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Acceleration waves in the nonlinear micromorphic continuum✩
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Abstract

Within the framework of the nonlinear elastic theory of micromorphic continua we derive the conditions
for propagation of acceleration waves. An acceleration wave, also called a wave of weak discontinuity of
order two, can be treated as a propagating nonmaterial surface across which the second derivatives of
the placement vector and micro-distortion tensor may undergo jump discontinuities. Here we obtain the
acoustic tensor for the micromorphic medium and formulate the conditions for existence of acceleration
waves. As examples we consider these conditions for the linear micromorphic medium and for the
relaxed micromorphic model.

Keywords: acceleration wave, micromorphic continuum, discontinuities, ellipticity.

1. Introduction

Waves of discontinuity such as shock and ac-
celeration waves characterize material behaviour
and internal structure, the internal instabilities
of strain localizations, and other phenomena [1].
An acceleration wave can be represented as an
isolated traveling smooth surface carrying jump
discontinuities in the second derivatives of the
relevant kinematic quantities with respect to the
space coordinates and time. Existence conditions
for the propagation of an acceleration wave can be
reduced to an algebraic problem, i.e., to a spectral
problem for an acoustic tensor whose eigenvalues
should be positive. The condition for propaga-
tion of acceleration waves is closely related to the
strong ellipticity of the equilibrium equations. Let
us note that various ellipticity requirements seem
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to be a natural property of the elasto-statics equa-
tion, at least for small deformations. Thus the
analysis of acceleration wave propagation plays
an important role in the mechanics of materials.
In nonlinear elasticity, acceleration waves were
studied in many works; see, e.g., [2, 3] where fur-
ther references can be found. For the general-
ized models of continua, acceleration waves are
also considered in a number of papers. In par-
ticular, the propagation of acceleration waves is
studied in the theory of porous media [4, 5], for
random materials [6], and for piezoelectric solids
[7]. Acceleration waves are also studied in various
theories of microstructured fluids and gases; see
[8–13] and the references therein. Such analysis
can also be useful in nonmechanical applications
such as for social systems [14]. For the nonlinear
elastic micropolar media, acceleration waves are
analyzed in [15]. In [16] certain generalizations
are presented for elastic and viscoelastic microp-
olar media. Interrelations between the existence
conditions for acceleration waves and the condi-
tion of strong ellipticity for the static equations
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are discussed for elastic micropolar media in [17]
and for thermoelastic media in [18].
Here we consider acceleration waves in the micro-
morphic continuum. This model was proposed in
[19, 20]; see also [21–24]. Within the model, the
medium kinematics are described by two fields:
those of the placement vector and the micro-
distortion second-order tensor. The latter may
be useful for modelling such microstructured ma-
terials as foams [25], heterogeneous media [26–
28], metamaterials [29, 30], granular media [31],
and others. Let us note that as for enriched con-
tinuum models, the constitutive equations of the
micromorphic continuum can be derived using ho-
mogenization technique. Wave propagation in mi-
cromorphic media is also studied, for example, in
[29, 32–35].
The paper is organized as follows. Following
[20, 21], in Section 2 we present the governing
equations of the micromorphic continuum under
large deformations. As a special case we also
present the basic equations under small deforma-
tions. In Section 3 we derive the conditions for
propagation of acceleration waves in the micro-
morphic medium and also consider the elliptic-
ity conditions. Finally, in Section 4 we discuss
the propagation of acceleration waves in a relaxed
model of a micromorphic medium [36]. Direct
tensor notation is used throughout (see, e.g., [37]).

2. Governing equations for the micromor-

phic continuum

The deformation of a micromorphic nonlinear
elastic solid is described as a mapping from a ref-
erence placement into an actual one. The kine-
matics of the micromorphic continuum are deter-
mined by the placement vector r and the micro-
distortion second-order tensor P:

r = r(R, t), P = P(R, t), (1)

where R is the position vector in the reference
placement and t is time.
For a hyperelastic medium let us introduce the
strain energy density

W = W (∇r,P,∇P), (2)

where ∇ is the gradient (nabla) operator in La-
grangian coordinates [37, 38]. For example, in
Cartesian coordinates ∇f = ∂fn

∂xm
im ⊗ in, where

ik, k = 1, 2, 3 are the basis vectors and ⊗ is the
tensor product.
According to the principle of material frame in-
difference [2, 3], W must satisfy the invariance
property

W (F,P,∇P) = W (F ·O,P ·O,∇P ·O) (3)

for any orthogonal tensor O = O−T , where F =
∇r and “·” denotes the dot product. This invari-
ance results in the following objective representa-
tions of W :

W = W (F · FT ,P · F−1,∇P · F−1), (4)

or

W = W (F ·P−1,P ·PT ,∇P ·P−1). (5)

Let us note that in (4) and (5) we use different
sets of strain measures (see [20, 21] for details),
but for simplicity we keep the notation for W .
Here we assume that W is a twice continuously
differentiable function. For brevity, we utilize the
following notations for its derivatives:

W,F =
∂W

∂F
, W,P =

∂W

∂P
,

W,FF =
∂2W

∂F ∂F
, W,∇P∇P =

∂2W

∂∇P ∂∇P
,

etc.
In addition we define the kinetic energy density

K =
1

2
ρv · v + j Ṗ : Ṗ, (6)

where ρ is the mass density in the reference config-
uration, v = ṙ is the velocity (the overdot stand-
ing for the time derivative), and j ≥ 0 is the scalar
measure of microinertia.
The Lagrangian equations of motion take the form

∇·T+ρf = ρv̇, ∇·M−W,P+ρm = j P̈, (7)

where the Lagrangian stress measures of Piola–
Kirchhoff type are used:

T = W,F, M = W,∇P. (8)

2
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Here T is the first Piola–Kirchhoff second-order
stress tensor, M is the first Piola-Kirchhoff third-
order hyper-stress tensor, and f and m denote
given external loads.
Within small deformations, let us introduce the
displacement vector u = r−R and small second-
order tensor p such that

F = I+∇u, P = I+ p,

where I is the 3D unit tensor. In this case the
two sets of strain measures used in (4) and (5)
transform into the single set

ε = ∇u− p, e = 1

2
(p+ pT ), κ = ∇p. (9)

For infinitesimal deformations of an isotropic mi-
cromorphic solid, the following form of strain en-
ergy can be used:

W =
λ

2
tr 2ε+

µ+ κ

2
ε : ε+

µ− κ

2
ε : εT

+
α

2
tr 2e +

β

2
e : e+

γ

2
∇p

...∇p, (10)

where λ, µ, κ, α, β, and γ are material parame-

ters, and “:” and “
...” denote the full products in

the spaces of second- and third-order tensors, re-
spectively. Positive definiteness of W implies that

µ > 0, 3λ+ 2µ > 0, κ > 0, (11)

β > 0, 3α + 2β > 0, γ > 0. (12)

Under these conditions, W = 0 if and only if u =
a+ω×R and p = I×ω with constant vectors a
and ω. In other words, W vanishes only for rigid
body motions.
The constitutive equation (10) can be easily ex-
tended to the case of large deformations consid-
ering, for example, the following strain measures
from (4):

ε = F·P−1−I, e = 1

2
(P·PT−I), κ = ∇P·P−1.

The corresponding micromorphic model can be
called the physically linear micromorphic mate-
rial. Obviously, with use of the strain measures
from (5) we get another micromorphic model.
Static problems for nonlinear case was analyzed
in [39].

3. Acceleration waves

Let us consider discontinuous deformations of a
micromorphic medium when discontinuities ap-
pear on a smooth surface S(t) said to be singular
(Fig. 1). We assume existence of one-sided limits
at S(t) for all quantities under consideration. Let
us denote a jump of any quantity across S(t) by
doubled brackets: [[r]] = r+ − r−. Observe that S
is a non-material surface propagating across ma-
terial points.

V

n

s(t)

+-

-

Figure 1: Propagation of an acceleration wave

By an acceleration (or weak discontinuity) wave
we mean a traveling singular surface S(t) on which
the second spatial and time derivatives of r and
P have jumps, while r and P together with all
their first derivatives are continuous. So on S(t)
the following conditions hold:

[[∇r]] = 0, [[∇P]] = 0, [[v]] = 0,
[[

Ṗ
]]

= 0. (13)

Equations (13) imply continuity of T and M

across S(t):

[[T]] = 0, [[M]] = 0.

The following theorem [2, 3] will also be needed.

Maxwell’s theorem. For a continuously differ-
entiable field L such that [[L]] = 0, the following
relations hold:

[[

L̇
]]

= −V l, [[∇L]] = n⊗ l, (14)

where l is the tensor amplitude of the jump of
the first gradient of L, the tensor amplitude is a
tensor of the same order as L.

3



Page 4 of 8

Acc
ep

te
d 

M
an

us
cr

ip
t

A straightforward application of Maxwell’s the-
orem to the continuous fields v, Ṗ, T, and M

results in the relations

[[v̇]] = −V a, [[∇v]] = n⊗ a,
[[

P̈
]]

= −VA,
[[

∇Ṗ
]]

= n⊗A,

V [[∇ ·T]] = −n ·
[[

Ṫ
]]

,

V [[∇ ·M]] = −n ·
[[

Ṁ
]]

,

where a and A are the vectorial and tensorial am-
plitudes of the jumps. With these, the equations
of motion become

n ·
[[

Ṫ
]]

= ρV 2a, n ·
[[

Ṁ
]]

= jV 2A. (15)

Representing Ṫ and Ṁ through W we obtain

n ·

(

W,FF : (n⊗ a) +W,F∇P

... (n⊗A)

)

= ρV 2a,

n ·

(

W,∇PF : (n⊗ a) +W,∇P∇P

... (n⊗A)

)

= jV 2A.

These equations can be written in matrix form:

Q(n) · ξ = V 2B · ξ, (16)

where ξ = (a,A) and

Q(n) ≡

[
W,FF{n} W,F∇P{n}

W,∇PF{n} W,∇P∇P{n}

]

,

B ≡

[
ρI 0

0 j1

]

.

Here 1 is the four-dimensional unit tensor [37].
Let us introduce the following saturation opera-
tion [18] for an arbitrary Mth-order tensor H and
vector n. For H and n represented in a Cartesian
basis ik (k = 1, 2, 3), that is

H = Hi1i2...iM ii1 ⊗ ii2 ⊗ . . .⊗ iiM
︸ ︷︷ ︸

M times

, n = nkik,

H{n} denotes the following (M − 2)th-order ten-
sor:

H{n} ≡ Hi1i2...iMni1niM−N
ii2 ⊗ . . .⊗ iM
︸ ︷︷ ︸

M−2 times

. (17)

Q(n) is called the acoustic tensor for the medium
with microstructure. Due to the symmetry of
the mixed derivatives of W , the tensor Q(n) is
symmetric. Hence its eigenvalues, which are the
squared velocities, are real. But for positivity of
V one also needs the positive definiteness ofQ(n):

ξ · Q(n) · ξ > 0, ∀ ξ 6= 0, ∀ |n| = 1. (18)

Inequality (18) coincides with the strong elliptic-
ity condition for the equilibrium equations for a
micromorphic continuum.
Condition (18) also has the form

n ·

[

W,FF : (n⊗ a) +W,F∇P

... (n⊗P)

]

· a

+n ·

[

W,∇PF : (n⊗ a)

+W,∇P∇P

... (n⊗A)

]

·A > 0,

∀ a 6= 0, ∀ A 6= 0, ∀ |n| = 1,

and, moreover, is equivalent to

d2

dε2
W (∇r+ εn⊗ a,P,∇P+ εn⊗A)

∣
∣
∣
∣
ε=0

> 0,

∀ |n| = 1, ∀ a 6= 0, ∀ A 6= 0.

(19)
The latter form is the condition of the strict rank-
one convexity of W .
As an example, let us consider a micromorphic
material with the energy (10). Here (18) reduces
to two inequalities

λ(n · a)2 + (µ+ κ)(n · n)(a · a)

+ (µ− κ)(n · a)2 > 0,

γ(n · n)(A : A) > 0,

which result in

µ+ κ > 0, λ+ 2µ > 0, γ > 0. (20)

The same conditions can be derived for the phys-
ically linear micromorphic material undergoing
large deformations.
Obviously, conditions (20) are weaker than (11)
and (12). Moreover, there are no constrains for α
and β. In particular this means that unlike non-
linear elasticity, the strong ellipticity conditions

4



Page 5 of 8

Acc
ep

te
d 

M
an

us
cr

ip
t

are too weak for real wave propagations [35]. A
similar situation can be observed for micropolar
materials [17, 18]. Nevertheless, (20) provides for
the propagation of waves of weak discontinuity in
micromorphic solids.
If (20) holds, the velocities of acceleration waves
calculated from the generalized spectral problem
(16) are given by

V1 =

√

2µ+ λ

ρ
, V2 =

√
µ+ κ

ρ
, V3 =

√
γ

j
. (21)

Here V1 and V2 correspond to the longitudinal and
transverse acceleration waves, respectively. The
corresponding eigenvalues are given by

ξ1 = (n, 0), ξ2α = (eα, 0), (22)

where eα (α = 1, 2) are unit vectors tangent to
S and n · eα = 0. Thus V2 is a multiple eigen-
value with two corresponding eigenvectors ξ21 and
ξ2 2. V3 is the velocity of the acceleration wave of
micro-distortion; it is also a multiple eigenvalue of
(16) with multiplicity 9. The corresponding set of
eigenvectors is given by

ξ333 =(0,n⊗ n), ξ33α = (0,n⊗ eα), (23)

ξ3α3 =(0, eα ⊗ n), ξ3αβ = (0, eα ⊗ eβ). (24)

Obviously, the acceleration waves and accelera-
tion waves of micro-distortion are decoupled. Fi-
nally, we conclude that the acceleration waves in
the micromorphic continuum are carriers of vari-
ous jumps of weak discontinuities.

4. Acceleration waves in relaxed micromor-

phic continuum

For small deformations, the relaxed micromorphic
medium model was introduced by Neff et al. in a
series of papers [29, 35, 36]. Unlike the classical
micromorphic model, the relaxed micromorphic
model allows us to describe complete band gaps in
acoustic wave transmission problems.Within the
framework of this model, the strain energy density

is

W =
λ

2
tr 2ε+

µ+ κ

2
ε : ε+

µ− κ

2
ε : εT

+
α

2
tr 2e+

β

2
e : e

+
γ

2
(∇× p) : (∇× p). (25)

Here µc = 2κ ≥ 0 is called the Cosserat couple
modulus. If κ = 0 the strain energy density de-
pends only on symmetric part of ε. The nonlinear
counterpart of (25) is

W = W (F ·P−1,P ·PT , (∇×P) ·P−1) (26)

and the Lagrangian equations of motion trans-
form into

∇·T+ρf = ρv̇, ∇×M−W,P+ρm = j P̈, (27)

where
T = W,F, M = W,∇×P. (28)

Note that unlike the general micromorphic model,
here M is a second-order tensor.
Applying the same techniques, we derive the for-
mula for the acoustic tensor

Q(n) ≡

[
W,FF{n} W,F∇×P{n}

W,∇×PF{n} W,∇×P∇×P{n}

]

.

The strong ellipticity conditions now become

d2

dε2
W (∇r+ εn⊗ a,P,∇P+ εn×A)

∣
∣
∣
∣
ε=0

> 0,

∀ |n| = 1, ∀ a 6= 0, ∀ A 6= 0.

(29)
For (25), inequality (29) takes the form

λ(n · a)2 + (µ+ κ)(n · n)(a · a)

+ (µ− κ)(n · a)2 > 0,

γ(n×A) : (n×A) > 0,

which also imply (20). However in this case (29) is
violated as ξ ·Q(n) ·ξ = 0 if ξ = (0,n⊗e) for any
vector e. So the general strong ellipticity condi-
tion for the equilibrium equations for the relaxed
micromorphic continuum is violated. Here only

5
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the weak form of the strong ellipticity condition
holds:

ξ · Q(n) · ξ ≥ 0, ∀ ξ 6= 0,

which can be treated as a counterpart of the
Hadamard inequality in nonlinear elasticity [2,
3]. Nevertheless, note that the corresponding
boundary-value problems are still well-posed [40],
including the case κ = 0 (µc = 0). Results of this
type are based on Korn’s inequality for incom-
patible tensor fields [41]. For κ = 0, the positive
definiteness of the strain energy density is violated
but the conditions (20) are still fulfilled. The ve-
locities of acceleration waves are given by (21),
whereas the corresponding eigenvectors are (22)
and (24). So, (23) are excluded. This means that
in the relaxed micromorphic continuum we have
fewer possible propagating weak discontinuities.

5. Conclusion

We have formulated conditions for propagation
of acceleration waves in the nonlinear micromor-
phic continuum including the relaxed micromor-
phic model. The formulas for the acoustic tensors
were derived. We have shown that for the relaxed
micromorphic continuum, the general strong el-
lipticity condition is violated. Nevertheless, for
both models there exists a set of weak discon-
tinuity surfaces propagating with certain veloc-
ities. Under the derived conditions, there are
three acceleration waves: one longitudinal with
velocity V1, and two transverse with velocity V2.
Within the general model, there are nine acceler-
ation waves of micro-distortion traveling with ve-
locity V3, whereas for the relaxed micromorphic
continuum there are only six acceleration waves
of micro-distortion propagating with velocity V3.

Acknowledgement. V.A.E. acknowledges fi-
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nonlinear analysis, wave dynamics and mechanics
of composites for research and design of modern
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[1] G. A. Maugin, Nonlinear Waves in Elastic Crystals,
Oxford University Press, Oxford, 1999.

[2] C. Truesdell, Rational Thermodynamics, 2nd Edi-
tion, Springer, New York, 1984.

[3] C. Truesdell, W. Noll, The Non-linear Field Theories
of Mechanics, 3rd Edition, Springer, Berlin, 2004.

[4] M. Ciarletta, B. Straughan, Poroacoustic acceleration
waves, Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences
462 (2075) (2006) 3493–3499.

[5] B. Straughan, Waves and uniqueness in multi-
porosity elasticity, Journal of Thermal Stresses 39 (6)
(2016) 704–721.

[6] M. Ostoja-Starzewski, J. Trȩbicki, Stochastic dynam-
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Highlights 

“Acceleration waves in the nonlinear micromorphic continuum”  

by Victor A. Eremeyev, Leonid P. Lebedev  and Michael J.Cloud 

 

• We have formulated conditions for propagation of acceleration waves in the nonlinear 
micromorphic continuum including the relaxed micromorphic model. 

• The formulas for the acoustic tensors were derived. 

• We have shown that for the relaxed micromorphic continuum, the general strong 
ellipticity condition is violated. 

• Nevertheless, for both models there exists a set of weak discontinuity surfaces 
propagating with certain velocities. 


	Introduction
	Governing equations for the micromorphic continuum
	Acceleration waves
	Acceleration waves in relaxed micromorphic continuum
	Conclusion

