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Introduction
The HIV-1 virus expresses a trimeric envelope glycoprotein 
(Env) on its surface. Env is a highly variable protein that is 
shielded from antibody recognition by recessed neutraliza-
tion-sensitive epitopes and by a large number of host glycans 
that are attached to Env during its biosynthesis in infected 
cells (Wyatt and Sodroski, 1998; Wei et al., 2003).

The human immune system has evolved to tolerate and 
specifically avoid attacking self-glycans, making this form 
of shielding particularly effective. Nevertheless, a fraction of 
HIV-1–infected individuals develop antibodies that can neu-
tralize diverse viral isolates by binding to Env. The observation 
that such antibodies arise during natural infection (Binley et 
al., 2008; Doria-Rose et al., 2009; Li et al., 2009; Sather et 
al., 2009; Simek et al., 2009; Gray et al., 2011a; Hraber et al., 
2014; Rusert et al., 2016) and that they can block infection 
in experimental animal models (Eichberg et al., 1992; Emini 
et al., 1992; Mascola et al., 1999, 2000; Shibata et al., 1999; 
Baba et al., 2000; Parren et al., 2001; Hessell et al., 2009a,b, 
2010; Balazs et al., 2012; Moldt et al., 2012; Pietzsch et al., 
2012) suggests that antibody-based vaccines for HIV-1 may 
be an attainable goal. Indeed, initial efforts to produce HIV-1 
vaccines focused on immunization with recombinant Env 
proteins, but preclinical and clinical observations diminished 
the enthusiasm for this approach.

Numerous efforts to elicit broadly neutralizing antibod-
ies (bNAbs) in experimental animals including guinea pigs, 
rabbits and monkeys using Env proteins, or Env-expressing 
viral vaccine vectors, were unsuccessful (reviewed in McCoy 
and Weiss [2013] and Sliepen and Sanders [2016]). In most 
cases, Env-based immunogens elicit antibodies that neutral-
ize laboratory-adapted tier 1 viruses and/or the autologous 
virus expressing the Env variant used for immunization, but 
they fail to neutralize heterologous primary isolates. Recently, 

well-ordered soluble trimers that more faithfully mimic the 
native HIV-1 spike have also been tested as immunogens in 
several different animal models (Julien et al., 2013; Lyumkis 
et al., 2013; Sanders et al., 2013; Pancera et al., 2014; de Taeye 
et al., 2015; Hu et al., 2015; Sharma et al., 2015; Guenaga et 
al., 2016; Ingale et al., 2016; Klasse et al., 2016). Although 
these recently developed native-like trimers produce more 
consistent neutralizing antibody responses to the correspond-
ing autologous tier 2 viruses, they too failed to elicit bNAbs.

The challenge of eliciting bNAbs by vaccination was 
also illustrated in human trials (VAX003 and 004) wherein 
healthy volunteers were immunized with recombinant mo-
nomeric gp120 proteins (Flynn et al., 2005; Pitisuttithum 
et al., 2006). Although these vaccines elicited type-specific 
neutralizing antibodies, they failed to produce antibodies that 
neutralized heterologous primary HIV-1 isolates, and there 
was no protection from infection (Flynn et al., 2005; Piti-
suttithum et al., 2006). More recently, the RV144 trial used 
a prime-boost regimen consisting of four priming injections 
with a recombinant canarypox vector genetically engineered 
to express HIV-1 Env, gag, and protease (ALV AC-HIV) and 
two boosters with a combination of two recombinant gp120s 
(AID SVAX B/E). This regimen produced modest levels of 
protection, but again failed to elicit significant antibody-neu-
tralizing activity against heterologous tier 2 strains of HIV-1 
(Rerks-Ngarm et al., 2009; Montefiori et al., 2012). Finally, 
a vaccine regimen consisting of three DNA prime injections 
with six plasmids encoding clade B gag, pol, and nef and three 
gp120 Envs from clade A, B, and C and a boost with a recom-
binant adenovirus-5 vector expressing the same Envs and a 
clade B gag-pol fusion protein also failed to elicit bNAbs and 
did not protect against infection (Hammer et al., 2013).

To better understand bNAb responses to HIV-1 Env, 
several monoclonal antibodies (MAbs) were isolated from 
chronically infected individuals, and their epitope specific-
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ities were characterized (Wibmer et al., 2015; Burton and 
Hangartner, 2016). However, the serum concentration of 
the first-generation bNAbs required to prevent infection in 
experimental animal models was so high that achieving this 
level by immunization seemed unlikely (Mascola and Nabel, 
2001; Nishimura et al., 2002).

The failure to elicit bNAbs by immunization by Env im-
munogens and the relative lack of potency of the best available 
antibodies shifted the focus of HIV-1 vaccine research away 
from antibody-based vaccines toward T cell–based protection. 
Unfortunately, the two clinical trials of T cell–based vaccina-
tion conducted to date were ineffective at preventing infec-
tion and controlling viral load (HVTN502 [Step study] and 
HVTN503 [Phambili study]; Buchbinder et al., 2008; Gray 
et al., 2011b). In fact, there was even evidence of increased 
infection by HIV-1 in the Step study (Duerr et al., 2012).

In this review, we focus on the recent progress in HIV-1 
vaccine development, in particular on the insights gained 
from cloning anti–HIV-1 antibodies from single memory B 
cells, how the new concepts are being tested, and what the 
results may mean for attaining the goal of HIV-1 vaccination.

First-generation monoclonal anti–HIV-1 antibodies
Polyclonal antibodies that neutralize more than just one 
HIV-1 strain were found in immunized guinea pigs as early as 
1990; however, neutralization activity was limited (Javaherian 
et al., 1990). Subsequent work extended these findings by 
uncovering antibodies from infected individuals with greater 
breadth and potency by phage display or by producing im-
mortalized B cell lines. The most potent among the first-gen-
eration of human MAbs to HIV-1, b12, 2F5, 4E10, 2G12, and 
447-52D show varying degrees of cross-clade neutralizing 
breadth and potency (Gorny et al., 1992; Buchacher et al., 
1994; Burton et al., 1994; Roben et al., 1994; Trkola et al., 
1995, 1996; Stiegler et al., 2001; Zwick et al., 2001).

Analysis of first-generation anti–HIV-1 neutralizing an-
tibodies revealed several unusual features, such as long Ig heavy 
chain complementarity determining regions (CDRH3s), 
self-reactivity, and high levels of somatic hypermutation 
(SHM; Haynes et al., 2005; West et al., 2014). However, the 
number of antibodies analyzed was limited. Therefore, it was 
difficult to establish the generality of each of these observa-
tions, their significance for vaccine development, or which, 
if any, of these features was required for the development of 
bNAbs (Burton et al., 2005).

Epitope mapping of the first-generation antibodies 
identified four major sites of vulnerability on Env: (1) the 
CD4-binding site (CD4bs; Barbas et al., 1992; Burton et al., 
1994); (2) the membrane proximal external region (MPER; 
Muster et al., 1993; Stiegler et al., 2001; Zwick et al., 2001); 
(3) a glycan patch on gp120 that includes the N332 glycan 
(Trkola et al., 1996); and (4) the tip of the V3 loop (Gorny et 
al., 1992). The availability of information on bNAb epitopes 
led to the suggestion that immunogens could be designed to 
mimic these targets and elicit bNAbs (Pantophlet and Bur-

ton, 2003; Burton et al., 2005; Sattentau, 2008; Stamatatos 
et al., 2009). However, as mentioned above, all attempts to 
do so were disappointing because none of the specifically 
designed immunogens elicited broad or potent cross-clade 
neutralizing antibodies.

Why eliciting bNAbs is so difficult remained unclear 
until the introduction of single B cell antibody cloning 
(Scheid et al., 2009a,b; Tiller et al., 2009).

Single-cell antibody cloning
The introduction of single-cell anti–HIV-1 antibody clon-
ing methods in 2008 (Scheid et al., 2009b) and their subse-
quent use by numerous laboratories led to the discovery of a 
new generation of potent bNAbs that reinvigorated efforts 
to produce active and passive HIV-1 vaccines. Moreover, it 
enabled several observations that helped explain why eliciting 
anti–HIV-1 bNAbs is so difficult and suggested alternative 
approaches to vaccine development.

Anti–HIV-1 antibodies were initially cloned from 
mRNA extracted from individual B cells isolated based on 
their ability to bind to Env (Scheid et al., 2009a,b). Later, 
similar methods were adapted to clone antibodies from pri-
mary B cell cultures and EBV-transformed B cells starting 
with PG9 and PG16 (Walker et al., 2009).

The antibody cloning experiments de-convoluted the 
serologic activity in individuals that developed broadly neu-
tralizing responses. Although no two individuals were iden-
tical, serum-neutralizing activity could be accounted for by 
a single or a combination of different antibodies targeting 
different sites of vulnerability on the HIV-1 Env (Scheid et 
al., 2009a, 2011; Walker et al., 2009, 2011; Wu et al., 2010, 
2015; Bonsignori et al., 2011; Huang et al., 2012; Mouquet et 
al., 2012; Georgiev et al., 2013; Liao et al., 2013; Doria-Rose 
et al., 2014; Sok et al., 2014; MacLeod et al., 2016; Simon-
ich et al., 2016). Structural and biochemical analysis of the 
new antibodies enabled a detailed molecular understanding of 
the new epitopes and revealed novel vaccine targets on Env. 
Whereas there were only four known neutralizing epitopes 
in 2009, we now know of additional targets of bNAbs: (1) a 
trimer-dependent epitope at the apex of the Env spike; (2) 
the interface of gp120 and gp41; and (3) a recently identified 
epitope comprising the N88 glycan and the fusion peptide 
at the N terminus of gp41 (Kwong and Mascola, 2012; West 
et al., 2014; Burton and Hangartner, 2016; Kong et al., 2016; 
van Gils et al., 2016). Moreover, some of these epitopes can be 
recognized by a variety of different mechanisms. For example, 
there are at least three unique molecular approaches that an-
tibodies use to target the CD4bs of gp120 (Zhou et al., 2015; 
Gristick et al., 2016).

The antibody cloning experiments uncovered hundreds 
of new antibodies, several of which were two to three or-
ders of magnitude more potent in virus neutralization than 
those that were available before 2009 (Burton and Hangart-
ner, 2016). When injected into monkeys, several of these 
second-generation bNAbs, including 3BNC117, VRC01, 
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10-1074, and PGT121, protected from simian-HIV (SHIV) 
infection at concentrations that might be achievable by im-
munization (Moldt et al., 2012; Shingai et al., 2014). In ad-
dition, single injections of antibodies protected macaques 
from weekly low-dose challenge with SHIV for up to 23 
wk (Gautam et al., 2016).

Most important for the vaccine effort, single-cell an-
tibody cloning experiments produced key insights that led 
to novel approaches to vaccine design. One fundamental 
observation that emerged was that anti–HIV-1 antibodies, 
including those that have low or absent levels of neutraliz-
ing activity, are generally more somatically mutated than 
non–HIV-1–specific antibodies cloned from the same B 
cell pool (Fig.  1; Scheid et al., 2009a). Although high lev-
els of SHM are observed in some chronic infections, they 
are far lower than in HIV-1–specific antibodies (Breden et 
al., 2011). bNAbs are a subset of anti–HIV-1 antibodies that 
display the greatest potency and neutralization breadth and, 
as such, conform to this more general rule that antibodies to 
HIV-1 are extensively mutated (Walker et al., 2009; Xiao et 
al., 2009; Scheid et al., 2011; Klein et al., 2013a; Liao et al., 
2013; Doria-Rose et al., 2014; Sok et al., 2014; Burton and 
Mascola, 2015; Wu et al., 2015).

Somatic mutations are introduced into antibody genes 
by activation induced cytidine deaminase (AID), an enzyme 
that converts cytosine to uracil resulting in a DNA mismatch 
that is repaired by one of a variety of different pathways to pro-
duce mutations. The same lesions can also produce deletions, 
insertions, and even chromosome translocations, but these are 
far less frequent than somatic mutations (Robbiani and Nus-
senzweig, 2013; Kepler et al., 2014). AID poses a threat to the 
genome, and its expression is therefore primarily restricted to 
dividing B cells in the dark zone of the germinal center (Vic-
tora et al., 2010). In addition, its catalytic activity is limited such 
that it only introduces 1 base pair change per 1,000 nucleotides 
per cell division (McKean et al., 1984). This relative low rate of 
mutation limits deleterious off-target effects while permitting 
efficient selection for individual mutations that increase affinity, 
accounting in part for the relatively low level of mutation found 
in most human antibodies. Accumulating up to 100 mutations 
in the 300 nucleotide IgVH region (as seen in some bNAbs) 
would require hundreds of cell division cycles, far more than 
might be expected from an average round of B cell selection 
(Victora et al., 2010; Gitlin et al., 2014, 2015; Tas et al., 2016).

One way to account for the high level of mutation in 
anti–HIV-1 antibodies is by multiple rounds of germinal cen-

Figure 1. Requirement for sequential immunization. (A) Panel illustrates the finding that HIV-1 antibodies are highly somatically mutated. (B) Panel 
shows that germline-reverted antibodies fail to bind to most HIV-1 antigens. (C) Panel illustrates the observation that HIV-1 and bNAbs develop in 
sequence over time. (D) Panel shows the results of knock-in mouse immunization experiments that showed that multiple immunogens would be re-
quired for bNAb development.
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ter selection (Scheid et al., 2009a; Victora and Nussenzweig, 
2012; Klein et al., 2013b). According to this hypothesis, an 
antibody that develops to the predominant circulating virus 
selects against sensitive viral variants, resulting in the emer-
gence of a closely related but antibody-resistant viral variant. 
The antibody-resistant HIV-1 variant then elicits an addi-
tional round of immunoglobulin hypermutation, followed by 
germinal center–based selection for B cells synthesizing anti-
bodies that recognize the new HIV-1 variant. However, pro-
duction of the new antibody would lead to selection against 
the new HIV-1 variant. This cycle of HIV-1 selection and 
escape from antibody, followed by additional rounds of ger-
minal center B cell selection would be repeated on multiple 
occasions over time, eventually resulting in the emergence 
of highly mutated HIV-1–specific antibodies. This scheme is 
consistent with, and potentially helps explain, the observa-
tion that emergence of bNAbs differs from typical humoral 
immune responses in that they take longer to develop and 
have more somatic mutations. Moreover, it is in keeping with 
longstanding ideas about continuing mutation and selection 
by both the immune system and the virus (Richman et al., 
2003; Wei et al., 2003; Burton et al., 2005).

Although prime and boost vaccine regimens with het-
erologous Env proteins (Klinman et al., 1991; Eda et al., 2006; 
Mörner et al., 2009; Guenaga et al., 2011) failed to elicit 
bNAbs, strong support for the idea that bNAbs are elicited 
sequentially came from prospective studies of several HIV-1–
infected individuals who developed bNAbs. In these studies, 
antibodies and HIV-1 viruses were obtained concurrently 
from several different time points. The data showed that the 
initial antibody response was strain specific and targeted the 
earliest dominant HIV-1 virus in circulation. The first wave of 
antibodies selected against the concurrently circulating virus, 
resulting in the emergence of viral variants that were resistant 
to the initial antibody response. As expected based on the 
high levels of mutation seen in HIV-1 antibodies, the anti-
body-resistant virus elicited a secondary antibody response 
that once again selected for viruses resistant to all antibodies 
in circulation. Over a period of years, this process was repeated 
multiple times, giving rise to antibodies to several neutraliza-
tion-sensitive sites on HIV-1 that eventually accounted for 
the observed serologic neutralization activity. These elegant 
prospective studies pioneered by Haynes and colleagues, and 
confirmed by others (Bonsignori et al., 2011, 2016; Liao et al., 
2013; Doria-Rose et al., 2014; Bhiman et al., 2015; Wu et al., 
2015; MacLeod et al., 2016), are entirely consistent with the 
idea that eliciting bNAbs might require a combination of se-
quential immunogens that target specific precursor B cells and 
foster prolonged germinal center responses that select for the 
essential bNAb mutations (Fig. 1; Scheid et al., 2009a; Dim-
itrov, 2010; Pancera et al., 2010; Zhou et al., 2010; Haynes et 
al., 2012; Mouquet et al., 2012; Jardine et al., 2013, 2015; Klein 
et al., 2013b; McGuire et al., 2013; Dosenovic et al., 2015).

Another key finding that came out of the antibody 
cloning experiments was that somatic mutations are generally 

required for neutralizing activity of anti–HIV-1 antibodies 
(Xiao et al., 2009; Mouquet et al., 2010, 2012; Zhou et al., 
2010; Bonsignori et al., 2011; Scheid et al., 2011; Hoot et al., 
2013; Klein et al., 2013a; Sok et al., 2013; Kepler et al., 2014). 
Once again, bNAbs, the subset of anti–HIV-1 antibodies dis-
playing the greatest neutralization breadth, conform to this 
general rule (Xiao et al., 2009; Scheid et al., 2011; Klein et 
al., 2013a). With the few exceptions obtained from prospec-
tive studies where the founder viruses could be identified, 
the predicted germline precursors of anti–HIV-1 antibodies, 
including bNAbs, failed to bind to all tested Envs (Fig.  1). 
Thus, the immunogens that had been used in an attempt to 
elicit bNAbs in past vaccine trials likely failed to bind to B 
cells expressing bNAb precursors and were therefore unable 
to initiate bNAb maturation. This insight led to the proposal 
that initiation of bNAb maturation would require immuno-
gens that are selected for or specifically designed to bind to 
B cells expressing bNAb germline precursors (Scheid et al., 
2009a; Xiao et al., 2009; Dimitrov, 2010; Klein et al., 2013b).

In conclusion, finding high-level somatic mutation and 
its critical role in bNAb activity led to the proposal that sin-
gular antigens would not be able to elicit bNAbs (Scheid et 
al., 2009a). It was evident that immunization to achieve this 
goal would require a novel vaccine scheme modeled on the 
natural infection in that it would require sequential immuni-
zation starting with antigens specifically selected or designed 
to activate B cells expressing germline precursors of bNAbs 
(Scheid et al., 2009a; Dimitrov, 2010; Mouquet et al., 2010; 
Haynes et al., 2012; Klein et al., 2013b).

Germline-targeting antigens
The observation that most recombinant Env proteins are un-
able to engage the inferred germline version of bNAbs mo-
tivated rational immunogen design to engineer Env proteins 
that do so. These efforts were facilitated by the availability of 
inferred germline antibodies that were used to screen libraries 
of Env variants and test the engineered proteins (Xiao et al., 
2009; Hoot et al., 2013; Jardine et al., 2013; McGuire et al., 
2013). Several different approaches to germline B cell target-
ing are currently being evaluated.

One approach is to design antigens that specifically 
target a single bNAb B cell lineage. The potential advantage 
of this approach is that it focuses the immune response on 
restricted epitopes on Env that might otherwise be poorly 
immunogenic. Examples of this approach are the engineered 
outer domains eOD-GT6 and eOD-GT8 (Jardine et al., 
2013, 2015) and the 426c gp140 TM4DV1-3 protein (Mc-
Guire et al., 2014). These proteins were selected for binding 
to germline VRC01 class antibodies and were shown to ac-
tivate Ca2+ flux in vitro by B cell lines expressing inferred 
VRC01 class precursor antibodies. These new antigens dif-
fer from previously available Env antigens in that they make 
the rather narrow CD4bs more available, in part by removing 
a glycosylation motif at amino acid position 276–278 that 
normally interferes with the binding of most antibodies to 
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this site. Although this first generation of germline-targeting 
antigens represents a conceptual advance, their spectrum of 
activity is limited to a specific subset of CD4bs antibodies, 
and therefore their use as single immunogens may be subop-
timal. For example, the affinity of individual germline VRC01 
class antibodies, such as VRC01 and 3BNC60 for eOD-GT8, 
differs, as does the ability of this antigen to elicit responses 
from B cells expressing the two antibodies (Dosenovic et al., 
2015; Jardine et al., 2016; and see section Mice expressing 
inferred germline antibodies). Whether immunization with 
this first generation of germline-targeting antigens can in fact 
expand the limited group of VRC01 precursors in humans 
remains to be determined (Jardine et al., 2016; Sok et al., 
2016; Tian et al., 2016).

Another group of engineered germline-targeting anti-
gens is based on the native-like SOS IP Env trimers (Binley 
et al., 2000; Sanders et al., 2002). One potential advantage of 
engineering germline-targeting antigens based on native-like 
Env trimers is that several independent antibody target sites 
could be modified to activate germline precursors of more 
than just one bNAb lineage. An additional advantage of SOS 
IP Env trimers is that they are stabilized in the prefusion con-
formation and reduce exposure of nonneutralizing epitopes 
(Julien et al., 2013; Lyumkis et al., 2013).

Similar to the CD4bs antigens described above 
(eOD-GT6, eOD-GT8, and 426c gp140 TM4DV1-3), 
PGT121 germline-targeting SOS IP immunogens are being 
developed based in part on the molecular characterization of 
putative intermediates in bNAb development and on selec-
tion of candidate antigens using germline-reverted antibodies 
(Sok et al., 2013; Garces et al., 2014, 2015; Scharf et al., 2016; 
Steichen et al., 2016). Although these initial SOS IP immuno-
gens were designed to elicit a single bNAb lineage, they could 
be further engineered to target additional bNAb lineages.

Finally, naturally arising Env variants obtained from 
transmitted founder viruses that elicited bNAbs represent 
another approach to germline antibody targeting. This idea 
was enabled by prospective studies of individuals that develop 
bNAbs, but it has yet to be tested in experimental animal 
models (Bonsignori et al., 2011; Liao et al., 2013; Doria-Rose 
et al., 2014; Wu et al., 2015; MacLeod et al., 2016).

Testing HIV-1 vaccine concepts in 
genetically engineered mice
Individual B cells carry unique receptors that are randomly 
assembled by V(D)J recombination leading to a highly di-
verse repertoire of naive B cells that can potentially respond 
to nearly any foreign antigen. In the case of HIV-1 Env, this 
means that humoral immune responses typically involve pro-
duction of antibodies to several different epitopes (Dosenovic 
et al., 2009), the vast majority of which, including the immu-
nodominant epitopes, are strain specific or nonneutralizing. 
Although a diverse response covering many different epitopes 
would be optimal in a vaccine regimen, the complexity of 
such a response makes it difficult to analyze.

One way to simplify the problem and focus on B cell 
responses to a specific epitope is to introduce pre-rearranged 
VDJH and VJL into the mouse genome by gene targeting 
(Goodnow, 1992). Expression of the knock-in antibody trans-
genes induces allelic exclusion and thereby shuts off V(D)J 
recombination of endogenous Ig genes (Nussenzweig et al., 
1987). Thus, mice that carry pre-rearranged Ig genes express 
primarily the receptor of interest. In addition to combining 
the knock-in VDJH and VJL to produce the fully intact an-
tibody, the two genes can also be studied independently, in 
which case the introduced transgene pairs with endogenous 
mouse IgK/L or IgH chains, respectively. There are several 
advantages to the latter, including a diverse repertoire of B 
cells with varying specificities that begins to approach the 
normal repertoire in that it contains a more limited number 
of bNAb precursors. An important limitation to this approach 
is that it is restricted to genetically engineered mice. However, 
a major advantage is that immunology is better studied in the 
mouse than any other experimental model system, facilitating 
detailed analysis of immunization experiments.

Mice expressing inferred germline antibodies
Initially, available knock-in mice carrying first-generation 
bNAbs were suboptimal for vaccine studies because they ex-
pressed the mature antibodies, and not their inferred germ-
line precursors. Moreover, mice carrying antibodies targeting 
the membrane proximal domain, 2F5 and 4E10, showed se-
vere abnormalities in B cell development because of self-re-
activity (Verkoczy et al., 2010, 2011; Doyle-Cooper et al., 
2013; Ota et al., 2013).

Knock-in mice expressing the inferred germline ver-
sion of bNAbs have recently been generated and used to test 
new vaccine concepts (Dosenovic et al., 2015; Jardine et al., 
2015; Briney et al., 2016; Escolano et al., 2016; McGuire et 
al., 2016; Tian et al., 2016; Zhang et al., 2016). The initial 
experiments were performed in mice that carry the inferred 
germline IgH of 3BNC60 or VRC01, both of which belong 
to the VRC01 class of anti-CD4bs antibodies (Dosenovic 
et al., 2015; Jardine et al., 2015; McGuire et al., 2016). This 
group of antibodies shares several features, including the same 
IgVH germline gene, VH1-2*02, which makes critical contacts 
with Env through CDRH2. They show high levels of somatic 
mutations, and their heavy chain is always paired with Ig light 
chains with short (5–amino acid long) CDRL3s (West et al., 
2012). The short CDRL3 is rarely found in mouse or human 
Ig light chains but is an essential feature of these antibodies 
because it avoids antibody clashes with the V5 region of Env 
(McGuire et al., 2013).

Immunization of germline 3BNC60 or VRC01 
knock-in mice with germline-targeting antigens, eOD-GT8, 
426c gp140 TM4ΔV1-3, or eOD-GT6, produced antibody 
responses of which a fraction were specific for the CD4bs 
(Dosenovic et al., 2015; Jardine et al., 2015; McGuire et al., 
2016; Tian et al., 2016). Single-cell antibody cloning exper-
iments revealed that the germline-targeting immunogens 
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selectively expanded B cell clones expressing the 3BNC60 
or VRC01 heavy chains paired with mouse IgL containing 
5–amino acid–long CDRL3s. However, the mice differed in 
that selection of the 5–amino acid CDRL3 IgL was far more 
efficient in one of the VRC01 germline knock-in strains than 
in the other two (Dosenovic et al., 2015; Jardine et al., 2015; 
Tian et al., 2016). This difference may be caused by a lower 
affinity of the antigens for germline 3BNC60 and by differ-
ences in the way in which the two VRC01 knock-in mice 
were produced (Jardine et al., 2015; Tian et al., 2016). Irre-
spective of these differences, and as might be expected, none 
of the antibodies elicited by immunization with highly mod-
ified germline-targeting Env antigens bound to native-like 
Env antigens or neutralized HIV-1 (Fig. 1).

In contrast to the germline-targeting antigens, na-
tive-like antigens failed to induce responses in the VRC01 or 
3BNC60 germline IgH knock-in mice (Fig. 1). Thus, germ-
line-targeting antigens were essential to activate naive B cells 
and select for specific characteristics associated with VRC01 
class bNAb development. However, the germline-targeting 
antigens available to date fail to induce neutralizing responses, 
and they have a narrow spectrum of activity in that only a 
very limited number of CD4bs-directed bNAb precursors 
can be activated by these antigens.

Similar results were obtained with knock-in mice that 
carry the inferred germline IgH and IgL chain corresponding 
to PGT121, a bNAb targeting the V3-glycan epitope on the 
Env spike (Escolano et al., 2016). The germline sequence of 
PGT121 was based on the CDRH3 sequence of the least mu-
tated clonal relative 10-996 of the same original donor (Mou-
quet et al., 2012). Native-like SOS IP antigens predictably 
failed to induce antibody responses in these mice. In contrast, 
a specifically designed germline-targeting antigen induced B 
cell responses, although once again immunization with this 
single immunogen was not sufficient to produce neutralizing 
antibodies (Escolano et al., 2016; Steichen et al., 2016).

Finally, the VRC01-class germline-targeting eOD-GT8 
antigen was also used to immunize transgenic mice carry-
ing human Ig heavy and light chain loci, which gives rise 
to a diverse repertoire of B cells expressing human anti-
bodies (Sok et al., 2016). Although not measured directly, it 
was estimated that the precursor frequency for VRC01 class 
B cells in these mice was on the order of 0.2–1.3 cells per 
mouse. After immunization, B cells binding to the antigen 
in a CD4bs-specific manner were obtained by cell sorting. 
1% of these antigen-binding memory B cells identified by 
flow cytometry expressed VRC01-class antibodies, or 28 
cells in 17 mice, or 1.6 cells per mouse in the 29% of the 
mice that responded. Whether this represents a significant ex-
pansion that can be further induced to develop into bNAbs 
remains to be determined.

In conclusion, the initial studies in knock-in mice 
showed that naive B cells expressing inferred germline ver-
sions of bNAbs can be activated by specifically selected or en-
gineered germline-targeting antigens but not by native-like 

Env trimers. These results, together with the observation that 
most Envs do not engage germline bNAb precursors, may in 
part explain why the Env immunogens used in vaccines have 
failed to elicit neutralizing responses to date.

Sequential immunization in genetically engineered mice
As discussed in the previous section, immunization of germ-
line antibody knock-in mice with germline-targeting im-
munogens did not lead to the development of neutralizing 
antibodies. Moreover, it became evident upon uncovering the 
prevalence and essential nature of anti–HIV-1 antibody mu-
tation (Mouquet et al., 2010, 2012; Zhou et al., 2010; Bon-
signori et al., 2011; Scheid et al., 2011; Klein et al., 2013a; 
Sok et al., 2013) and the natural progression of bNAb devel-
opment (Richman et al., 2003; Wei et al., 2003; Liao et al., 
2013; Doria-Rose et al., 2014; Wu et al., 2015; MacLeod et 
al., 2016) that immunization to reproduce this phenomenon 
and elicit bNAbs may require a sequential immunization ap-
proach using immunogens that would shepherd the immune 
response toward bNAbs (Scheid et al., 2009a, 2011; Dimitrov, 
2010; Pancera et al., 2010; Zhou et al., 2010; Haynes et al., 
2012; Mouquet et al., 2012; Jardine et al., 2013; Klein et al., 
2013a,b; McGuire et al., 2013).

This idea was initially tested using a synthetic interme-
diate 3BNC60 knock-in mouse that carried the mature heavy 
chain of 3BNC60 paired with random germline mouse light 
chains (Dosenovic et al., 2015). Whereas germline-targeting 
antigens elicited antibodies that were only capable of neutral-
izing HIV-1 viruses lacking the glycan at position 276, im-
munization with a native-like trimer elicited antibodies with 
the ability to neutralize heterologous tier 2 HIV-1 strains 
bearing an intact glycosylation site at position N276 (Dose-
novic et al., 2015). Cross-clade neutralizing activity elicited 
after immunization with the native-like trimer was associated 
with selection for a highly restricted set of Ig light chains that 
exclusively expressed the required short CDRL3 of 5 amino 
acids and showed key mutations that correlated with neu-
tralization breadth. Thus, B cells bearing inferred germline 
precursors could only be activated by germline-targeting im-
munogens, but these immunogens did not elicit bNAbs, even 
when used to immunize mice bearing synthetic intermedi-
ates. In contrast, native-like immunogens failed to stimulate B 
cells bearing inferred germline precursors but were necessary 
to elicit neutralizing antibodies from B cells expressing the 
synthetic intermediate antibody (Dosenovic et al., 2015).

These initial experiments established that a combination 
of different immunogens would be necessary to elicit bNAbs; 
however, they were limited to a single epitope on Env, they 
failed to uncover a protocol that elicited bNAbs from germ-
line precursors, and they did not achieve the exceptionally 
high levels of mutation and neutralizing activity associated 
with bNAbs. Several of these limitations were subsequently 
overcome in more recent studies using knock-in mice car-
rying the inferred germline VRC01 and PGT121 antibodies 
(Briney et al., 2016; Escolano et al., 2016; Tian et al., 2016).
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Two studies using mice carrying inferred germline pre-
cursors of VRC01 achieved high levels of mutation by se-
quential immunization starting with germline-targeting Env 
immunogens followed by boosting with a series of less mod-
ified Env immunogens (Briney et al., 2016; Tian et al., 2016). 
In both cases, the initial immunogen opens up the CD4bs by 
removing glycans that normally impede antibody access to 
this epitope. Subsequent immunogens sequentially reincor-
porate the native sequence. The resulting antibodies neutral-
ized a group of HIV-1 isolates lacking the potential N-linked 
glycosylation site at position N276. However, the serum of 
these mice was unable to neutralize HIV-1 viruses that carry 
an intact potential N-linked glycosylation site at position 
N276, which includes 95% of all viruses in current databases 
(Briney et al., 2016; Tian et al., 2016). Two exceptional MAbs 
neutralized a wild-type virus grown in 293S cells, but these 
cells failed to incorporate more complex glycans into the vi-
rion. Thus, the critical problem of how to elicit CD4bs-di-
rected antibodies that can evade the glycan at position N276 
remains to be addressed.

In contrast to the VRC01 mice, sequentially immunized 
knock-in mice expressing both IgH and IgL of the germline 
PGT121 antibody developed serologic activity and MAbs that 
showed significant potency and breadth against heterologous 
tier 2 isolates (Fig. 2; Escolano et al., 2016). PGT121 germline 
knock-in mice were immunized with a germline-targeting 
immunogen, 10MUT, followed by a sequence of modified 
and native-like Env antigens (Escolano et al., 2016; Steichen 
et al., 2016). The 10MUT immunogen is based on BG505-
SOS IP.664 but differs from it in that the antibody target site is 
exposed by the introduction of mutations removing glycans at 
positions N137 and N133, which increase its affinity for germ-
line PGT121 antibody (Garces et al., 2014; Steichen et al., 
2016). Each additional immunogen in the sequence partially 
reverted these mutations, and the final step in the immuniza-
tion protocol included a combination of different native-like 
SOS IP Env trimers. The precise sequence was determined by 
ELI SAs on the serum of the immunized mice against a panel 
of candidate antigens, and the boosting immunogen was se-
lected on the basis of serologic cross-reactivity. Thereby, each 

step in the immunization protocol introduced antigens with 
decreasing affinities for germline PGT121. The resulting pro-
tocol yielded high levels of SHM that recapitulated several 
key mutations found in human PGT121-like antibodies.

In conclusion, sequential immunization with antigens 
designed to shepherd the antibody response toward bNAb 
development induced high levels of somatic mutation irre-
spective of the epitope targeted. These are the first results 
demonstrating that anti–HIV-1 bNAbs can be elicited by im-
munization. However, there are several caveats to consider—
most importantly this was achieved in knock-in mice wherein 
there is limited B cell diversity. A more diverse immune sys-
tem may fail to respond in the same way. For example, it 
was difficult to demonstrate enrichment for memory B cells 
expressing VRC01-like antibodies in mice that carry a di-
verse repertoire of human antibody genes (Kymab mice) im-
munized with eOD-GT8 (Sok et al., 2016), possibly because 
of limiting naive precursor cells or competition for limiting 
T cell help by B cells carrying receptors for immunodomi-
nant epitopes (Victora and Nussenzweig, 2012). In addition, 
none of the protocols reported to date elicit antibodies with 
the neutralization breadth and potency of the most potent 
bNAbs, nor do they take advantage of the fact that there are 
multiple neutralizing epitope targets on Env. Finally, although 
the sequential immunization experiments demonstrate that 
bNAbs can be elicited by immunization in these engineered 
systems, complex protocols involving immunization with 
multiple antigens in a specific sequence may not be practical 
in parts of the world where HIV-1 vaccines are most needed.

Passive vaccination
The demonstration by Kitasato and von Behring that anti-
bodies can be used to prevent or treat infectious diseases was 
awarded a Nobel prize in 1901, and serum therapy was used 
extensively to treat and prevent serious infections in the first 
part of the 20th century. This form of therapy was largely 
abandoned with the advent of potent antibiotics and effec-
tive vaccines. However, starting 25 years ago, preclinical ex-
periments performed in animal models showed that passively 
transferred neutralizing sera and first-generation monoclonal 

Figure 2. Linking sequential immunization 
to somatic mutation and bNAb development. 
The figure illustrates the immunization scheme 
that led to bNAb development in mice that carry 
the PGT121 germline gene. The initial immuno-
gen had the highest affinity for the germline-re-
verted antibody, and subsequent immunogens 
had decreasing affinities. Somatic mutation in-
creased with immunization.
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bNAbs are effective in protecting against HIV-1 infection 
(Prince et al., 1991; Mascola et al., 1999, 2000; Shibata et 
al., 1999; Baba et al., 2000; Hessell et al., 2010). Neverthe-
less, passive immunization with first-generation bNAbs was 
not pursued for HIV-1 prevention because of a combina-
tion of poor pharmacokinetic properties and limited overall 
breadth and potency (Trkola et al., 2005; Joos et al., 2006; 
Mehandru et al., 2007).

As might be expected from their greater neutraliza-
tion breadth and potency against HIV-1 isolates in vitro and 
good pharmacokinetic properties in vivo, second-generation 
bNAbs are far more effective than first-generation bNAbs in 
preventing SHIV infection in macaques (Shingai et al., 2013, 
2014; Saunders et al., 2015b; Gautam et al., 2016; Hessell et al., 
2016) and HIV-1 infection in humanized mice (Pietzsch et 
al., 2012; Gruell et al., 2013). A study of 60 macaques treated 
with one of five different bNAbs found that protection of 
50% of the macaques against high-dose intravenous infection 
requires a relatively modest serum neutralizing titer of 1:100 
(Shingai et al., 2014).

In contrast to the high-dose challenge model in ma-
caques, humans are typically exposed to relatively low doses 
of HIV-1 by a mucosal route, and productive infection usu-
ally requires multiple exposures. Gautam et al. (2016) mod-
eled human infection by weekly intrarectal challenge with 
low doses of SHIVAD8 and found that a single passive bNAb 
infusion protected macaques for up to 23 wk. Protection was 
directly related to antibody concentration in serum and to an-
tibody half-life. Overall, protection required serum antibody 
concentrations corresponding to the IC80 in TZM-bl assays. 
For example, VRC01, which is less potent than 3BNC117 but 
targets the same epitope on HIV-1 Env, protected macaques 
for an average of 8 wk, whereas 3BNC117 protected for an 
average of 13 wk. Increasing the half-life of VRC01 by add-
ing a mutation to alter FcRN binding (VRC01-LS) nearly 
doubled protection from 8 to 14.5 wk (Gautam et al., 2016).

Although passive immunization is protective against 
SHIV challenge in these animal models, the mechanisms of 
protection are not fully understood. Fc receptor binding is  
required (Hessell et al., 2007; Pietzsch et al., 2010; Halper- 
Stromberg et al., 2014). Two recent studies in rhesus macaques 
show that passive immunization with protective doses of 
bNAbs fails to completely sterilize SHIV infection at the site 
of viral challenge and that small amounts of viral RNA and 
DNA can be detected in distal tissues (Hessell et al., 2016; Liu 
et al., 2016). Both studies suggest that in addition to blocking 
infection, early administration of bNAbs also eliminates small 
foci of viral replication and thereby limits dissemination and 
prevents productive infection (Hessell et al., 2016).

Human clinical trials with second-generation bNAbs 
have shown that VRC01 and 3BNC117 are generally safe 
and have half-lives of 2 and 2.5 wk, respectively (Caskey et 
al., 2015; Ledgerwood et al., 2015; Lynch et al., 2015). Addi-
tion of the LS mutation that alters FcRN binding will likely 
increase the half-life by two- to fourfold (Saunders et al., 

2015a). Assuming that protection by antibody serum levels 
corresponds to the IC80 in TZM-bl assays, a single subcu-
taneous injection of the combination of 3BNC117-LS and 
10-1074-LS could protect against over 90% of all strains for 
many months (Gautam et al., 2016). In theory, coverage could 
be further increased by addition of antibodies that target 
nonoverlapping sites on the HIV-1 Env, such as PGDM1400 
(Sok et al., 2014), or with more potent or broader antibodies 
(Diskin et al., 2011; Galimidi et al., 2015; Huang et al., 2016).

Conclusions
Significant advances in understanding the structural and 
immunological determinants of anti–HIV-1 antibody de-
velopment enabled experiments using engineered mice and 
immunogens, which finally elicited bNAbs by vaccination. 
Concurrently, passive immunization studies using potent sec-
ond-generation bNAbs were highly successful in protecting 
animals against HIV-1 infection. Antibodies are relatively ex-
pensive to manufacture compared with small molecule drugs; 
however, the low doses required for protection, their long 
half-life, ease of administration subcutaneously, and decreas-
ing manufacturing costs all make a passive vaccine delivered 
on a quarterly or biyearly basis an attainable goal. In contrast, 
vaccination to produce modestly active bNAbs has only been 
achieved in antibody knock-in mice and by highly com-
plex schemes involving multiple immunogens delivered in 
a specific sequential manner. Whether this can be achieved 
in physiologically relevant animal models or humans remains 
to be determined. Moreover, the potential challenges of de-
veloping, manufacturing, and delivering a multicomponent 
protein vaccine that has to be administered on a specific 
schedule and likely boosted on a regular basis may make this 
approach impractical in the near term. Thus, the alternative of 
a passively administered bNAb vaccine that can be developed 
rapidly and administered on a quarterly or biannual basis may 
be a realistic alternative to bridge the gap to a more con-
ventional HIV-1 vaccine.
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