3
,

j = {1, 2, . . . , n} (18)

Note that instead of NL, the results of MDL or AMB could be used

n Eq (18).

Scenario IV: the DM possesses a very high level of expertise in im-

act design of composite structures. Accordingly, because of his/her

igh confidence in all assigned subjective weights, the PM opts to

ive more power to the designer’s experience by increasing α from

ne to two; i.e. α = 2 and β = γ = 1. Alternatively, he/she can make

group decision making and employ two different methods of sub-

ective weights by two different DMs (so that potential methodolog-

cal inconsistencies during weighting are taken into account). In this

ase study, the well-experienced DM has enforced the effect of the NL

eights by power of two via the following equation:

j,MCW−IV = [(wj,NL)
2
.(wj,Entropy).(wj,CRIT IC)]

1/4

∑n
j=1 [(wj,NL)

2
.(wj,Entropy).(wj,CRIT IC)]

1/4
,

j = {1, 2, . . . , n} (19)

The final combinative weighting results of these four scenarios are

resented in Table 14.
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Table 14

Results of the four combinative weights based on four proposed scenarios to mimic the DM’s level of experience.

Weights RF (N) AE (J) MCD (mm) ID (%) EVD (mm2) UFS (Mpa) RLUFS (Mpa) FT (kN/m2) RLFT (kN/m2)

wMCW−I 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111

wMCW−II 0.097 0.144 0.067 0.033 0.050 0.142 0.142 0.161 0.164

wMCW−III 0.044 0.119 0.044 0.103 0.136 0.069 0.188 0.138 0.159

wMCW−IV 0.056 0.128 0.050 0.080 0.109 0.085 0.180 0.147 0.165
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3.7. Final TOPSIS ranking of the candidate laminates under MCW

The obtained sets of weights in Table 14 under different design

scenarios were next applied to the TOPSIS to rank the four alterna-

tive laminates in the composite impact optimization problem under

question. According to the results in Table 15, the degrees of similarity

of each material option to the positive-ideal solution (i.e., Eq. (A7) in

Appendix A), also called the TOPSIS scores, indicate that the first rank

material is the TWILL woven laminate, under all the four weighting

scenarios. The TOPSIS method based on the advanced weighting case

(scenario 4) ranked and scored the candidates as:⎛
⎜⎝

Twill Woven
Plain Woven

Unbalanced Woven
Unidirectional

⎞
⎟⎠ →

⎛
⎜⎝

Rank 1
Rank 2
Rank 3
Rank 4

⎞
⎟⎠; Scores =

⎛
⎜⎝

0.65
0.49
0.46
0.38

⎞
⎟⎠

Interestingly, for this case study the results of Scenarios 2 to 4 are

identical. The only observed difference was between Scenario 1 (i.e.

equal weights) and other scenarios. According to scenario 1 the UD

laminate is ranked second while scenarios 2 to 4 all ranked PW as

second. One main reason is that the UD laminate has a superior rank

with respect to the individual RF, AE, ID, and EVD criteria as seen in

Table 2 (specially looking at the actual measured values in Table 1,

this laminate in terms of minimized external visible damage/EVD has

been by far the best option). In contrast, UD has shown the poorest

results under UFS, RLUFS, FT and RLFT criteria. In scenarios 2 to 4, the

subjective weights like NL and AMB have been part of the weight-

ing process. Namely in these subjective techniques, DM has given

higher weights of importance to the criteria in which UD were weak

(i.e. UFS, RLUFS, FT and RLFT) and lower importance to the criteria

in which UD were strong, specially ID and EVD (see Table 14). Under

scenario 2, which was purely based on designer’s opinion, he/she has

perceived that both the external and internal damage areas (EVD and

ID) would be somewhat automatically reflected in the post-impact

(residual) mechanical properties of the material and, hence, should

not receive high weights. This notion on the DM’s perceptions can

also be clearly seen from the lower number of positive decisions that

he/she has given during the MDL and NL method (Tables 6 and 8).

Recalling the correlation coefficients in Table 11 (which were used in

the CRITIC method), it becomes evident that as the DM had perceived,

indeed the EVD has a high correlation (77%) with the relative loss of

ultimate flexural strength (RLUFS), and 88% with the relative loss of

flexural toughness (RLFT). However, the DM’s experience may have

been less accurate regarding the correlation of the internal damage

(ID) with other properties. From a micromechanics point of view, the

mode of induced failure mechanism (e.g., fiber pull-out, fiber break-

age, matrix cracking, kinking, delamination, etc.) would play much

more important role in the residual mechanical properties than the

internal damage area fraction. Table 11 has also revealed that reac-

tion force and absorbed energy have the highest correlation with the

loss of mechanical properties. Mechanically, using unbalanced (twill)

woven plies, the laminate can still be symmetric by applying [0/90]

stacking sequence. However, each ply due to less crimping would be

closer to the unweaved (UD) configuration and perhaps that is why

the unbalanced twill woven (UW) laminate has absorbed more en-

ergy compared to the balanced plain weave in the current case study.

Overall, from Table 1 it can be noted that the TW laminate performs
omparably well under all criteria while showing the lowest loss of

echanical properties due to impact (i.e., both low values of RLUFS

nd RLFT), hence it has been chosen as the preferred weave pattern

ption within all the four MCW weighting scenarios.

Surprisingly, given the same decision maker and decision matrix,

he individual sets of subjective weighting methods mostly resulted

n the same ranking order of criteria and alternatives. However, dif-

erent objective methods (here namely, Entropy and CRITIC) ranked

ome criteria and materials very differently in the performed exam-

le, and is suspected to be coincident in many other application ar-

as because each objective weighting method is based on particular

spects/statistical measure of given decision matrix; whereas most

ubjective methods are merely based on the same expertise of a given

M and hence high-priority criteria should remain the same regard-

ess of the selected method. For most effective decision makings, the

atter observations highlight the importance of using a combinative

eighting framework. Subsequently, the proposed MCW based on

ractical scenarios may be implemented to assist the selection of can-

idate materials based on the level of experience of each designer

nd/or the project manager.

The above discussions in this example show, on one hand, the im-

ortance and usefulness of MCDM models to the decision makers for

omplex systems such as impact of fiber reinforced composites, and

n the other hand, the critical need of trying different weighting and

olution methods before making a final decision.

. Concluding remarks

A multi-criteria impact optimization of FRP laminates was con-

ucted via some popular weighting methods in multiple criteria de-

ision making (MCDM). Along with these weights, TOPSIS was em-

loyed as the solution/ranking method to consider severe conflicts

mong different impact design criteria and to arrive at an aggregated

core for each laminate candidate. Weighting of the criteria were per-

ormed based on both subjective and objective techniques, as well as

heir combinations. Among several results of the work, some may be

ontributed to the design of FRP composite structures, while others

elate to some new insight on MCDM weighting techniques in expert

nd intelligent systems, as follows.

From the viewpoint of composites design, a systematic MCDM ap-

roach was developed and exemplified to help designers in selecting

ptimum fiber reinforcement architectures. The lack of application

f MCDM in the state-of-the-art decision making framework in the

omposites design practice is still noticeable in the literature, while

ealing with such highly nonlinear material systems. A strong mo-

ivation of using MCDM is that the decision making under multiple

omposite design criteria can be archived systematically both at the

ndividual and team levels.

In terms of specific MCDM weighting techniques, as discussed in

he introduction section, there still exists a lack of understanding how

ifferent subjective, objective and combinative weighting techniques

ould differently capture the expertise of the same DM in practice.

he conducted industrial case study on composite materials was de-

igned to preliminarily address this gap and identify the role of differ-

nt techniques during an actual decision making process. In addition,

wo new subjective (AMB and NL) and one combinative weight-

ng methods (MCW) were proposed with the goal of enhancing the
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Table 15

Final MCDM results for the laminate options; under the four different weighting scenarios of Table 14.

TOPSIS scores (C∗) Ranks

Scenario I Scenario II Scenario III Scenario IV Scenario I Scenario II Scenario III Scenario IV

PW 0.44 0.56 0.47 0.50 3 2 2 2

TW 0.57 0.67 0.64 0.66 1 1 1 1

UW 0.38 0.50 0.43 0.46 4 3 3 3

UD 0.48 0.31 0.40 0.37 2 4 4 4
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ffectiveness of decision making processes in expert systems. Both

dvantages and limitations associated with the methods are identi-

ed as follows.

The AMB in comparison with other subjective methods such as

he direct complete weight elicitation enables a less experienced DM

o make interactive and intuitive decisions as the DM can adjust the

eighting factors in a flexible, step-by-step manner. Compared to the

qual weighting (EW) method recommended in some literature for

nexperienced DMs, the AMB can assign more accurate and realis-

ic weights. The AMB method can also solve the limitation of some

arlier weighting techniques that are merely based on criteria ranks

such as RS, RR and ROC techniques). The distance between each con-

ecutive criteria weights in these techniques are constant while the

M in the AMB can change the distances by giving extra emphasis to

ome specific criteria. The other advantage of the AMB may be that

t relies on a graphical method which is often easier to implement.

hanks to the interactive basis of this approach, the chance of assign-

ng inappropriate weights is expected to be less. On the other hand,

or experienced DMs, an advantage of the NL method over the MDL

ethod is that the DM is not limited to three pre-defined digital lev-

ls of scoring during pair-wise comparisons. In the NL weighting, the

M can assign arbitrary numeric weights at each pair-wise compar-

son node, hence increasing the precision of weighting outcomes. Fi-

ally, in comparison with the original combinative weighting (CW),

he modified combinative weighing (MCW) method can (i) allow for

ssigning different importance levels to specific objective and/or sub-

ective weightings, and (ii) be adaptable to group decision making en-

ironments.

The perceived limitations associated with the AMB method, e.g.,

ompared to EW, RS, RR, ROS, would be that this technique is more

ime-consuming. Regarding the NL, e.g., in comparison to the DL and

DL, it may be suitable only for more experienced designers who are

onfident to assign numeric weights (instead of digital weights) and

ence assist more precise decisions. Finally, a restriction of the MCW

ethod is that the ultimate DM or the head of decision making team

e.g., project manager) should possess a very high level of experience

nd acquaintance of the group to allocate correct powers in Eq. (14)

o the opinion of more experienced members.

As potential future work, it should be added that the MCDM

ethodology discussed herein was applied to composites with flat

eometries with uniform lay-ups. Further application of the ap-

roach and comparison of woven composites impact performance

nder more complex lay-ups and 3D part geometries is worth-

hile. Also, in more realistic design cases, next to an optimum

aterial selection for a given structure, some other aspects of the

nal product such as cost, performance associated with the manu-

acturing process itself, assembly conditions, etc., should be taken

nto account under the MCDM framework, where the appropriate-

ess of discussed weighting techniques could also be assessed more

ffectively.
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ppendix A. TOPSIS Implementation Steps

This section presents a summery of ranking of the alternatives

materials) using the TOPSIS method (Hwang & Yoon, 1981).

tep 1: Normalization

Since each attribute is measured on a different scale, normaliza-

ion is required. The normalization is achieved by:

i j = xi j√∑m
i=1 x2

i j

, i = 1, . . . , m; j = 1, . . . , n (A1)

Where, i and j represent the corresponding row (material) and col-

mn (criterion) in the given decision matrix.

tep 2: Weighting

Based on the importance of each given criterion, the weight (w j)
rom one of the subjective/objective/combinative methods should be

pplied to the corresponding normalized values of the decision mak-

ng matrix:

i j = wjri j (A2)

Note that summation of all weights must be equal to one∑n
j=1 w j = 1).

tep 3: Identifying Positive-Ideal and Negative-Ideal Solutions

The positive-ideal (A∗) and negative-ideal (A−) solutions are de-

ned via the weighted normalized criteria values (vi j) as follows:

∗ =
{

maxi vi j| j ∈ J1, mini vi j

∣∣ j ∈ J2, i = 1, . . . , m
}

(A3)

And,

− =
{

mini vi j| j ∈ J1, maxi vi j

∣∣ j ∈ J2, i = 1, . . . , m
}

(A4)

Where J1 and J2 are the set of benefit and cost attributes, respec-

ively. Note that the benefit and cost attributes refer to the higher the

etter and the lower the better type of attributes, respectively.

tep 4: Calculation of Separations from Positive-Ideal and Negative-

deal Solutions

The separation among any two alternatives may be measured by

n n-dimensional Euclidean distance. Accordingly, the separation of

ach alternative from the positive-ideal solution (A∗) and negative-

deal solution (A−) in TOPSIS is found as:

∗
i =

√
n∑

j=1

(vi j − v∗
j
)

2
, i = 1, . . . , m (A5)

−
i

=
√

n∑
j=1

(vi j − v−
j
)

2
, i = 1, . . . , m (A6)



438 M. Alemi-Ardakani et al. / Expert Systems With Applications 46 (2016) 426–438

C

G

H

H

H

I

J

J

K

L

D

M

Ö

P

P

R

R

S

S

S

S

T

V

V

W

W

Y

Y

Step 5: Calculation of Similarities to Positive-Ideal Solution

The next step is to find the closeness of each material candidate to

the positive-ideal solution, also called the TOPSIS score:

∗
i = S−

i

(S∗
i
+ S−

i
)

(A7)

C∗
i

is between 0 and 1; C∗
i

= 0 when Ai = A− and C∗
i

= 1 when Ai =
A∗.

Step 6: Rank Preference Orders

The higher the C∗
i

, the better the performance of the given mate-

rial candidate. In another words, the descending order of C∗
i

gives the

ranking of material candidates.
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