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Flow characteristics of non-Newtonian power-law fluids in a right-angled horizontal T-channel are stud-
ied in the laminar regime. In particular, the two-dimensional numerical computations are performed
using Ansys Fluent for the following range of physical parameters: Reynolds number (Re) = 5–200 and
power-law index (n) = 0.2–1 (covering shear-thinning, n < 1 and Newtonian, n = 1 fluids). The flow fields
have been explained by streamline contours. The engineering parameters such as wake/recirculation
length, critical Reynolds number for the onset of flow separation and the variation of viscosity along
the lower wall of side branch are calculated for the above range of settings by using constant density
and non-Newtonian power-law viscosity model. The results showed that for a particular n, the length
of recirculation zone increases in the side branch with increasing Re. Also, it increases with decreasing
n for a fixed Re. The critical Reynolds number for the onset of flow separation decreases with decreasing
n. A simple wake-length correlation is also established at different values of Re and n for the range of
parameters.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Pipe networks are widely used for transportation of liquids and
gases. These networks vary from a few pipes to complex assembly
of very large number of pipes. In addition to pipes, the network
also consists of components causing boundary layer separation
due to change in the momentum of the flow. In this work, we have
concentrated our attention on a very common component of a pipe
network: the T-channel. The flow of Newtonian fluids in a T-channel
is characterized by two separation zones: one in the branched
channel, another along the left wall of the main branch at the
junction, and a stagnation point near the downstream corner of
the junction (Fig. 1). A separation zone can be defined as the region
of recirculating fluid with very low velocities; therefore it has a
strong sediment deposition potential. Continuous sediment depo-
sition over a period of time reduces the conveyance of the channel.
Thus, in engineering practice, it is essential to understand the basic
characteristics of flow in separating and reattaching flows. Flow
through a T-channel has a variety of engineering applications in
irrigation systems, wastewater treatment, flood water driving,
biomechanical applications, phase separation, oil and gas pipelines,
polymer and pharmaceutical industries, and in many other areas.
Flow in a T-channel for Newtonian fluids has been investigated
extensively both experimentally and numerically to obtain the
basic information of flow separation and reattachment phenomena
in the laminar flow regime. This work aims to study two-dimen-
sional (2-D) laminar flow for non-Newtonian power-law fluids in
a T-channel over a wide range of Reynolds numbers (Re). The
2-D simulations are deemed adequate to represent actual
three-dimensional (3-D) situations when the aspect ratios of the
ducts forming the T-channel are large, as in the experiments of
Liepsch et al. [1] and Khodadadi et al. [2]. Before going into a detailed
presentation and discussion of the problem under consideration, it is
useful to account briefly the current status of the relevant
literature focusing on Newtonian and non-Newtonian fluids.

Grace and Priest [3] presented experimental results for the divi-
sion of flow at different width ratios of the branch channel orien-
tation to the main channel. They also classified the division of
flow into two regimes, with and without the appearance of local
standing waves near the branch. The regime without waves corre-
sponded to the case where the Froude numbers were relatively
small, and the regime with the waves corresponded to the free
overall conditions at sections downstream of the junction. Hayes
et al. [4] studied the flow characteristics of a Newtonian fluid in
a 2-D planar T-branch over a range of Reynolds numbers
(10–800) for two different outlet boundary conditions: (i) constant
exit pressure and (ii) specified flow split between the branches.
They found that the fractional flow in the main duct increases with
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Nomenclature

D non-dimensionalizing length scale, m
I2 second invariant of the rate of deformation tensor, s�2

Ld side branch length, m
Lr length of recirculation region, m
L1 total length in mainstream direction, m
m power-law consistency index, Pa sn

n power-law index
Ncells total number of cells in the domain
P pressure, Pa
Re Reynolds number
t time, s
U velocity along X-axis, m/s
V velocity along Y-axis, m/s
Vavg average velocity of the fluid at inlet, m/s
Wb width of side branch, m

Wc width of main branch, m
Xd downstream length of main branch, m
Xu upstream length of main branch, m
X coordinate in side stream direction, m
Y coordinate in mainstream direction, m

Greek symbols
q density of fluid, kg m�3

d minimum grid spacing, m
D maximum grid spacing, m
g power-law viscosity, Pa s
s extra stress tensor, Pa
e rate of deformation tensor, s�1
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increasing Reynolds number for the case of constant exit pressures
at the outlet of each branch. For the case of specified flow split at
the outlet of each branches, the size and strength of the recircula-
tion zones increase as more fluid is forced to go into the side
branch. Neary and Sotiropoulos [5] presented numerical solutions
for the steady 3-D laminar flows through a 90� rectangular cross-
section over a range of Reynolds numbers (496–525), discharge
ratios (0.23–0.64) and duct aspect ratios (1–8). They compared
solutions with experimental measurements to elucidate the flow
topology patterns and showed that both length and width of the
separation zone decrease with increasing discharge ratio. Weber
et al. [6] performed an extensive experimental study of combining
flows in a 90� open channel for Reynolds numbers ranging from
500 to 1000. They provided a very broad data set comprising
three velocity components, turbulence stresses, and water surface
mappings.

Yanase et al. [7] investigated the laminar flow in a curved rect-
angular duct for a range of aspect ratios (1–12) using spectral
method and found five branches of steady solutions. They also
investigated the linear stability characteristics for all the steady
solutions and found that one steady solution is linearly stable for
most of the aspect ratio values, but two linearly stable steady solu-
tions exist for a region of small aspect ratio and there are several
intervals of aspect ratio where there is no linearly stable steady
solution. Huang et al. [8] provided a comprehensive numerical
Flow

Stagnation zone
Recirculation zone

Recirculation zone

Main branch

Side branch
Separating stream

Fig. 1. Schematic of a separating flow along with recirculation and stagnation zone
in a T-channel.
study of combining flows in open-channel junctions using a 3-D
turbulence model for varying Reynolds numbers (500–1000) and
validated the model by using the detailed test data of Weber
et al. [6]. Ramamurthy et al. [9] studied the open-channel laminar
and turbulent 3-D flow characteristics of a 90� rectangular channel
junction of equal width over a parameter range of discharge ratios
(0.149–0.838). They adopted the k–x turbulence model to investi-
gate the dividing open channel flow characteristics. They presented
a data set composed of water surface mappings and 3-D velocity
distributions in the vicinity of the channel junction region. Sham-
loo and Pirzadeh [10] investigated the characteristics of separation
zones in a T-channel over a range of discharge ratios 0.2–0.8 by
using Fluent. Numerical simulations in their study were performed
using the RSM turbulence model.

In addition to flow characteristics for a Newtonian fluid, Liepsch
et al. [1] performed measurements and calculations for laminar
flow in a plane 90� bifurcation for non-Newtonian fluids for a range
of Reynolds numbers (496–1130) and discharge ratios (0.23–0.64).
They developed velocity profiles as functions of geometry, Rey-
nolds number and flow rate ratio and compared them with LDA
results. Bramley and Dennis [11] studied the 2-D steady flow for
various Reynolds numbers (100, 500, 1000 and 2000) in a branch-
ing channel by writing Navier–Stokes equations in terms of stream
function and vorticity, and solved them by using the difference
scheme of Dennis and Hudson [12]. They presented numerical
methods for dealing with the singularity in the vorticity at the
sharp corners where the channel bifurcates. Ehrlich and Friedman
[13] investigated the bifurcation flows extended to 2-D regions
obtained from radiographs of human aortic bifurcations mapped
onto rectangles with a slit. They developed correlations between
computed wall vorticities and shear rates from laboratory experi-
ments. These two quantities were proportional in the same dimen-
sionality, suggesting that useful data can be obtained from 2-D
calculations of 3-D phenomena.

Miranda et al. [14] looked at steady and periodic flows of New-
tonian fluids for a range of Reynolds numbers (10–1000) and dis-
charge ratios (0.1–0.9) through a bifurcation geometry, and
obtained computational results for shear stresses in close agree-
ment with previous experimental results and also with the simula-
tions of Liepsch et al. [1], Khodadadi et al. [15] and Khodadadi [16].
Moshkin and Yambangwi [17] developed a computational method
for solving viscous incompressible flow in a domain for Reynolds
number ranging from 10 to 400. They studied the effect of flow rate
and curvature ratio of a planar U-bend channel and found that the
size of the separation zone increases with increasing flow rate and
decreasing curvature ratio.
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Fig. 2. Schematic diagram of flow in a T-channel.
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Miranda et al. [14] also examined a single case of non-Newto-
nian flow for the blood analogue fluid and left open a route of
investigation dealing with the analysis of other fluid characteris-
tics, such as the level of shear-thinning, upon the flow patterns
around the bifurcation. Recently, Matos and Oliveria [18] studied
the steady and unsteady flows of a 2-D planar T-junction for Rey-
nolds number range 50–1000 (in the interval of 50) for Newtonian
and non-Newtonian fluids (n = 0.1–1) using Carreau–Yasuda equa-
tion, one of the most utilized generalized Newtonian fluid models
in blood flow simulations. In their study, they choose different flow
rate ratios at the outlet boundary of the side branch to examine the
flow characteristics in the T-junction. Extensive results on the eddy
lengths and intensities and on the shear stress fields are reported.
Conversely, the present study is dedicated to analyzing the flow
characteristics of Newtonian and non-Newtonian fluids (n = 0.2–
1) using power-law model in the lower Reynolds number range
(<200) by assuming both of the exits to be at the same pressure
(atmospheric pressure), which is consistent with the first case of
boundary condition of Hayes et al. [4]. It is also worthwhile to
mention that non-Newtonian effects are more prominent at low
values of Re and still no information is available for non-Newto-
nian fluids at such low Re, especially up to Re = 50. A correlation
for the wake length and the determination of the onset of flow sep-
aration are the unique aspects of the present investigation.

Some studies on the use of power-law model are also worth
mentioning at this stage. Hajmohammadi et al. [19] studied the
effects of a thin gas layer on the hydrodynamic aspects of power-
law fluids (n = 0.15–1.4) in a radial Couette flow between two cyl-
inders. They gave an analytical solution to determine the velocity
profile in the two-phase flow system. It was shown that the thin
(micro) gas layer contributes in reducing torque to set the fluid
in motion in the case of Newtonian and shear-thickening fluids,
but in the case of shear-thinning fluids a slight increase in the tor-
que (about 6%) is observed. In a similar study, Hajmohammadi and
Nourazar [20] analyzed the influence of a thin gas layer (into a
cylindrical Couette flow assembly) dealing with a power-law liquid
(0.1 < n < 1.4) on the torque required for activating the lubrication
process, on the maximum temperature of the shaft (inner cylinder)
and on Nusselt number of the two-phase flow configuration.
Results showed that the thin gas layer contributes to reduce in
the torque to set the fluid in motion and to downscale the maxi-
mum temperature at the shaft for Newtonian and shear-thickening
liquids. However, for shear-thinning liquids, the above-mentioned
positive roles break down for a large number of flow configura-
tions. Eesa and Barigou [21] studied numerically the effects of a
superimposed sinusoidal rotational vibration on the flow of non-
Newtonian fluids in a tube. They found that Newtonian flow is
unchanged by any superimposed oscillations but the flow of
shear-thinning and visco-plastic fluids is enhanced, whilst the flow
of shear-thickening fluids is retarded. Turkyilmazoglu [22] studied
the magneto-hydrodynamic slip flow of an electrically conducting,
non-Newtonian fluid past a shrinking sheet and found that the
presence of a magnetic field has substantial effects on velocity
and temperature fields. Hu and Kieweg [23] studied the effect of
surface tension on the gravity-driven thin film flow of Newtonian
and shear-thinning fluids (n = 0.5–1) and showed that capillary
ridge height increased with higher surface tension, steeper inclina-
tion angle, larger initial thickness and also with decreasing shear-
thinning behavior.

Unlike [19,20], Hajmohammadi et al. [24] studied laminar, vis-
cous and incompressible fluid flow configuration of bend tubes for
optimizing the heat and fluid flow for varying Reynolds (500, 1652
and 2000) and Prandtl (0.7, 7 and 6780) numbers. They showed
that the pressure drop and the entropy generation are considerably
reduced when implementing the optimum layout, compared to the
case of a fully curved tube section. Csizmadia and H}os [25]

 

 

reported the estimation of loss coefficients for typical pipeline dif-
fusers and elbows in the case of Bingham and power-law fluids.
Diffusers with angle range 7.5–40� and elbows of curvature radius
to diameter ratio range 1–10 were studied. They found that the
standard k—e model fails to predict the flow field accurately
whereas the eddy-viscosity SST turbulence model and the BSL Rey-
nolds-stress model give very close results, and they suggest the use
of the SST model.

Thus, based upon the above discussion, it can be summarized
here that most of the currently available literature on Newtonian
and non-Newtonian flow through a T-channel is for high Reynolds
numbers, where the main thrust has been to investigate the wake
phenomenon. However, in spite of having the many engineering
applications mentioned above, the non-Newtonian flow through
a T-channel has not been investigated in the literature at low Rey-
nolds numbers. Therefore, the main objective of this study is to
investigate the characteristics of non-Newtonian power-law flow
for the following range of conditions: Reynolds number (Re) =
5–200 and power-law index (n) = 0.2–1 (covering shear-thinning,
n < 1 and Newtonian, n = 1 fluids). The other important objective
of this study is to determine the critical Reynolds numbers at
which the onset of flow separation occurs for Newtonian and
shear-thinning fluids.
2. Problem statement and mathematical formulation

The laminar flow of non-Newtonian shear-thinning fluids
through a 2-D T-channel is schematically displayed in Fig. 2. The
channel inlet of width Wc = D (also the non-dimensionalizing
length scale) is exposed to a fully developed velocity field with
an average velocity of Vavg at the channel inlet (also the non-
dimensionalizing velocity scale). The non-dimensional upstream
distance between the inlet plane and the junction of the channel
(Xu/D) is taken as 10, and the downstream distance between the
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junction and the exit plane (Xd/D) is taken as 30 with the total
length of the computational domain being L1/D = 41 in the
mainstream direction. The non-dimensional length of side branch
(Ld/D) is taken as 25. These length ratios were chosen in the
following manner.

In order to explore the influence of the assumed finite domain,
especially for the largest Reynolds number, computations were
carried out at Re = 200 for both Newtonian and non-Newtonian flu-
ids and dimensionless side branch lengths of 20, 25, 30. The influ-
ence of the side branch length (Ld/D) on the length of the
recirculation zone is presented in Table 1. The relative difference
in the reattachment length for length ratios of 25 and 30 was found
to be about 3.2%, while for the case of maximum shear-thinning
behavior (n = 0.2) studied, the relative difference in the reattach-
ment length for the length ratios of 25 and 30 was found to be
about 3.7%. This was observed to be small enough to justify the
choice of a side branch length ratio of 25 for further simulations.
Similarly, the variation in the reattachment length for the down-
stream lengths (Xd/D) of 25, 30 and 35 at Re = 200 is presented in
Table 2. The relative difference in reattachment length for 30 and
35 is found to be about 1.7%, while for the case of maximum
shear-thinning behavior, it was found to be about 3.6%. Hence, a
dimensionless downstream length of 30 is selected for further sim-
ulations. Likewise, the variation in the reattachment length for the
dimensionless upstream lengths (Xu/D) of 5, 10 and 15 at Re = 200
is presented in Table 3 and the corresponding difference in reat-
tachment length for 10 and 15 is found to be less than 0.4%, while
for the case of maximum shear-thinning behavior, it was found to
be about 1%. Thus, a dimensionless upstream length of 10 has been
used in all the subsequent numerical calculations.

The following assumptions have been made in this study: the 2-
D, incompressible, isothermal and laminar flow of shear-thinning
fluids. Also, the gravity, buoyancy and viscous dissipation effects
are assumed negligible.

Under the above assumptions, the continuity, the X and Y com-
ponents of Cauchy’s equations in their dimensional form are
known as [26,27].

 

 

Table 1
Influence of side branch length (Ld/D) on recirculation region length (Lr/D) at Re = 200.

Ld/D Ncells n = 1

Lr/D % Relat

20 149,625 4.0708 7.1
25 154,875 3.9233 3.2
30 160,125 3.8013

Table 2
Influence of downstream length (Xd/D) on recirculation region length (Lr/D) at Re = 200.

Xd/D Ncells n = 1

Lr/D % Relat

25 149,625 3.8033 4.7
30 154,875 3.9233 1.7
35 160,125 3.9910

Table 3
Influence of upstream length (Xu/D) on recirculation region length (Lr/D) at Re = 200.

Xu/D Ncells n = 1

Lr/D % Relat

5 149,625 3.9418 0.9
10 154,875 3.9233 0.4
15 160,125 3.9080
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For an incompressible fluid, the extra stress tensor (which is sym-
metric, sij ¼ sji) is related to the components of the rate of deforma-
tion tensor (eij) as

sij ¼ 2geij

The components of the rate of strain tensor are related to the veloc-
ity components in Cartesian coordinates as follows:

eXX ¼
@U
@X
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For a power-law fluid, the viscosity (g) is defined as

g ¼ m
I2

2

� �n�1
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and the second invariant of the rate of deformation tensor (I2) is
given by

I2 ¼
XX

eijeji ¼ 2 e2
XX þ e2

XY þ e2
YX þ e2

YY

� �
where m is the power-law consistency index which is a measure of
the viscosity of the fluid and n is the power-law index. Clearly, n = 1
denotes the standard Newtonian flow behavior; n < 1 corresponds
to shear-thinning fluid behavior and the values of n as low as
0.2–0.3 are quite frequent for polymeric systems and particulate
slurries [27]. Spelt et al. [28] also stated that shear-thinning fluids
n = 0.2

ive difference Lr/D % Relative difference

9.2883 7.6
8.9567 3.7
8.6353

n = 0.2

ive difference Lr/D % Relative difference

8.5137 8.2
8.9567 3.5
9.2782

n = 0.2

ive difference Lr/D % Relative difference

9.1338 3.0
8.9567 1.0
8.8657
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are much more common than shear-thickening fluids (n > 1), with
usually n P 0.2. Thus, the range of values of the power-law index
0.2 6 n 6 1 used here is guided by the behavior of industrially
important fluids. Furthermore, as one reduces the value of
power-law index then it is sometimes difficult to achieve the same
level of convergence because of the highly non-linear nature of the
governing equations [28–34]. Because of these facts, in the litera-
ture it is very rare to use the value of power-law index smaller than
0.2 for power-law fluids and it seems to have become standard to
begin at n = 0.2 with power-law fluids.

The only dimensionless group appearing in Eqs. (2) and (3) is
the Reynolds number, which is defined in this study as follows
based on [27–34].

Re ¼
qDnV2�n

avg

m

Needless to say that this form of Re becomes the common Newto-
nian form for n = 1. One can obtain the average velocity (Vavg) from
the flow rate using continuity.

The boundary conditions in their dimensional form for this flow
configuration (see Figs. 1 and 2) may be written as follows:

� At the inlet boundary: the fully developed velocity profile for
the laminar flow of power-law fluids in a channel is given as
[34],

 

 

Fig. 3. Non-uniform grid structure for the flow in a T

Table 4
Grid sensitivity analysis for the flow through a T-channel at different values of Re and n.

Grid details Lr/D

Grid Ncells D/D Re = 50 % Relative difference R

n = 1
G1 106,500 0.01 1.8932 0.10 2
G2 154,875 0.008 1.8951 0.01 2
G3 254,007 0.006 1.8952 2

n = 0.2
G1 106,500 0.01 3.2238 2.20 5
G2 154,875 0.008 3.2704 0.80 5
G3 254,007 0.006 3.2964 5
U¼0andV ¼ 2nþ1
nþ1

� �
Vavg 1� 1�2X

D

����
����

� �nþ1
n

" #
for ð06X6DÞ

� At the left and right boundary walls of main branch:

U ¼ 0 and V ¼ 0 ðno-slip conditionÞ

� At the upper and lower walls of side branch:

U ¼ 0 and V ¼ 0 ðno-slip conditionÞ

� At the outlet boundary of main and side branches: the
default pressure outlet condition (both exits exposed to
atmosphere) available in Ansys Fluent is used, that is, zero
gauge pressure at both the exits.

3. Numerical solution procedure

The computational grid structure adopted for solving the flow
in a T-channel is depicted in Fig. 3. The grid is generated by using
Gambit, and shows the non-uniform orthogonal grid structure for
the whole of the computational domain (Fig. 3a) along with its
magnified view (Fig. 3b). It consists of both uniform and non-uni-
form grid distributions with a close clustering of grid points in the
regions of large gradients and coarser grids in the regions of low
gradients. The junction of the channel where the flow diversion
-channel: (a) complete and (b) magnified views.

e = 100 % Relative difference Re = 200 % Relative difference

.6649 0.07 3.9217 0.05

.6665 0.01 3.9233 0.01

.6669 3.9237

.5139 1.92 8.8623 2.35

.5826 0.70 8.9567 1.30

.6217 9.0742
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Fig. 4. Comparison of reattachment length (Lr/D) with that of Hayes et al. [4] for
n = 1 at different values of Re.
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takes place is a critical zone where considerable gradients in veloc-
ity components will occur. For handling this situation, a very fine
grid is used in this zone. In order to capture the physics of the
boundary layer separation in the side branch a very fine grid has
been constructed over a distance of 5D. The rest is a non-uniform
grid progressively increasing in the direction away from the junc-
tion in both upstream and downstream directions, such that the
smallest control volumes are in the vicinity of the junction and
the largest control volumes are away from the junction.

It is important to investigate the effect of grid size on the phys-
ical output parameters. A thorough analysis of the sensitivity of the
simulation results with regard to the number of elements and the
grid fineness for each case was carried out using three different
grids with 106,500, 154,875 and 254,007 cells of varying fineness
and the results are presented in Table 4. The minimum grid spacing
(d) at the junction and in the vicinity of the junction along the side
branch for the three grids is 0.01D, 0.008D and 0.006D, respec-
tively, and the maximum grid spacing of D = 0.5D at distance far
off from the junction is found to be sufficiently fine to resolve
the flow characteristics in a T-channel. The first length function
has also been used for stretching the cell sizes between these limits
of d and D in both X and Y directions.

The percentage relative differences in the values of reattach-
ment lengths at the extreme values of power-law indices (0.2
and 1) for the various values of Re (50, 100 and 200) and the three
grids (106,500, 154,875 and 254,007 cells) are also mentioned in
Table 4. Briefly, for the case of maximum shear-thinning behavior
(n = 0.2) at Re = 50, the relative difference in the value of reattach-
ment length is found to be about 0.8% for the grid with 154,875
cells as compared to the values at the grid with 254,007 cells. Sim-
ilarly, at Re = 200, the corresponding relative difference for the case
of n = 0.2 in the value of reattachment length is found to be about
1.3% for the grid with 154,875 cells as compared to the values at
the grid with 254,007 cells. Hence, because the difference between
the values of reattachment lengths at the grids with 154,875 and
254,007 cells is reasonably small, the optimized grid size of
154,875 cells is used for further computations in order to reduce
computational load (CPU time) without losing accuracy.

This numerical study has been carried out using the commercial
software package Ansys Fluent based on the finite volume method.
The two-dimensional, laminar, segregated solver is used to solve
the incompressible flow on the collocated grid arrangement. The
constant density and the non-Newtonian power-law viscosity
model are used for the simulations. The second order upwind
scheme is used to discretize convective terms of momentum equa-
tions. The semi-implicit method for the pressure linked equations
(SIMPLE) scheme is used for solving the pressure–velocity decou-
pling. Ansys Fluent solves the system of algebraic equations using
the Gauss–Siedel point-by-point iterative method in conjunction
with the algebraic multi-grid (AMG) method. The use of AMG
scheme can greatly reduce the number of iterations (and thus,
CPU time) required to obtain a converged solution, particularly
when the model contains a large number of control volumes. The
absolute convergence criteria of 10�10 for the continuity, and
X- and Y-components of the velocity are prescribed in the steady
regime. For detailed investigation of flow characteristics in the
T-channel, unsteady simulations have also been run for
the extreme values of Re and n (i.e., Re = 200, n = 1 and 0.2) with
the absolute convergence criteria of 10�20 each for the continuity,
and X- and Y-components of the velocity.

 

 

4. Results and discussion

Inspection of the foregoing analysis indicates that the flow char-
acteristics in the present system depend on five parameters. These
are the Reynolds number (Re), the flow behavior index (n), the
dimensionless width of the main channel (Wc/D), the dimension-
less width of the side branch (Wb/D) and the flow split or the dis-
charge ratio. Since the vast numbers of governing dimensionless
parameters are required to characterize this flow system, a com-
prehensive analysis of all combinations of problems is not practi-
cal. While computations can be performed for any combination
of these parameters, the objective here is to present a sample of
results to illustrate the effects of Re and n on the flow characteris-
tics in a T-channel. In particular, fluid flowing through the channel
with Wc = Wb = D is considered here. The results are presented for
Reynolds number up to 200 and for n = 0.2, 0.4, 0.6 and 1, thereby
covering both shear-thinning and Newtonian behaviors. Physically,
one can expect the centrifugal forces to induce instabilities in the
2-D flow beyond a threshold Reynolds number (more precisely
the Dean number) [35], making the flow structure 3-D, even for a
planar geometry. This kind of instability is more dominant in
curved pipes and channels as the centrifugal force is sustained in
those geometries. Although centrifugal force is not much dominant
under a 90� branched T-channel, but the fluid experience this force
at the junction when the fluid is forced to enter the branch. The
case of n = 0.8 has not been taken up in this study because the
behavior of fluid for this case is almost the same as that for New-
tonian fluids. The non-Newtonian behavior is more predominant at
power-law index (n) values considerably less than unity.

4.1. Validation of results

The numerical solution procedure used here has been bench-
marked with standard results for the incompressible flow of New-
tonian fluids in a T-channel. The validation of reattachment length
for Newtonian fluids on varying Reynolds numbers is presented in
Fig. 4. The minimum percentage deviation of the values obtained in
this study as compared with those given by Hayes et al. [4] is found
to be about 0.23%; whereas the maximum deviation is around
3.24%. While generally the correspondence between the two sets
of results is seen to be satisfactory, except for higher Reynolds
number (Re = 200, for instance) where the two results seem to dif-
fer by about 3.24%. This difference is believed to be due to the dif-
ferences in the domain and/or grid sizes used in these two studies.
Hayes et al. [4] used a finite element discretization on a rather
coarse uniform staggered grid with a non-dimensional spacing of
0.143, without any clustering of grid points near the junction of
the channel. Thus, there are fewer control volumes at the junction
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in their study as opposed to the very fine grid at the junction in the
present study with a non-dimensional grid spacing of 0.008. In fact,
the differences of this order are not at all uncommon in such
numerical studies [36]. Furthermore, the general validity of the
code has been checked for the critical Reynolds number at which
the onset of flow separation takes place for Newtonian fluids in a
T-channel. The flow separation from the bottom wall of the side
branch is seen to begin at Re = 17 for the case of Newtonian fluids.
A similar experimental study was conducted by Karino et al. [37]
and Karino and Goldsmith [38] and their results showed the onset
of flow separation in the side branch of a T-channel occurs at
Re = 18. Thus, the results obtained in the current study are found
to be in excellent agreement with the results available in the liter-
ature. This further confirms the accuracy and reliability of the pres-
ent numerical solution procedure.
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Fig. 9. Variation of dimensionless recirculation length (Lr/D) with Reynolds number
at different values of power-law index.

Table 5
Coefficients of exponential fit (in Eq. (4)) for the variation of dimensionless
recirculation length with Reynolds number and power-law index.

n a b c % Maximum deviation

1 0.0949 0.6744 0.6120 4.2
0.6 0.1374 0.7041 0.3623 1.9
0.4 0.1830 0.6926 0.1612 3.8
0.2 0.2044 0.7142 0.0148 4.0
4.2. Flow patterns

Figs. 5–8 present the representative flow patterns by way of
streamlines in the vicinity of the junction of the T-channel for
Re = 5, 30, 50, 100, 150 and 200, respectively. To ensure a compar-
ative study of the effect of the power-law index (n) on the flow
characteristics, four cases (n = 1, 0.6, 0.4 and 0.2) are presented
over the entire range of Reynolds number considered. It is worth-
while to mention here that the flow remains steady for the range of
settings discussed in this work. Fig. 5 shows the flow patterns of
Newtonian fluids in a T-channel. For the case of Newtonian fluids,
no recirculation zone is seen to occur in the side branch till Re = 16.
The fluid while travelling from main branch to side branch main-
tains contact with the wall of the side branch. As the Reynolds
number is increased, beyond a critical point the fluid gets sepa-
rated from the lower wall of the side branch and a closed recircu-
lation region is developed. The discussion on the onset of flow
separation in the side branch at different values of n is given in Sec-
tion 4.4. Further downstream of the reattachment points, the flow
regains its fully developed flow behavior. With a gradual increase
in the value of the Reynolds number (Re > 16), the size of recircu-
lation region increases. The flow patterns for the case of Newtonian
fluids in a T-channel are found to be in close agreement with those
of Hayes et al. [4] and Neary and Sotiropoulos [5].

For the case of shear-thinning fluids, no recirculation zone is
seen to occur in the side branch till Re = 13, 11 and 8 for the cases
of n = 0.6, 0.4, 0.2, respectively. Therefore, the flow separation is
delayed with decreasing shear-thinning tendency (or with increas-
ing values of the power-law indices). Similarly to the case with
Newtonian fluids, the recirculation regions begin to occur beyond
a critical limit. Figs. 6–8 show that the size of the recirculation zone
also increases with a decrease in power-law index from 0.6 to 0.2.
This is due to the fact that as shear-thinning behavior increases the
viscous forces decrease. Overall, from Figs. 5–8 it is notable that for
the same Reynolds number the recirculation zones penetrate far
much deeper into the side branch as the power-law index
decreases. This is in good agreement with the flow patterns for
Newtonian/non-Newtonian fluids as represented by Matos and
Oliveira [18].

On the other hand, a secondary recirculation zone is also
observed near the junction in the main branch as the fluid gets
diverted into the side branch at different values of Re and n. This
is because of the centrifugal force experienced by the fluid near
the branch region where the fluid is forced to turn into the side
branch. To represent it in a somewhat better way, the magnified
views of streamline contours near the junction can also be seen
in Figs. 5–8. For the range of conditions studied, the appearance
of the secondary zone is observed for n = 1 (at Re P 150), n = 0.6
(at Re P 100) and n = 0.4 (at Re = 200). The intensity of the second-
ary recirculation zone is weak here, but can be dominant in coiled
ducts as centrifugal force is sustained in such geometries.

4.3. Recirculation length

The variation of the non-dimensional recirculation length (Lr/D)
in the side branch (defined as the distance from the junction of T-
channel to the point of attachment of the fluid with the bottom
wall) as a function of Reynolds number and power-law index is
shown in Fig. 9. The length of the recirculation zone is seen to
increase in a non-linear fashion with an increase in Reynolds num-
ber for a particular power-law index. The recirculation length is
also seen to increase with decreasing power-law index for a fixed
Reynolds number. Thus, the dimensional considerations suggest
that the recirculation length is a function of Reynolds number
and power-law index. To correlate the dimensionless recirculation
length with Reynolds number and power-law index, the data
obtained is modelled to an exponential equation of the following
form:

Lr=D ¼ a Reb þ c ð4Þ

where a, b and c are fitting coefficients and are given in Table 5. The
maximum percentage deviation in the value of wake length from
Eq. (4) with the present computed results is also indicated in
Table 5.

4.4. Onset of flow separation in the side branch

The critical value of the Reynolds number at which the onset of
recirculation zone begins to appear in the side branch is of great
importance. This critical value of Reynolds number is determined
for a range of values of the power-law indices studied here. This
was accomplished by gradually increasing the Reynolds number
in fixed increments for a particular power-law index while for each
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Fig. 10. Flow patterns for critical Reynolds number at which onset of flow separation takes place: (a) n = 1, (b) n = 0.6, (c) n = 0.4 and (d) n = 0.2.
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run the sign change in X-velocity on the lower wall of the side
branch was monitored. A sign change indicates the existence of a
recirculation zone in that region. The search was further refined
by starting with the lower Reynolds number and repeating the
search in smaller increments of Reynolds number. The critical Rey-
nolds number was thus resolved to be within ±1. Fig. 10(a)–(d)
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shows the flow patterns in a T-channel for the critical Reynolds
number at which the onset of flow separation occurs for the cases
of n = 1, 0.6, 0.4 and 0.2, respectively. For the case of Newtonian
fluid, no recirculation region appears in the side wall up to
Re = 16, but as the Reynolds number is further increased to
Re = 17, wakes begin to appear in the side branch. This indicates
the critical value of Reynolds number for the case of Newtonian
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Fig. 11. Critical Reynolds number for the onset of flow separation at different
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Fig. 12. Variation of power-law viscosity along the lower wall of s
fluid to be Re = 17. The critical Reynolds number for the case of
Newtonian fluids is found to be in good agreement with the exper-
imental results presented by Karino et al. [37] and Karino and
Goldsmith [38]. Similar computations were performed on shear-
thinning fluids for examining the onset of flow separation at differ-
ent values of n. For n = 0.6, the fluid maintains its contact with the
lower wall of side branch and no wakes are observed till Re = 13,
but as we further carried our computations on Re = 14 a recircula-
tion region begin to appear in the side branch. Similarly, for n = 0.4
and 0.2, no recirculation regions exist till Re = 11 and Re = 8 but
begin to appear at Re = 12 and Re = 9, respectively. Fig. 11 shows
the variation of the critical Reynolds number with power-law
index. The Reynolds number at which the onset of flow separation
takes place in the side branch decreases with the decrease in the
power-law index, implying early recirculation zones with greater
shear-thinning behavior.

4.5. Variation of viscosity along the side branch

The variation of viscosity along the bottom wall of a side branch
of the T-junction for Re = 5, 50, 100 and 200 for three different val-
ues of n (0.2, 0.4 and 0.6) is shown in Fig. 12. These viscosity values
are plotted for the first cells of the mesh away from the bottom
wall. For the case of Re = 5, no recirculation (i.e., the wake length
is zero here) exists in the flow patterns for any value of the
power-law index, as seen from Figs. 5–8. However, a peak in the
value of the power-law viscosity near the entrance of the side
branch for Re = 5 is seen in Fig. 12, which is due to the small cen-
trifugal force experienced by the fluid in this region. For the cases
of Re = 50, 100 and 200, the recirculation zones exist in the flow
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patterns of the side branch (Figs. 5–8). A maximum is observed in
the values of power-law viscosities in the bottom wall of the side
branch, which then decreases to a constant value further along
the side branch. As expected, the maximum/peak viscosity
decreases with increasing power-law index at a fixed value of Rey-
nolds number. The maximum values of viscosities at the bottom
wall of the side branch appear at their wake lengths (or at the right
end of the wake region) for different values of Reynolds numbers
and power-law indices. For the case of Newtonian fluids, the vis-
cosity of the fluid remains constant throughout its span in the T-
junction.

 

 

5. Conclusions

In the present work, the effects of Reynolds number and power-
law index on the flow of power-law fluids through a T-channel
have been investigated. The flow is found to be steady for the
entire range of settings investigated here. The numerical method-
ology has been extensively validated against previous numerical
and experimental studies. The grid and computational domain
were chosen after extensive testing by varying various grid and
domain sizes. Detailed observations of flow pattern, recirculation
length, critical Reynolds number for the onset of flow separation
and viscosity variation along the bottom wall of the side branch
have been presented. The results show that the length of the recir-
culation zone increases on increasing Reynolds number for a par-
ticular power-law index. It also increases on decreasing the
power-law index for a fixed Reynolds number. The critical Rey-
nolds number at which the onset of flow separation takes place
in the side branch decreases with the decrease in the power-law
index (or with increasing shear-thinning tendency). The maximum
values of viscosities at the bottom wall of the side branch appear at
their wake lengths for different values of Reynolds numbers and
power-law indices. Furthermore, as the flow disturbances in
shear-thinning fluids are much more dominant and exist up to a
larger distance in the side branch than in Newtonian fluids, then
to compute those disturbances one needs to have a fine mesh to
a longer distance.

Although, the current work involves a numerical investigation
into the problem of 2-D laminar flow of power-law shear-thinning
fluids in a T-channel, subsequent experimentation of the same is
necessary by using one or the other commercial flow measure-
ment techniques viz. Laser Doppler Velocimetry, Particle Image
Velocimetry and others. It is also advisable to perform 3-D simu-
lations for capturing the accurate flow characteristics of highly
shear-thinning fluids in a T-channel at Reynolds number higher
than that used in this study. This is because the 2-D numerical
simulations may be deemed inadequate to simulate the actual
3-D behavior of the shear-thinning fluids at high Reynolds
numbers because of the remarkable change in their flow
characteristics. Besides this, the same analysis can be performed
on T-shaped bend tubes for the analysis of pressure drop and
recirculation zones, as done in [24]. In addition to the onset
of flow separation, it is also advisable to study the onset of
instability in Newtonian and non-Newtonian fluids. This could
be performed by some new methods for instability analysis such
as the energy gradient method [19,20] or semi-analytical method
[39]. Furthermore, a heat transfer study may be performed for the
present flow system.
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