Accepted Manuscript

Title: Acceleration waves in the nonlinear micromorphic continuum

Author: Victor A. Eremeyev Leonid P. Lebedev Michael J. Cloud

 PII:
 S0093-6413(17)30348-8

 DOI:
 http://dx.doi.org/doi:10.1016/j.mechrescom.2017.07.004

 Reference:
 MRC 3189

To appear in:

Received date:	30-6-2017
Revised date:	11-7-2017
Accepted date:	11-7-2017

this article as: Victor A. Please cite Eremeyev, Leonid P. Lebedev, Michael J. Cloud, Acceleration waves in the nonlinear micromorphic continuum. <!/CDATA[Mechanics] Research *Communications*]]> (2017),http://dx.doi.org/10.1016/j.mechrescom.2017.07.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Acceleration waves in the nonlinear micromorphic continuum $\stackrel{\Leftrightarrow}{\approx}$

Victor A. Eremeyev^{a,b,*}, Leonid P. Lebedev^c, Michael J. Cloud^d

 ^aFaculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12 80-233 Gdańsk, Poland
 ^bSouth Scientific Center of RASci & South Federal University, Rostov on Don, Russia ^cUniversidad Nacional de Colombia, Cr. 45, # 2685, Bogotá D.C., Colombia
 ^dLawrence Technological University, 21000 West Ten Mile Road, Southfield, MI, 48075-1058 USA

Abstract

Within the framework of the nonlinear elastic theory of micromorphic continua we derive the conditions for propagation of acceleration waves. An acceleration wave, also called a wave of weak discontinuity of order two, can be treated as a propagating nonmaterial surface across which the second derivatives of the placement vector and micro-distortion tensor may undergo jump discontinuities. Here we obtain the acoustic tensor for the micromorphic medium and formulate the conditions for existence of acceleration waves. As examples we consider these conditions for the linear micromorphic medium and for the relaxed micromorphic model.

Keywords: acceleration wave, micromorphic continuum, discontinuities, ellipticity.

1. Introduction

Waves of discontinuity such as shock and acceleration waves characterize material behaviour and internal structure, the internal instabilities of strain localizations, and other phenomena [1]. An acceleration wave can be represented as an isolated traveling smooth surface carrying jump discontinuities in the second derivatives of the relevant kinematic quantities with respect to the space coordinates and time. Existence conditions for the propagation of an acceleration wave can be reduced to an algebraic problem, i.e., to a spectral problem for an acoustic tensor whose eigenvalues should be positive. The condition for propagation of acceleration waves is closely related to the strong ellipticity of the equilibrium equations. Let us note that various ellipticity requirements seem

[☆]In memory of Professor Gérard A. Maugin *Corresponding author.

Email addresses: eremeyev.victor@gmail.com (Victor A. Eremeyev), llebedev@unal.edu.co (Leonid P. Lebedev), mcloud@ltu.edu (Michael J. Cloud)

to be a natural property of the elasto-statics equation, at least for small deformations. Thus the analysis of acceleration wave propagation plays an important role in the mechanics of materials. In nonlinear elasticity, acceleration waves were studied in many works; see, e.g., [2, 3] where further references can be found. For the generalized models of continua, acceleration waves are also considered in a number of papers. In particular, the propagation of acceleration waves is studied in the theory of porous media [4, 5], for random materials [6], and for piezoelectric solids [7]. Acceleration waves are also studied in various theories of microstructured fluids and gases; see [8–13] and the references therein. Such analysis can also be useful in nonmechanical applications such as for social systems [14]. For the nonlinear elastic micropolar media, acceleration waves are analyzed in [15]. In [16] certain generalizations are presented for elastic and viscoelastic micropolar media. Interrelations between the existence conditions for acceleration waves and the condition of strong ellipticity for the static equations

are discussed for elastic micropolar media in [17] and for thermoelastic media in [18].

Here we consider acceleration waves in the micromorphic continuum. This model was proposed in [19, 20]; see also [21–24]. Within the model, the medium kinematics are described by two fields: those of the placement vector and the microdistortion second-order tensor. The latter may be useful for modelling such microstructured materials as foams [25], heterogeneous media [26– 28], metamaterials [29, 30], granular media [31], and others. Let us note that as for enriched continuum models, the constitutive equations of the micromorphic continuum can be derived using homogenization technique. Wave propagation in micromorphic media is also studied, for example, in [29, 32–35].

The paper is organized as follows. Following [20, 21], in Section 2 we present the governing equations of the micromorphic continuum under large deformations. As a special case we also present the basic equations under small deformations. In Section 3 we derive the conditions for propagation of acceleration waves in the micromorphic medium and also consider the ellipticity conditions. Finally, in Section 4 we discuss the propagation of acceleration waves in a relaxed model of a micromorphic medium [36]. Direct tensor notation is used throughout (see, e.g., [37]).

2. Governing equations for the micromorphic continuum

The deformation of a micromorphic nonlinear elastic solid is described as a mapping from a reference placement into an actual one. The kinematics of the micromorphic continuum are determined by the placement vector \mathbf{r} and the microdistortion second-order tensor \mathbf{P} :

$$\mathbf{r} = \mathbf{r}(\mathbf{R}, t), \quad \mathbf{P} = \mathbf{P}(\mathbf{R}, t), \quad (1)$$

where \mathbf{R} is the position vector in the reference placement and t is time.

For a hyperelastic medium let us introduce the strain energy density

$$W = W(\nabla \mathbf{r}, \mathbf{P}, \nabla \mathbf{P}), \tag{2}$$

where ∇ is the gradient (nabla) operator in Lagrangian coordinates [37, 38]. For example, in Cartesian coordinates $\nabla \mathbf{f} = \frac{\partial f_n}{\partial x_m} \mathbf{i}_m \otimes \mathbf{i}_n$, where $\mathbf{i}_k, \ k = 1, 2, 3$ are the basis vectors and \otimes is the tensor product.

According to the principle of material frame indifference [2, 3], W must satisfy the invariance property

$$W(\mathbf{F}, \mathbf{P}, \nabla \mathbf{P}) = W(\mathbf{F} \cdot \mathbf{O}, \mathbf{P} \cdot \mathbf{O}, \nabla \mathbf{P} \cdot \mathbf{O}) \quad (3)$$

for any orthogonal tensor $\mathbf{O} = \mathbf{O}^{-T}$, where $\mathbf{F} = \nabla \mathbf{r}$ and "." denotes the dot product. This invariance results in the following objective representations of W:

$$W = W(\mathbf{F} \cdot \mathbf{F}^T, \mathbf{P} \cdot \mathbf{F}^{-1}, \nabla \mathbf{P} \cdot \mathbf{F}^{-1}), \quad (4)$$

or

$$W = W(\mathbf{F} \cdot \mathbf{P}^{-1}, \mathbf{P} \cdot \mathbf{P}^{T}, \nabla \mathbf{P} \cdot \mathbf{P}^{-1}).$$
(5)

Let us note that in (4) and (5) we use different sets of strain measures (see [20, 21] for details), but for simplicity we keep the notation for W. Here we assume that W is a twice continuously differentiable function. For brevity, we utilize the following notations for its derivatives:

$$\begin{split} W_{,\mathbf{F}} &= \frac{\partial W}{\partial \mathbf{F}}, \qquad W_{,\mathbf{P}} = \frac{\partial W}{\partial \mathbf{P}}, \\ W_{,\mathbf{FF}} &= \frac{\partial^2 W}{\partial \mathbf{F} \partial \mathbf{F}}, \qquad W_{,\nabla \mathbf{P} \nabla \mathbf{P}} = \frac{\partial^2 W}{\partial \nabla \mathbf{P} \partial \nabla \mathbf{P}}, \end{split}$$

etc.

In addition we define the kinetic energy density

$$K = \frac{1}{2}\rho \,\mathbf{v} \cdot \mathbf{v} + j \,\dot{\mathbf{P}} : \dot{\mathbf{P}},\tag{6}$$

where ρ is the mass density in the reference configuration, $\mathbf{v} = \dot{\mathbf{r}}$ is the velocity (the overdot standing for the time derivative), and $j \ge 0$ is the scalar measure of microinertia.

The Lagrangian equations of motion take the form

$$\nabla \cdot \mathbf{T} + \rho \mathbf{f} = \rho \dot{\mathbf{v}}, \quad \nabla \cdot \mathbf{M} - W_{,\mathbf{P}} + \rho \mathbf{m} = j \ddot{\mathbf{P}},$$
(7)

where the Lagrangian stress measures of Piola– Kirchhoff type are used:

$$\mathbf{T} = W_{,\mathbf{F}}, \quad \mathbf{M} = W_{,\nabla \mathbf{P}}. \tag{8}$$

Here \mathbf{T} is the first Piola–Kirchhoff second-order stress tensor, \mathbf{M} is the first Piola-Kirchhoff thirdorder hyper-stress tensor, and \mathbf{f} and \mathbf{m} denote given external loads.

Within small deformations, let us introduce the displacement vector $\mathbf{u} = \mathbf{r} - \mathbf{R}$ and small second-order tensor \mathbf{p} such that

$$\mathbf{F} = \mathbf{I} + \nabla \mathbf{u}, \quad \mathbf{P} = \mathbf{I} + \mathbf{p},$$

where \mathbf{I} is the 3D unit tensor. In this case the two sets of strain measures used in (4) and (5) transform into the single set

$$\boldsymbol{\varepsilon} = \nabla \mathbf{u} - \mathbf{p}, \quad \mathbf{e} = \frac{1}{2}(\mathbf{p} + \mathbf{p}^T), \quad \boldsymbol{\varkappa} = \nabla \mathbf{p}.$$
 (9)

For infinitesimal deformations of an isotropic micromorphic solid, the following form of strain energy can be used:

$$W = \frac{\lambda}{2} \operatorname{tr}^{2} \boldsymbol{\varepsilon} + \frac{\mu + \kappa}{2} \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon} + \frac{\mu - \kappa}{2} \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon}^{T} + \frac{\alpha}{2} \operatorname{tr}^{2} \mathbf{e} + \frac{\beta}{2} \mathbf{e} : \mathbf{e} + \frac{\gamma}{2} \nabla \mathbf{p} : \nabla \mathbf{p}, \qquad (10)$$

where λ , μ , κ , α , β , and γ are material parameters, and ":" and ":" denote the full products in the spaces of second- and third-order tensors, respectively. Positive definiteness of W implies that

$$\mu > 0, \quad 3\lambda + 2\mu > 0, \quad \kappa > 0,$$
 (11)

$$\beta > 0, \quad 3\alpha + 2\beta > 0, \quad \gamma > 0.$$
 (12)

Under these conditions,
$$W = 0$$
 if and only if $\mathbf{u} = \mathbf{a} + \boldsymbol{\omega} \times \mathbf{R}$ and $\mathbf{p} = \mathbf{I} \times \boldsymbol{\omega}$ with constant vectors \mathbf{a} and $\boldsymbol{\omega}$. In other words, W vanishes only for rigid body motions.

The constitutive equation (10) can be easily extended to the case of large deformations considering, for example, the following strain measures from (4):

$$\boldsymbol{\varepsilon} = \mathbf{F} \cdot \mathbf{P}^{-1} - \mathbf{I}, \quad \mathbf{e} = \frac{1}{2} (\mathbf{P} \cdot \mathbf{P}^T - \mathbf{I}), \quad \boldsymbol{\varkappa} = \nabla \mathbf{P} \cdot \mathbf{P}^{-1}.$$

The corresponding micromorphic model can be called the physically linear micromorphic material. Obviously, with use of the strain measures from (5) we get another micromorphic model. Static problems for nonlinear case was analyzed in [39].

3. Acceleration waves

Let us consider discontinuous deformations of a micromorphic medium when discontinuities appear on a smooth surface S(t) said to be singular (Fig. 1). We assume existence of one-sided limits at S(t) for all quantities under consideration. Let us denote a jump of any quantity across S(t) by doubled brackets: $[\![\mathbf{r}]\!] = \mathbf{r}_+ - \mathbf{r}_-$. Observe that S is a non-material surface propagating across material points.

Figure 1: Propagation of an acceleration wave

By an acceleration (or weak discontinuity) wave we mean a traveling singular surface S(t) on which the second spatial and time derivatives of **r** and **P** have jumps, while **r** and **P** together with all their first derivatives are continuous. So on S(t)the following conditions hold:

$$\llbracket \nabla \mathbf{r} \rrbracket = \mathbf{0}, \ \llbracket \nabla \mathbf{P} \rrbracket = \mathbf{0}, \ \llbracket \mathbf{v} \rrbracket = \mathbf{0}, \ \llbracket \dot{\mathbf{P}} \rrbracket = \mathbf{0}.$$
 (13)

Equations (13) imply continuity of \mathbf{T} and \mathbf{M} across S(t):

$$[\![\mathbf{T}]\!]=\mathbf{0},\quad [\![\mathbf{M}]\!]=\mathbf{0}.$$

The following theorem [2, 3] will also be needed.

Maxwell's theorem. For a continuously differentiable field L such that $\llbracket L \rrbracket = 0$, the following relations hold:

$$\llbracket \dot{\mathbf{L}} \rrbracket = -V\mathbf{l}, \quad \llbracket \nabla \mathbf{L} \rrbracket = \mathbf{n} \otimes \mathbf{l}, \quad (14)$$

where \mathbf{l} is the tensor amplitude of the jump of the first gradient of \mathbf{L} , the tensor amplitude is a tensor of the same order as \mathbf{L} .

A straightforward application of Maxwell's theorem to the continuous fields \mathbf{v} , $\dot{\mathbf{P}}$, \mathbf{T} , and \mathbf{M} results in the relations

$$\begin{bmatrix} \mathbf{\dot{v}} \end{bmatrix} = -V\mathbf{a}, \quad \llbracket \nabla \mathbf{v} \end{bmatrix} = \mathbf{n} \otimes \mathbf{a},$$
$$\begin{bmatrix} \mathbf{\ddot{P}} \end{bmatrix} = -V\mathbf{A}, \quad \llbracket \nabla \mathbf{\dot{P}} \end{bmatrix} = \mathbf{n} \otimes \mathbf{A},$$
$$V \llbracket \nabla \cdot \mathbf{T} \rrbracket = -\mathbf{n} \cdot \llbracket \mathbf{\dot{T}} \rrbracket,$$
$$V \llbracket \nabla \cdot \mathbf{M} \rrbracket = -\mathbf{n} \cdot \llbracket \mathbf{\dot{M}} \rrbracket,$$

where \mathbf{a} and \mathbf{A} are the vectorial and tensorial amplitudes of the jumps. With these, the equations of motion become

$$\mathbf{n} \cdot \begin{bmatrix} \dot{\mathbf{T}} \end{bmatrix} = \rho V^2 \mathbf{a}, \quad \mathbf{n} \cdot \begin{bmatrix} \dot{\mathbf{M}} \end{bmatrix} = j V^2 \mathbf{A}.$$
 (15)

Representing \mathbf{T} and \mathbf{M} through W we obtain

$$\mathbf{n} \cdot \left(W_{,\mathbf{FF}} : (\mathbf{n} \otimes \mathbf{a}) + W_{,\mathbf{F}\nabla\mathbf{P}} \vdots (\mathbf{n} \otimes \mathbf{A}) \right)$$

= $\rho V^2 \mathbf{a}$,
$$\mathbf{n} \cdot \left(W_{,\nabla\mathbf{PF}} : (\mathbf{n} \otimes \mathbf{a}) + W_{,\nabla\mathbf{P}\nabla\mathbf{P}} \vdots (\mathbf{n} \otimes \mathbf{A}) \right)$$

= $j V^2 \mathbf{A}$.

These equations can be written in matrix form:

$$\mathcal{Q}(\mathbf{n}) \cdot \boldsymbol{\xi} = V^2 \mathcal{B} \cdot \boldsymbol{\xi},\tag{16}$$

where $\boldsymbol{\xi} = (\mathbf{a}, \mathbf{A})$ and

$$\mathcal{Q}(\mathbf{n}) \equiv \begin{bmatrix} W_{,\mathbf{FF}}\{\mathbf{n}\} & W_{,\mathbf{F}\nabla\mathbf{P}}\{\mathbf{n}\}\\ \\ W_{,\nabla\mathbf{PF}}\{\mathbf{n}\} & W_{,\nabla\mathbf{P}\nabla\mathbf{P}}\{\mathbf{n}\} \end{bmatrix},$$
$$\mathcal{B} \equiv \begin{bmatrix} \rho \mathbf{I} & \mathbf{0}\\ \mathbf{0} & j\mathbf{1} \end{bmatrix}.$$

Here **1** is the four-dimensional unit tensor [37]. Let us introduce the following saturation operation [18] for an arbitrary *M*th-order tensor **H** and vector **n**. For **H** and **n** represented in a Cartesian basis \mathbf{i}_k (k = 1, 2, 3), that is

$$\mathbf{H} = H_{i_1 i_2 \dots i_M} \underbrace{\mathbf{i}_{i_1} \otimes \mathbf{i}_{i_2} \otimes \dots \otimes \mathbf{i}_{i_M}}_{M \text{ times}}, \quad \mathbf{n} = n_k \mathbf{i}_k,$$

 $\mathbf{H}\{\mathbf{n}\}\$ denotes the following (M-2)th-order tensor:

$$\mathbf{H}\{\mathbf{n}\} \equiv H_{i_1 i_2 \dots i_M} n_{i_1} n_{i_{M-N}} \underbrace{\mathbf{i}_{i_2} \otimes \dots \otimes \mathbf{i}_M}_{M-2 \text{ times}}.$$
 (17)

 $\mathcal{Q}(\mathbf{n})$ is called the *acoustic tensor* for the medium with microstructure. Due to the symmetry of the mixed derivatives of W, the tensor $\mathcal{Q}(\mathbf{n})$ is symmetric. Hence its eigenvalues, which are the squared velocities, are real. But for positivity of V one also needs the positive definiteness of $\mathcal{Q}(\mathbf{n})$:

$$\boldsymbol{\xi} \cdot \boldsymbol{\mathcal{Q}}(\mathbf{n}) \cdot \boldsymbol{\xi} > 0, \quad \forall \ \boldsymbol{\xi} \neq \mathbf{0}, \quad \forall \ |\mathbf{n}| = 1.$$
 (18)

Inequality (18) coincides with the strong ellipticity condition for the equilibrium equations for a micromorphic continuum.

Condition (18) also has the form

$$\mathbf{n} \cdot \left[W_{,\mathbf{FF}} : (\mathbf{n} \otimes \mathbf{a}) + W_{,\mathbf{F} \nabla \mathbf{P}} \vdots (\mathbf{n} \otimes \mathbf{P}) \right] \cdot \mathbf{a}$$
$$+ \mathbf{n} \cdot \left[W_{,\nabla \mathbf{PF}} : (\mathbf{n} \otimes \mathbf{a}) \right]$$
$$+ W_{,\nabla \mathbf{P} \nabla \mathbf{P}} \vdots (\mathbf{n} \otimes \mathbf{A}) \right] \cdot \mathbf{A} > 0,$$
$$\forall \ \mathbf{a} \neq \mathbf{0}, \quad \forall \ \mathbf{A} \neq \mathbf{0}, \quad \forall \ |\mathbf{n}| = 1,$$

and, moreover, is equivalent to

$$\frac{d^{2}}{d\varepsilon^{2}}W(\nabla \mathbf{r} + \varepsilon \mathbf{n} \otimes \mathbf{a}, \mathbf{P}, \nabla \mathbf{P} + \varepsilon \mathbf{n} \otimes \mathbf{A})\Big|_{\varepsilon=0} > 0,$$

$$\forall \ |\mathbf{n}| = 1, \quad \forall \ \mathbf{a} \neq \mathbf{0}, \quad \forall \ \mathbf{A} \neq \mathbf{0}.$$
(19)

The latter form is the condition of the strict rankone convexity of W.

As an example, let us consider a micromorphic material with the energy (10). Here (18) reduces to two inequalities

$$\begin{split} \lambda(\mathbf{n}\cdot\mathbf{a})^2 + (\mu+\kappa)(\mathbf{n}\cdot\mathbf{n})(\mathbf{a}\cdot\mathbf{a}) \\ &+ (\mu-\kappa)(\mathbf{n}\cdot\mathbf{a})^2 > 0, \\ \gamma(\mathbf{n}\cdot\mathbf{n})(\mathbf{A}:\mathbf{A}) > 0, \end{split}$$

which result in

$$\mu + \kappa > 0, \quad \lambda + 2\mu > 0, \quad \gamma > 0.$$
 (20)

The same conditions can be derived for the physically linear micromorphic material undergoing large deformations.

Obviously, conditions (20) are weaker than (11) and (12). Moreover, there are no constrains for α and β . In particular this means that unlike non-linear elasticity, the strong ellipticity conditions

are too weak for real wave propagations [35]. A similar situation can be observed for micropolar materials [17, 18]. Nevertheless, (20) provides for the propagation of waves of weak discontinuity in micromorphic solids.

If (20) holds, the velocities of acceleration waves calculated from the generalized spectral problem (16) are given by

$$V_1 = \sqrt{\frac{2\mu + \lambda}{\rho}}, \ V_2 = \sqrt{\frac{\mu + \kappa}{\rho}}, \ V_3 = \sqrt{\frac{\gamma}{j}}.$$
 (21)

Here V_1 and V_2 correspond to the longitudinal and transverse acceleration waves, respectively. The corresponding eigenvalues are given by

$$\boldsymbol{\xi}_1 = (\mathbf{n}, \mathbf{0}), \quad \boldsymbol{\xi}_{2\alpha} = (\mathbf{e}_{\alpha}, \mathbf{0}), \quad (22)$$

where \mathbf{e}_{α} ($\alpha = 1, 2$) are unit vectors tangent to S and $\mathbf{n} \cdot \mathbf{e}_{\alpha} = 0$. Thus V_2 is a multiple eigenvalue with two corresponding eigenvectors $\boldsymbol{\xi}_{21}$ and $\boldsymbol{\xi}_{22}$. V_3 is the velocity of the acceleration wave of micro-distortion; it is also a multiple eigenvalue of (16) with multiplicity 9. The corresponding set of eigenvectors is given by

$$\boldsymbol{\xi}_{333} = (\mathbf{0}, \mathbf{n} \otimes \mathbf{n}), \quad \boldsymbol{\xi}_{33\alpha} = (\mathbf{0}, \mathbf{n} \otimes \mathbf{e}_{\alpha}),$$
(23)
$$\boldsymbol{\xi}_{3\alpha3} = (\mathbf{0}, \mathbf{e}_{\alpha} \otimes \mathbf{n}), \quad \boldsymbol{\xi}_{3\alpha\beta} = (\mathbf{0}, \mathbf{e}_{\alpha} \otimes \mathbf{e}_{\beta}).$$
(24)

Obviously, the acceleration waves and acceleration waves of micro-distortion are decoupled. Finally, we conclude that the acceleration waves in the micromorphic continuum are carriers of various jumps of weak discontinuities.

4. Acceleration waves in relaxed micromorphic continuum

For small deformations, the relaxed micromorphic medium model was introduced by Neff et al. in a series of papers [29, 35, 36]. Unlike the classical micromorphic model, the relaxed micromorphic model allows us to describe complete band gaps in acoustic wave transmission problems.Within the framework of this model, the strain energy density is

$$W = \frac{\lambda}{2} \operatorname{tr}^{2} \boldsymbol{\varepsilon} + \frac{\mu + \kappa}{2} \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon} + \frac{\mu - \kappa}{2} \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon}^{T} + \frac{\alpha}{2} \operatorname{tr}^{2} \mathbf{e} + \frac{\beta}{2} \mathbf{e} : \mathbf{e} + \frac{\gamma}{2} (\nabla \times \mathbf{p}) : (\nabla \times \mathbf{p}).$$
(25)

Here $\mu_c = 2\kappa \ge 0$ is called the Cosserat couple modulus. If $\kappa = 0$ the strain energy density depends only on symmetric part of $\boldsymbol{\varepsilon}$. The nonlinear counterpart of (25) is

$$W = W(\mathbf{F} \cdot \mathbf{P}^{-1}, \mathbf{P} \cdot \mathbf{P}^{T}, (\nabla \times \mathbf{P}) \cdot \mathbf{P}^{-1}) \quad (26)$$

and the Lagrangian equations of motion transform into

$$\nabla \cdot \mathbf{T} + \rho \mathbf{f} = \rho \dot{\mathbf{v}}, \quad \nabla \times \mathbf{M} - W_{,\mathbf{P}} + \rho \mathbf{m} = j \ddot{\mathbf{P}}, \quad (27)$$

where

$$\mathbf{T} = W_{,\mathbf{F}}, \quad \mathbf{M} = W_{,\nabla \times \mathbf{P}}.$$
 (28)

Note that unlike the general micromorphic model, here \mathbf{M} is a second-order tensor.

Applying the same techniques, we derive the formula for the acoustic tensor

$$\mathcal{Q}(\mathbf{n}) \equiv \begin{bmatrix} W_{,\mathbf{FF}}\{\mathbf{n}\} & W_{,\mathbf{F}\nabla\times\mathbf{P}}\{\mathbf{n}\} \\ \\ W_{,\nabla\times\mathbf{PF}}\{\mathbf{n}\} & W_{,\nabla\times\mathbf{P}\nabla\times\mathbf{P}}\{\mathbf{n}\} \end{bmatrix}.$$

The strong ellipticity conditions now become

$$\frac{d^2}{d\varepsilon^2} W(\nabla \mathbf{r} + \varepsilon \mathbf{n} \otimes \mathbf{a}, \mathbf{P}, \nabla \mathbf{P} + \varepsilon \mathbf{n} \times \mathbf{A}) \Big|_{\varepsilon=0} > 0,$$

$$\forall \ |\mathbf{n}| = 1, \quad \forall \ \mathbf{a} \neq \mathbf{0}, \quad \forall \ \mathbf{A} \neq \mathbf{0}.$$
(29)

For (25), inequality (29) takes the form

$$\begin{split} \lambda(\mathbf{n} \cdot \mathbf{a})^2 + (\mu + \kappa)(\mathbf{n} \cdot \mathbf{n})(\mathbf{a} \cdot \mathbf{a}) \\ + (\mu - \kappa)(\mathbf{n} \cdot \mathbf{a})^2 > 0, \\ \gamma(\mathbf{n} \times \mathbf{A}) : (\mathbf{n} \times \mathbf{A}) > 0, \end{split}$$

which also imply (20). However in this case (29) is violated as $\boldsymbol{\xi} \cdot \boldsymbol{\mathcal{Q}}(\mathbf{n}) \cdot \boldsymbol{\xi} = 0$ if $\boldsymbol{\xi} = (\mathbf{0}, \mathbf{n} \otimes \mathbf{e})$ for any vector **e**. So the general strong ellipticity condition for the equilibrium equations for the relaxed micromorphic continuum is violated. Here only the weak form of the strong ellipticity condition holds:

$$\boldsymbol{\xi} \cdot \boldsymbol{\mathcal{Q}}(\mathbf{n}) \cdot \boldsymbol{\xi} \ge 0, \quad \forall \ \boldsymbol{\xi} \neq \mathbf{0},$$

which can be treated as a counterpart of the Hadamard inequality in nonlinear elasticity [2, 3]. Nevertheless, note that the corresponding boundary-value problems are still well-posed [40], including the case $\kappa = 0$ ($\mu_c = 0$). Results of this type are based on Korn's inequality for incompatible tensor fields [41]. For $\kappa = 0$, the positive definiteness of the strain energy density is violated but the conditions (20) are still fulfilled. The velocities of acceleration waves are given by (21), whereas the corresponding eigenvectors are (22) and (24). So, (23) are excluded. This means that in the relaxed micromorphic continuum we have fewer possible propagating weak discontinuities.

5. Conclusion

We have formulated conditions for propagation of acceleration waves in the nonlinear micromorphic continuum including the relaxed micromorphic model. The formulas for the acoustic tensors were derived. We have shown that for the relaxed micromorphic continuum, the general strong ellipticity condition is violated. Nevertheless, for both models there exists a set of weak discontinuity surfaces propagating with certain velocities. Under the derived conditions, there are three acceleration waves: one longitudinal with velocity V_1 , and two transverse with velocity V_2 . Within the general model, there are nine acceleration waves of micro-distortion traveling with velocity V_3 , whereas for the relaxed micromorphic continuum there are only six acceleration waves of micro-distortion propagating with velocity V_3 .

Acknowledgement. V.A.E. acknowledges financial support from the Russian Science Foundation under the grant "Methods of microstructural nonlinear analysis, wave dynamics and mechanics of composites for research and design of modern metamaterials and elements of structures made on its base" (No 15-19-10008).

 G. A. Maugin, Nonlinear Waves in Elastic Crystals, Oxford University Press, Oxford, 1999.

- [2] C. Truesdell, Rational Thermodynamics, 2nd Edition, Springer, New York, 1984.
- [3] C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics, 3rd Edition, Springer, Berlin, 2004.
- M. Ciarletta, B. Straughan, Poroacoustic acceleration waves, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 462 (2075) (2006) 3493–3499.
- [5] B. Straughan, Waves and uniqueness in multiporosity elasticity, Journal of Thermal Stresses 39 (6) (2016) 704–721.
- [6] M. Ostoja-Starzewski, J. Trębicki, Stochastic dynamics of acceleration waves in random media, Mechanics of Materials 38 (2006) 840–848.
- [7] M. F. McCarthy, H. F. Tiersten, One-dimensional acceleration waves and acoustoelectric domains in piezoelectric semiconductors, Journal of Applied Physics 47 (1976) 3389–3396.
- [8] B. Straughan, Heat Waves, Springer, New York, 2011.
- [9] G. Saccomandi, Acceleration waves in a thermomicrostretch fluid, International Journal of Nonlinear Mechanics 29 (1994) 809–817.
- [10] B. Straughan, Nonlinear waves in a general magnetic fluid, ZAMP 37 (1986) 274–279.
- [11] I. Christov, C. Christov, P. Jordan, Modeling weakly nonlinear acoustic wave propagation, The Quarterly Journal of Mechanics & Applied Mathematics 60 (4) (2007) 473–495.
- [12] I. C. Christov, P. M. Jordan, On the propagation of second-sound in nonlinear media: shock, acceleration and traveling wave results, Journal of Thermal Stresses 33 (12) (2010) 1109–1135.
- [13] I. C. Christov, P. M. Jordan, S. A. Chin-Bing, A. Warn-Varnas, Acoustic traveling waves in thermoviscous perfect gases: Kinks, acceleration waves, and shocks under the taylorlighthill balance, Mathematics and Computers in Simulation 127 (2016) 2–18.
- [14] B. Straughan, Shocks and acceleration waves in modern continuum mechanics and in social systems, Evolution Equations and Control Theory 3 (3) (2014) 541–555.
- [15] C. B. Kafadar, A. C. Eringen, Micropolar media I. The classical theory, Int. J. Engng Science 9 (1971) 271–305.
- [16] G. A. Maugin, Acceleration waves in simple and linear viscoelastic micropolar materials, International Journal Engineering Science 12 (1974) 143–157.
- [17] V. A. Eremeyev, Acceleration waves in micropolar elastic media, Doklady Physics 50 (4) (2005) 204–206.
- [18] H. Altenbach, V. A. Eremeyev, L. P. Lebedev, L. A. Rendón, Acceleration waves and ellipticity in thermoelastic micropolar media, Archive of Applied Mechanics 80 (3) (2010) 217–227.
- [19] R. D. Mindlin, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis 16 (1) (1964) 51–78.

- [20] A. C. Eringen, E. S. Suhubi, Nonlinear theory of simple micro-elastic solids–I, International Journal of Engineering Science 2 (2) (1964) 189–203.
- [21] A. C. Eringen, Microcontinuum Field Theory. I. Foundations and Solids, Springer, New York, 1999.
- [22] S. Forest, Micromorphic media, in: H. Altenbach, V. A. Eremeyev (Eds.), Generalized Continua from the Theory to Engineering Applications, Vol. 541 of CISM International Centre for Mechanical Sciences, Springer Vienna, 2013, pp. 249–300.
- [23] G. A. Maugin, Generalized Continuum Mechanics: Various Paths, Springer Netherlands, Dordrecht, 2013, pp. 223–241.
- [24] G. A. Maugin, Non-Classical Continuum Mechanics: A Dictionary, Springer Singapore, Singapore, 2017.
- [25] P. Neff, S. Forest, A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results, Journal of Elasticity 87 (2) (2007) 239–276.
- [26] R. Jänicke, S. Diebels, H.-G. Sehlhorst, A. Düster, Two-scale modelling of micromorphic continua, Continuum Mechanics and Thermodynamics 21 (4) (2009) 297–315.
- [27] S. Forest, Micromorphic approach for gradient elasticity, viscoplasticity, and damage, Journal of Engineering Mechanics 135 (3) (2009) 117–131.
- [28] F. J. Vernerey, W. K. Liu, B. Moran, G. Olson, A micromorphic model for the multiple scale failure of heterogeneous materials, Journal of the Mechanics and Physics of Solids 56 (4) (2008) 1320–1347.
- [29] A. Madeo, P. Neff, I.-D. Ghiba, G. Rosi, Reflection and transmission of elastic waves in non-local bandgap metamaterials: a comprehensive study via the relaxed micromorphic model, Journal of the Mechanics and Physics of Solids 95 (2016) 441–479.
- [30] A. Sridhar, V. G. Kouznetsova, M. G. Geers, Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum, Computational mechanics 57 (3) (2016) 423–435.
- [31] A. Misra, P. Poorsolhjouy, Granular micromechanics based micromorphic model predicts frequency band gaps, Continuum Mechanics and Thermodynamics 28 (1-2) (2016) 215.
- [32] A. Berezovski, J. Engelbrecht, A. Salupere, K. Tamm, T. Peets, M. Berezovski, Dispersive waves in microstructured solids, International Journal of Solids and Structures 50 (11) (2013) 1981–1990.
- [33] D. D. Vescovo, I. Giorgio, Dynamic problems for metamaterials: Review of existing models and ideas for further research, International Journal of Engineering Science 80 (2014) 153–172.
- [34] A. Berezovski, I. Giorgio, A. D. Corte, Interfaces in micromorphic materials: Wave transmission and reflection with numerical simulations, Mathematics and Mechanics of Solids 21 (1) (2016) 37–51.

- [35] P. Neff, A. Madeo, G. Barbagallo, M. V. d'Agostino, R. Abreu, I.-D. Ghiba, Real wave propagation in the isotropic-relaxed micromorphic model, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 473 (2197) (2017) 20160790.
- [36] P. Neff, I.-D. Ghiba, A. Madeo, L. Placidi, G. Rosi, A unifying perspective: the relaxed linear micromorphic continuum, Continuum Mechanics and Thermodynamics 26 (5) (2014) 639–681.
- [37] L. P. Lebedev, M. J. Cloud, V. A. Eremeyev, Tensor Analysis with Applications in Mechanics, World Scientific, New Jersey, 2010.
- [38] J. G. Simmonds, A Brief on Tensor Analysis, 2nd Edition, Springer, New Yourk, 1994.
- [39] P. Neff, Existence of minimizers for a finite-strain micromorphic elastic solid, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 136 (5) (2006) 997–1012.
- [40] I.-D. Ghiba, P. Neff, A. Madeo, L. Placidi, G. Rosi, The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics, Mathematics and Mechanics of Solids 20 (10) (2015) 1171–1197.
- [41] P. Neff, D. Pauly, K.-J. Witsch, Poincaré meets Korn via Maxwell: extending Korn's first inequality to incompatible tensor fields, Journal of Differential Equations 258 (4) (2015) 1267–1302.

Highlights

"Acceleration waves in the nonlinear micromorphic continuum"

by Victor A. Eremeyev, Leonid P. Lebedev and Michael J.Cloud

- We have formulated conditions for propagation of acceleration waves in the nonlinear micromorphic continuum including the relaxed micromorphic model.
- The formulas for the acoustic tensors were derived.

- We have shown that for the relaxed micromorphic continuum, the general strong ellipticity condition is violated.
- Nevertheless, for both models there exists a set of weak discontinuity surfaces propagating with certain velocities.

Page 8 of 8