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 

Abstract—We present a novel control strategy of charging and 

discharging batteries in a distribution system to optimize the 

energy transaction cost. With an increased proportion of 

renewable energy in a distribution system, the real demand curve 

may significantly deviate from the forecast curve, which can lead 

to an increased challenge for an energy distribution company in 

making an effective purchase plan. The proposed strategy aims at 

tracking the total forecast demand curve, and can mitigate risk 

and encourage demand-side bidding. In this paper, short-term 

load forecasting, wind power forecasting, and solar power 

forecasting are performed. To optimize profit, the optimal 

operation of energy storage systems in a distribution system was 

developed and solved in a two-level framework considering 

forecast uncertainties in day-ahead operation and mitigating the 

net demand gap in real-time operation. To quantify the risk 

mitigation and profits, the purchase strategies for uncertain and 

certain demand that occurs the next day were compared. The 

promising results show that optimal operation of a battery 

energy storage system can reduce the energy cost and the 

transaction risk for an energy distribution company. 

 
Index Terms—Operation Strategy, Distribution System, 

Electricity Markets, Energy Storage System, Renewable Energy 

I. INTRODUCTION 

ITH the growing proportion of renewable energy and 

the prevalence of distributed generation, energy 

distribution companies (DISCOs) are facing new challenges. 

As an owner and operator of a distribution system, DISCO can 

buy energy through a pool market or via bilateral contracts to 

meet the future electricity requirements of end customers [1]-

[3]. If DISCOs possess renewable energy facilities and battery 

energy storage system (BESS), they will have more options 

for energy acquisition. Moreover, DISCOs can also improve 

their response capabilities towards the electricity market by 

optimizing financial bids with efficient BESS operation [4]. 

Therefore, although DISCOs struggle with the growing 

complexity presented by the integration of more renewable 

resources, there are also new economic opportunities in 

electricity markets that are increased by the ability to provide 

auxiliary services with BESS.  
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    In distribution systems, battery energy storage can be 

applied for frequency regulation and peak shaving [5]. For 

example, Q. Li et al. used a battery system to alleviate 

detrimental impacts of high penetration solar power [6]. Some 

researchers have proposed a charging/discharging method of 

BESS for energy management [7]-[9]. However, these works 

did not consider market effects into the BESS operation model. 

Participating in the electricity market with optimal BESS 

operation is an attractive option, but more research is required 

to determine the best strategy to maximize profits. Giuntoli 

and Poli [10] proposed a day-ahead scheduling model for a 

large-scale virtual power plant (VPP) that contains many 

small-scale ‘prosumers (producers and consumers)’ and 

energy storage devices. Aloini et al. [11] proposed an alternate 

power-scheduling approach for the VPP. Although there have 

been studies on the operation and control strategies of small-

scale market participants, the majority of previous studies 

focused on VPP but neglected system power loss. With the 

further development of electricity markets, there is increasing 

research focus on strategies for DISCOs. J.M. Lujano-Rojas et 

al. proposed a comprehensive method to optimize the 

operation of BESS under dynamic pricing schemes in a 

distribution system [12], but the uncertainties of the renewable 

power output and real-time electricity were not considered and 

the network model and system constraints were relaxed for 

fast real-time optimization, which may lead to inaccurate 

results. Forecast error-modelling methods are proposed for 

different distributed resources [14]-[17]. Further, recent 

advances in the convex relaxation of the optimal power flow 

(OPF) problem and exact relaxation conditions were 

summarized by S.H. Low [18][19]. This relaxation method 

can obtain a globally optimal solution of the original problem 

with high computation speed, especially for distribution 

systems where relaxation can be easily achieved. Therefore, 

we can develop a novel BESS operation framework for a 

distribution operator to optimize energy transaction cost. 

    In our previous work, we proposed a novel control strategy 

to charge and discharge batteries in a distribution system and 

optimize the allocation of the energy storage system (ESS), 

especially a battery energy storage system (BESS)[4][13]. To 

further extend the operation model considering forecast 

uncertainties and real-time operation, a comprehensive 

operation framework is proposed in this work. The day-ahead 

bidding model depends on the accuracy of forecasted 

information. The key issues for real-time optimal BESS 

operation are optimization accuracy and speed. The major 

contribution of this work is to propose an optimal operation 

framework for DISCO including day-ahead bidding strategy 

and real-time BESS operation. In the first stage, a stochastic 

bidding model is used to determine the optimal bid powers 
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required to maximize the DISCO expected profit. In this step, 

the uncertainties of the VPP’s power outputs, profit from spot 

market, and imbalance costs are considered. In the second 

stage, a real-time BESS dispatch model is proposed to 

optimally apply the battery reserve to minimize the DISCO 

operational cost. A recently developed heuristic optimization 

method, the natural aggregation algorithm (NAA) [20][21], is 

employed to solve the day-ahead bidding model. Then, the 

second-order conic relaxation technique is used to obtain a 

computationally feasible convex reformulation of the 

originally nonconvex, real time BESS operation problem. 

Overall, the proposed operation framework allows optimal 

scheduling of BESS utilization to optimize DISCO profits 

with consideration of network constraints and multiple 

uncertainties. 

    This paper is organized as follows. After the introduction, 

an optimal BESS operation framework for energy acquisition 

of DISCO is presented, and multiple forecast errors are 

discussed. Next, the day-ahead optimal bidding model and 

real-time BESS operation model are proposed to reduce 

DISCO operation cost. After that, the corresponding solving 

algorithms are introduced for the proposed operation models. 

The proposed bidding strategy and BESS operation method  

are then verified on a modified IEEE 15-bus distribution 

network, and the energy transaction cost is also quantified. 

Finally, conclusions and further developments are discussed in 

the last section. 

II. OPERATION MODEL OF DISCOS 

A. Energy Acquisition Model of DISCOs 

The electricity transaction between a generation company 

and a DISCO can be achieved through a pool market or 

bilateral contracts. In spot markets, the producers and 

purchasers bid or negotiate in a day-ahead market, and then 

the dispatchable power is balanced in the real-time market for 

each time interval of a day [22]. The real-time prices are 

formulated according to the type of market. In a deregulated 

market, the real-time prices are set according to the bids of 

market participants, and in a regulated market, purchasers 

trade the energy difference between the real and the expected 

load at a regulated price [23]. Not matter in which market, the 

purchasers would be punished if the energy consumption 

deviates the bidding energy. Based on the net demand forecast 

and BESS dispatching, DISCOs can save significant energy 

purchasing cost and reduce the risk arising from operation in 

both regulated and de-regulated markets by adjusting BESS 

operation. In this paper, a BESS-based operational model for 

DISCOs is proposed, as shown in Fig. 1. This model considers 

different renewable distributed generation units and BESSs 

within the DISCO control area. In the day-ahead operation 

model, an optimal bidding strategy considers both forecasted 

system information and BESS capability. Taking the forecast 

uncertainties into account of day-ahead bidding model 

prevents the overuse of BESS and reduces the transaction risk 

in the electricity market. Additionally, the BESS capacity 

reserve provides operational flexibility and net demand 

compensation for real-time operation. The BESS operation 

strategy is not actually implemented in day-ahead operation 

scheme, the real time operation module is proposed to 

determine the real operation strategy of BESS. The adaption 

cost is quantified in the proposed method to reserve a fraction 

of the BESS capacity to compensate for the gap between the 

real-time demand and the forecasted demand, i.e., power 

balancing service. Such BESS capacity reserve can be applied 

to other applications according to the market mechanism. 

Consider a radial distribution system comprising N nodes 

collected in the set  : 1,2,..., N and overhead lines 

represented by the set of edges   : ,i j  Ε . 

Node 1 is taken as the secondary of the step-down transformer. 

Let  collect nodes that correspond to the buses with 

BESS. In the day-ahead operation module, the planning time 

horizon is  : 1, 2,..,D T with the time interval 
dt . In 

this work, the day-ahead planning time horizon T is 24 hours 

and the time interval 
dt is 1 hour. In the real-time operation 

module, the BESS optimal operation problem is developed for 

each hour with the shot time interval 
rt . At hour t , we 

define the real-time planning horizon  : 1, 2,..,t K . 

Normally, we use 4 15-minute operation time intervals for an 

hour. 

The fluctuating nature of renewable energy (RE) means that 

the resulting net load profile is very different than the 

underlying demand profile alone. The effect of RE is to alter 

the regular nature of the standard demand profile and replace 

it with a highly variable modified pattern. The net demand can 

be computed as: 

, , , ,

t t t t

Net i Load i Solar i Wind iP P P P                     (1) 

, ,

t t t

i Net i bess iP P P                             (2) 

where
t  and i denote the variable at time t and bus i , 

respectively. 
,

t

Net iP ,
,

t

Solar iP ,
,

t

Wind iP ,
,

t

Load iP ,
,

t

bess iP ,and
t

iP represent 

the net demand, solar power output, wind power output, load 

consumption power, BESS charging/discharging power, and 

total power consumption/generation, respectively at time
 
t bus

i .  
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Fig. 1. Proposed operation framework for DISCOs 

B. Forecast uncertainties 

Forecasting plays a key role in the planning and operation 

of a distribution system. Due to the uncertainties of renewable 

energy and the electricity market, the day-ahead net demand 

and electricity price are unable to be forecasted with high 

accuracy [24]. As a result, the DISCO must take forecast 

errors into account in the day-ahead energy-bidding problem. 

We constructed possible scenarios based on the forecast error 

probability distribution function (PDF). The scenario is 

generated randomly from the corresponding PDF of the 

forecast results. In this approach, a Monte Carlo-based 

approach can be used to simulate these uncertain renewable 

outputs and construct the scenarios randomly. For each 

candidate plan, Monte Carlo simulation is applied to produce a 

large number of scenarios that incorporate multiple kinds of 

forecasted data. The different PDFs of forecast errors are 

discussed as follows. 

 Wind speed 

    Research has shown that a two-parameter Weibull 

probability distribution function matches the random 

characteristic of wind speed closely. Its probability density 

function is given as:                  

 
1

exp

v vk k

v
v

v v v

k v v
f v

c c c

     
    
                      

(3) 

Given the probability of the wind speed forecast error, the 

wind power distribution is acquired [17]. The linear 

transformation is described as, 

 
1w

W V

w w

w b
f v f

a a

 
  

 

                       (4) 

where,  vf v and  wf v are the forecast error probability 

density function (PDF) of wind speed and wind power, 

respectively; w is the wind power and v is the wind speed.

, , ,v v wk c a and wb are all variables of the probability function. 

 Solar forecast uncertainty 

The uncertainty of solar radiation mainly comes from the 

stochastic nature of weather conditions that determine the 

cloudiness or clearness, allowing different amounts of solar 

radiation to be captured. Therefore, a clearness index is 

adopted to address this problem. The random behavior of the 

clearness index is expressed by a Beta distribution function. 

  1 1( )
(1 k )

( ) ( )
k ka bk k

cl t t t

k k

a b
f k k

a b

  
  
 

                  (5) 

where,  cl tf k is the PDF of the clearness index;
tk is the 

clearness, and 
ka and

kb are the Beta parameters.  

 Load forecast uncertainty 

A Gaussian distribution  lf l is used in this paper to 

statistically model the load forecast error. The pdf for a 

Gaussian distribution is: 

 
 

2

22

1
exp

22

L

l

ll

l
f l





 
  

  

                  (6) 

where, 
l and

l are the statistical mean and standard deviation 

of the load demand. 

 Electricity Price Uncertainty 

The electricity price forecast error is also modeled by a      

Gaussian distribution as 

 
 

2

22

1
exp

22

P

p

pp

l
f p





 
  

  

                  (7) 

where,  pf p  is the PDF of the electricity price,
l and

l are 

the statistical mean and standard deviation of the load demand. 

C. Day-ahead Optimal Bidding Model 

Note that in the deregulated market, the day-ahead energy 

procurement prices and quantities are usually fixed as a result 

of a price clearing procedure. According to the nature of each 

market, we assume that there is no market power that can 

affect the pool prices in a deregulated market. The 

optimization goal of the day-ahead problem is to minimize the 

overall system operation cost in supplying the net demand. As 

stated by our previous work, the optimal operation of BESS 

can help DICSO reduce the energy procurement cost in the 

day-ahead market by charging when prices are low and then 

discharging when the prices are high. Considering forecast 

uncertainties, the day-ahead bidding model is represented by  

,

1 ,

1 1

,

,

1 1 1 1

min ( , )

1
= + ( , )+

sn T
t t t t s

bid d bess bess i d a

s t i

T T S T
t t t t s

bid d bess bess i d a

t t i s t

J P t C P t C

P t C P t C
S





  

    

 
      

 

   

 

  

 (8) 

where 
s denotes the variable in scenario s , the total scenario 

number is 
sn , and 

dt is the optimization time interval. In 

eq.(8), the first term represents the bidding cost in the energy 

market, the second term is the BESS operation cost
bessC , and 

the third term denotes the adaption cost to compensate for 

forecast errors in scenario s . The decision variables include 

the bid capacity ,t

bid DP t  and the BESS 

charging/discharging schedule
,

t

bess i DP i t ， . The 

normal bidding amount depends on the expected total net 
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demand at the substation, namely 1

t t

bidP P . 1

tP is obtained by 

calculating the system power flow including BESS 

charging/discharging and based on forecasted information. In 

day-ahead operation, the solar output, wind output, demand, 

and electricity price are forecasted as 
, , ,, ,t t t

Solar i Wind i Load iP P P , and

t . We generated different scenarios for the day-ahead 

operation model. In each scenario, the errors of renewable 

energy output, demand, and electricity price are sampled from 

the forecast error distribution function described in the above 

section. We define , , ,

, , ,, ,t s t s t s

Solar i Wind i Load iP P P , and ,t s for scenario s

and the net demand as ,

,

t s

Net iP . The adaption cost ,t s

aC in a 

scenario represents the punishment cost for constraint 

violations and transaction loss in the electricity market for that 

scenario [25][26]. If the BESS can compensate for the demand 

gap and mitigating constraint violations of scenario s , the 

adaption cost is calculated by the BESS operation cost. 

Otherwise, a transaction punishment from the market and a 

constraint violation cost is added to the adaption cost. 

The battery operation cost can be represented by 

    , ,, 1t t

bess bess i fix cha c bess iC P t t P t                  (9) 

where
fix is the hourly fixed battery operation cost ($/h) which 

covers the investment of inverter and other hardware; cha is 

the battery charging/discharging cost parameter ($/kWh) 

which is converted from battery degradation. Due to the effect 

of discharge rate on battery life [27], the total energy 

charging/discharging capability of battery remains stable 

within a reasonable depth of discharge (DOD). As such, the 

charging/discharging cost is nearly proportional to the power 

rating and the capacity rating of the battery. cha can be 

calculated by dividing battery cost by total energy 

charging/discharging capability. 
c is the charging efficiency 

(%).  

The day-ahead bidding model is subjected to the following 

constraints: 

Dfor i t ， , 

 BESS Constraints 

The state of ESS, the key issue for battery control strategy, 

can be described as, 

, ,| |t t t t

i bess i c bess i loss iS tP P t S                      (10) 

where 
loss is the leakage loss factor (%). 

The state-of-charge (SOC) is expressed as follows, 
t t ra

i i iSOC S S                                (11) 

Daily operation constraint:    
24 1

i iSOC SOC
                 

(12) 

Power limits： , ,

, , ,

Dis Max t Chr Max

bess i bess i bess iP P P                          (13) 

SOC limits： Min t Max

iSOC SOC SOC                          (14) 

where t

iS , t

iS , ra

iS and t

iSOC are the charging energy, energy 

in battery, energy capacity, and state-of-charge of BESS, 

respectively, at bus i and time t . ,

,

Dis Max

bess iP / ,

,

Chr Max

bess iP and
MinSOC

MaxSOC represent the charging power and SOC constraints. 

 1 , Dfor i t   , 

 Power balance constraint 

  , ,

, , ,

1

n
t t t t s t s

i ij j bess i Net i Net i

j

V Y V P P j Q






                    
(15) 

where, the superscript means conjugate.
 

 Voltage constraint 

The voltage magnitude of each node must lie within their 

power quality limitation. 
min maxt

i i iV V V                               (16) 

 Current constraint 

The current magnitude of each branch must be lower than 

the rating current to ensure cable thermal stability. 

max

t

ij ijI I                                   (17) 

 Power source limit constraint 

Dispatch power and reverse power flow through the 

substation transformer is allowed within the limitation of the 

transformers’ capacity and protection system constraints. 
max

1

t

TRP S                                  (18) 

where
t

iV ,
min

iV , and 
max

iV are the voltage of bus i at time t  and 

the maximum and minimum voltage magnitude limit.
ijY and

maxijI are the admittance and current limit of line ij . t

ijI is the 

current through line ij. max

TRS  is the rating dispatch power of the 

distribution station. 

D. Real-Time Optimal BESS Operation 

By solving the model in (8), the DISCO determines the 

optimal bids. The BESS reference operation schedules are 

determined accordingly in the day-ahead stage. With the 

consideration of the adaption cost in the day-ahead BESS 

operation schedule model, the resulting power and SOC of 

BESS will maintain an optimal reserve to deal with the 

potential risk in the electricity market. In the real-time stage, 

the DISCO updates the real-time information and the BESS 

capacity reserves to optimize the actual BESS operation 

schedule based on real-time information. The real-time 

operation is with a shorter time interval (one to several 

minutes) than the day-ahead bidding interval (e.g. hourly-

based). Therefore, the optimization problem should be solved 

frequently and at a fast speed. A BESS operation model is 

proposed for DISCO and transformed to a convex problem to 

implement real-time fast optimization. The real-time operation 

provides multiple benefits to the DISCO, including a more 

flexible BESS operation strategy that can quickly respond to 

real time information, exploiting the potential BESS capacity 

reserve, and power loss saving with a shorter operation 

interval. The real time information can be predicted with high 

accuracy. Without forecast uncertainties, the problem is 

formulated as follows: 

 2 1 ,min ( )k k

k t

t tt

p bid r bess bess i

t i

J P P t C P
 

 
     

 
    (19a) 

s.t.    1 , ,k tfor i t      

    , , ,

1

,k k k k k

n
t t t t t

i ij j bess i Net i L i

j

V Y V P P j Q






        (19b) 



1949-3029 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2017.2762364, IEEE
Transactions on Sustainable Energy

min maxkt

i i iV V V                          (19c) 

         , ,

, , ,
ktDis Max Chr Max

bess i bess i bess iP P P                  (19d) 

ktMin Max

iSOC SOC SOC                    (19e)  

max
kt

ij ijI I                                   (19f) 

maxkt

i TRSP                                    (19g) 

The objective is to minimize the real time energy gap and 

battery operation cost where power loss reduction is implied. 

Within each dispatch horizon, i.e. 1 hour, the optimal charging 

dispatch schedules for every real-time operation interval 
rt , 

i.e. 15 mins, can be acquired by solving the problem (19).   

III. OPTIMIZER 

A. Approach to solve the bidding model 

    The day-ahead bidding model is a nonlinear, constrained 

mixed-integer programming problem, which is difficult to 

solve by mathematical programming methods. This paper uses 

a new evolution algorithm, NAA, to solve the proposed model. 

Unlike other EAs, NAA distributes individuals to several sub-

populations (called ‘shelters’), and uses a stochastic migration 

model to dynamically mitigate the individuals among the 

shelters. The inter-individual at-traction effect and crowding 

effect are considered in the migration model to balance 

exploration and exploitation. The key operators of NAA are 

briefly introduced below. 

Step 0: Input data 

    Input the simulation data, such as network, renewable 

generation, load, and price information 

Step 1: Population Initialization 

In NAA, each individual representing an BESS operation 

schedules in the population with the size is coded as a 72-

dimensional vector (24 hours charging/discharging power of 3 

BESS). For each individual, its initial value is randomly 

generated within the initial bounds. 

Step 2: Shelter Initialization 

In NAA, each sub-population is called a ‘shelter.’ After 

generating the populations, the fitness value of each individual 

is evaluated by calculating eq. (8). The individuals with 

minimum fitness values are selected as the shelter leaders, and 

are associated with the shelter indexes. The positions of the 

shelter leaders become the shelter sites. The rest of the 

individuals are sequentially distributed to each shelter, and are 

associated to corresponding shelter indexes. 

Step 3:Stochastic Migration Model 

In each generation, each individual of the population makes 

a decision about leaving or entering a certain shelter [20].  

Step 3.1: Decision Making of Exploit Individual 

Each individual evaluates its probability of leaving its 

current shelter and makes decision. 

Step 3.2: Decision Making of an Explorer Individual 

The explore individual randomly selects a shelter, evaluates 

the entering probability, and then makes a decision. 

Step 4: Located Search 

If an exploit individual is a shelter leader, it tries to search 

its neighbored area and perform a crossover to generate a new 

candidate.  

Step 5: Generalized Search 

Each explore individual randomly selects two different 

individuals to generate a mutant and perform the crossover 

operation. 

Step 6: Selection & Termination 

At the end of each generation, the individuals are sorted in the 

ascendant order and shelter leaders are updated. The algorithm 

terminates when the maximum generation time is reached. 

B. Approach to solve the real-time operation model 

The problem (19) is generally non-convex due to the power 

flow constraints (19b), which makes it difficult to guarantee 

the global optimality of the solution. Next we will introduce 

some relaxation techniques to convexify the original problem. 

Let kt m nC W , 
k tt  be a matrix defined by the 

distribution network in t -th time slot, whose entries take 

values as 
2

k kt t

ij iW V for i j ,  k k kt t t

ij i jW V V


 for i j , 

0ijY  and 0kt

ijW 
 
otherwise. There are a total of 2 1n

non-zero entries in ktW as the distribution network is radial. 

Denote  

 
0

Rek k k

ij

t t t

i ii ii ij ij

Y

P Y W Y W 



  
  

  
W    (20a) 

 
0

Imk k k

ij

t t t

i ii ii ij ij

Y

Q Y W Y W 



  
  

  
W    (20b) 

By taking t
W ,

k tt  as the control variable, Eq.(19) can be 

reformulated as 

  

  

1

,

min k

k t

k k

tt

p bid r

t

t t

bess i Net i

i

P P t

C P P






  

 





W

W

 (21a) 

s.t.    1 , ,k tfor i t      

, ,

, , , ,( )k k kt t tDis Max Chr Max

Net i bess i i Net i bess iP P P P P   W       (21b) 

,( )k kt t

i Net iQ Q W                            (21c) 

max
kt

ij ijI I                                   (21d) 

max

1( )kt

TRP SW                                   (21e) 

   
2 2

min maxkt

i ii iV W V                      (21f) 

ktMin Max

iSOC SOC SOC                        (21g) 

 1

,

1

, , ,c k s

s
t t

i i H i

k

P E D i s 



     W       (21h) 

2

, 0k k kt t t

ii jj ij ijW W W Y                   (21i) 

1, 0
k k

k k

t t

ii ij

ijt t

ij jj

W W
rank Y

W W

  
        

          (21j) 

where kt

iSOC can be written as a linear function of 
t

W . 

Equations (21b) ~ (21e) are power flow constraints, (21f) 

shows the voltage magnitude constraints, and (21g) and (21h) 

are charging constraints.  
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    Since (21b) ~ (21h) are linear in terms of t
W and (21i) is a 

second-order cone constraint, the problem (21) is indeed 

convex if the rank constraint (21j) is dropped. Such relaxation 

is exact for radial networks with non-heavy power flow across 

lines [18], which holds for most normal operation modes in 

distribution networks, so that the globally optimal charging 

schedule 
, , ,kt

bess i k tP i t  can be recovered from ktW ,

k tt  by 

, , ( ).k kt t t

bess i Net i iP P P  W                     (22) 

IV. CASE STUDY 

A. IEEE 15-bus system 

One modified IEEE 11kV, 15-bus distribution radial system 

was used to verify the proposed ESS allocation approach. The 

benchmark system consists of fourteen loads, two wind farms, 

and one solar station. The 850kW wind farm is installed at the 

bus 11 and the 800kW wind farm is located at bus 9. The solar 

farm is constructed at bus 6. The one-line diagram of this 

distribution system is shown in Fig. 2. The historical wind and 

solar data were obtained from two observation stations in 

Australia. The electricity price data was taken from the PJM 

website [29]. The forecasted 24-hour net demand profile and 

day-ahead electricity price are shown in Fig. 3. With the 

integration of renewable energy, the demand peak is located at 

a lower price time interval and the energy cost is reduced. 

Moreover, the operation of BESS provides the opportunity to 

purchase more energy at a lower price and sell the energy back 

to the main grid at a higher price, and mitigates the transaction 

risk caused by multiple uncertainties.  
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Fig. 2. Modified IEEE 15-bus distribution radial system 
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Fig. 3. Forecasted hourly net demand profiles of the buses with renewable 
energy 

We assume BESSs are located at the distributed renewable 

generation site and the parameters are listed in Table I [30]. 

The optimal operation schedule of BESS in the day-ahead 

operation framework is to minimize the energy cost of 

purchasing energy from main grid. If the day-ahead forecast is 

accurate, the whole BESS capacity can be applied to store 

energy when the price is low and release back when the price 

is high. We define this BESS operation method as the 

reference strategy. The charging/discharging schedules in this 

scenario are shown in Fig. 4. The SOC of the BESSs are 

shown in Fig. 5.  
TABLE I 

TYPICAL PARAMETERS OF LEAD-ACID BATTERY 

Item Lead-acid Battery 

Location 6 9 11 
ra

iS (kWh) 500 500 500 

,

,

Chr Max

bess iP / ,

,

Dis Max

bess iP  (kW) 200/-200 200/-200 200/-200 

maxSOC / minSOC  0.9/0.2 

Life Cycle 1000 times 

fix cha
c loss  0.025$/h; 4.69$/kWh;95%; 3% per month 

P
o

w
e

r 
(k

W
)

 
Fig. 4. Day-ahead BESS schedules of the reference strategy 

 
Fig. 5. Day-ahead scheduled SOC of the BESSs with the reference strategy 

 

By using this strategy, the BESSs are charging and 

discharging with maximum capacity one time per day. As the 

SOC constraints are reached, the BESS cannot be reserved for 

other applications. The bidding amount of DISCO in the day-

ahead market follows the net demand profile with the BESS 

schedule. Although the BESS can reduce energy cost with the 

reference strategy in power market, the DISCO still faces a 

high transaction risk due to forecast error. Therefore, the 

adaption cost should be quantified in the day-ahead operation 

scheme to reserve BESS capacity to compensate the gap 

between the real-time demand and the forecasted demand. 

Next, we tested the proposed day-ahead optimal BESS 

scheduling method with uncertainties. We generated the PDFs 

of forecast errors from historical data and performed a forecast 

of system for the next day. As shown in Fig. 6, the forecasted 

net demand profiles of the buses with distributed renewable 
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generation was plotted with probability distributions.  

 
Fig. 6. Forecasted hourly net demand profiles and probability distributions of 
the buses with renewable energy 

  The scenarios are constructed by generating the net 

demands from probability distributions to quantify the 

adaption cost in the proposed day-ahead bidding model. The 

proposed day-ahead bidding problem was solved using NAA. 

The convergence process of the proposed algorithm is shown 

in Fig. 7 and compared with the deferential evolution (DE) 

and particle swarm optimization (PSO) strategies. The 

objective value of each possible solution represented by an 

individual was calculated in different scenarios. The day-

ahead bidding results and optimal BESS operation schedules 

of the proposed strategy are shown in Fig. 8.  

 
Fig. 7. Convergence processes of different algorithms 

 
Fig. 8. Day-ahead bidding and BESS schedules with the proposed strategy 

 

As shown in the figure, BESSs are also scheduled to charge 

at the lowest price time and discharge at the peak price time. A 

certain part of BESS capacity is reserved for real-time demand 

gap compensation, and this capacity depends on the forecast 

accuracy. The SOC of BESS at bus 6 is deeper than the SOC 

of BESS at bus 9 and 11, as the forecast error of wind power is 

larger than solar power. The expected profits of the proposed 

day-ahead BESS operation strategy and reference strategy are 

compared in Table II, taking multiple uncertainties into 

account. It is clear that the transaction risk is reduced 

significantly by applying the proposed strategy. 
TABLE II 

COMPARISON OF PROPOSED STRATEGY AND REFERENCE STRATEGY 

 
Reference strategy Proposed strategy 

Expected total energy cost in day-

ahead market ($) 
448.49 433.63 

Adaption cost ($) 38.17 7.25 

BESS operation cost ($) 45.97 29.32 

Energy transaction cost ($) 364.35 397.06 

After optimization of the day-ahead BESS operation 

schedule, the DISCO can bid in the day-ahead market 

according to the forecast net demand. It should be noted that, 

the BESS schedule in the day-ahead operation frame is only 

applied for making bids in the day-ahead market without 

sending charging/discharging signals to the BESSs. The 

operation of the BESSs are scheduled and implemented in the 

real-time operation frame. In real-time operation, problem (19) 

is solved to mitigate the net demand gap with minimum 

operation cost, including BESS charging/discharging cost and 

line loss. For a real-time operation problem, calculation speed 

is a key issue. As such, a second-order conic relaxation 

technique is used to obtain a computationally feasible convex 

reformulation of the originally nonconvex, real time BESS 

operation problem. The average time consumed is around 

0.1second [31] (computing platform: Intel Core i5-4570 

CPU 3.20 GHz, RAM 8.00 GB), which allows the online 

BESS dispatch to track net demand. In this simulation, the 

real-time data were generated from the PDFs randomly to test 

the proposed BESS operation method. The minute-based real-

time net demand is shown by the blue line in Fig. 9 and 

compared with day-ahead bids.  

 
Fig. 9. Real-time net demand with proposed real-time BESS operation 
strategy (1-min intervals) 

Without BESS compensation, real-time net demand 

deviates significantly from the day-ahead bidding profile and 

causes a high penalty cost. The real-time net demand with 

BESS is shown as the red line in Fig. 9. The hourly net 

demand with BESS is very close to the bidding profile. To 

show the result more clearly, the 15 minute-based net demand 

profiles are shown in Fig. 10.  
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Fig. 10. Real-time net demand with proposed real-time BESS operation 
strategy (15-min intervals) 

 

The energy transactions are counted hourly. The objective 

of real-time BESS operation is to compensate the hourly net 

demand. Therefore, the power can deviate from the bidding 

profile within an hour. In order to clearly show the 

charging/discharging power of the three installed ESSs, we 

present the detailed charging/discharging power of the BESSs 

over two continuous hours in Fig. 11 and Fig. 12.  

 
Fig. 11. Real-time BESS charging profiles of a day 

 
Fig. 12. Real-time BESS charging profiles of two continuous hours (8:00-
10:00) 

 

Within a billing period, i.e. 1 hour, the forecasted hourly 

demand gap is dispatched in four time intervals and three 

BESSs by solving Eq. (21) for minimum energy cost. From 

the figure, we see that i) the charging/discharging power of 

BESS is optimized to mitigate net demand gap; ii) the 

charging/discharging power of BESS in different time 

intervals and at different locations is optimized to reduce line 

loss; iii) the charging states in the four time intervals of a 

billing period are the same (charging or discharging) . The 

operation benefits and cost are shown in Table III. Two 

strategies are performed for comparison. In the first strategy, 

the operator bids according to net demand and operates 

without BESS. In the second strategy, the operator bids as the 

proposed day-ahead bidding method and mitigates demand 

gap by dispatching BESSs equally and constant power within 

an hour. From the figure, we can conclude that with the 

proposed BESS operation method, the distribution company 

can save the total energy cost.  
TABLE III 

TOTAL OPERATION COST COMPARISON($/DAY) 

Energy Transaction Cost Strategy 1 Strategy 2 
Proposed 

strategy 

Day-ahead (bidding cost)  440.25 397.06 397.06 

Real-time (BESS operation cost )  0 38.63 33.17 

Real-time (balancing cost) 76.34 9.28 8.13 

Total cost 537.67 444.97 438.36 

B. Sensitivities analysis 

In order to show the effectiveness of the proposed method 

for different BESS capacity and cost, sensitivity analysis was 

performed as follows: 

 BESS Capacity 

To evaluate the impact of BESS capacity on the energy 

transaction cost, three scenarios were constructed, high BESS 

capacity, medium BESS capacity, and low BESS capacity. 

The BESS location and capacity in different scenarios are 

shown in Table IV. The other parameters are the same as case 

A. The simulation results under these scenarios are illustrated 

in Fig. 9. The energy transaction costs are compared in Table 

V. With advanced forecast technology, the forecast accuracy 

could be enhanced and the required BESS capacity is reduced 

accordingly. 
TABLE IV 

BESS CAPACITY IN DIFFERENT SCENARIOS 

Scenario High Medium Low 

Bus 6 1000kWh/400kW 500kWh/200kW 250kWh/100kW 

Bus 9 1000kWh/400kW 500kWh/200kW 250kWh/100kW 

Bus 11 1000kWh/400kW 500kWh/200kW 250kWh/100kW 

TABLE V 

ENERGY TRANSACTION COST COMPARISONS OF DIFFERENT BESS CAPACITY 

($/DAY)  

Energy transaction cost 

BESS Capacity Scenario 

High 
Medium 

(reference) 
Low 

Day-ahead (Bidding Cost) 357.18 397.06 416.23 

Real-time (BESS operation cost ) 82.19 33.17 19.23 

Real-time (balancing cost) 1.12 8.13 10.18 

Total cost 440.49 438.36 445.64 

 BESS Cost 

For analysis of the impact of BESS cost and type on the 

optimal schedule, three BESS types were chosen and the 

BESS costs were set accordingly. The first two types of BESS 

are lead-acid battery with different rated charging current 

(0.5C or 1C), the third BESS is Lithium-Ion with 0.5C 

charging current. The costs parameter
fix are 0.025, 0.05, or 

0.5 $/h and the operation costs 
cha are 4.69, 4.69, or 9 $/kWh. 

The total energy transaction costs for the different BESS types 

are compared in Table VI. It is obvious that the BESS cost is a 

great barrier. Along with development of battery technology, 

the costs of batteries will decrease, which makes the BESS 

more feasible to reduce energy transaction risk. 
TABLE VI 

UTILITY IMPROVEMENT COMPARISONS OF DIFFERENT BATTERY COST ($/DAY)  

Energy Transaction Cost 

Battery Cost Scenario 

lead-acid(0.5C) 

(reference) 

lead-

acid(1C) 

Lithium-

Ion(0.5C) 

Day-ahead (bidding cost) 397.06 396.12 405.13 
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Real-time (BESS operation cost ) 33.17 45.98 42.26 

Real-time (balancing cost) 8.13 6.55 12.33 

Total cost 438.36 448.65 459.72 

V. CONCLUSION 

This paper proposes a practical two level BESS operation 

model for DISCOs to reduce the energy cost and the 

transaction risk. The optimal operation strategy of BESS can 

help DISCOs make energy purchasing bids in day-ahead 

market considering uncertainties and implement real-time 

optimal BESS dispatch to mitigate the risk of the energy 

trading. Especially in the distribution system with high 

penetration of renewable energy, the integration of BESS can 

significantly reduce the energy loss caused by the uncertainty 

of the demand and distributed generators. The effectiveness of 

the proposed project has been tested with comprehensive case 

studies. From the case study results, the overall energy cost is 

reduce significantly and the transaction risk is effectively 

mitigated. Further work will consider multiple applications of 

BESS and multiple BESS aggregators. For multiple 

applications, we can develop a multi-objective function to 

exploit more benefits of BESS and study suitable solving 

algorithms. For multiple BESS owners, game theory can be 

applied to study the equilibrium operation point. 
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