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Two-Class Weather Classification
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Abstract—Given a single outdoor image, we propose a collaborative learning approach using novel weather features to label the
image as either sunny or cloudy. Though limited, this two-class classification problem is by no means trivial given the great variety of
outdoor images captured by different cameras where the images may have been edited after capture. Our overall weather feature
combines the data-driven convolutional neural network (CNN) feature and well-chosen weather-specific features. They work
collaboratively within a unified optimization framework that is aware of the presence (or absence) of a given weather cue during
learning and classification. In this paper we propose a new data augmentation scheme to substantially enrich the training data, which is
used to train a latent SVM framework to make our solution insensitive to global intensity transfer. Extensive experiments are performed
to verify our method. Compared with our previous work and the sole use of a CNN classifier, this paper improves the accuracy up to
7 − 8%. Our weather image dataset is available together with the executable of our classifier.

Index Terms—weather understanding, image classification, structure SVM.

✦

1 INTRODUCTION

We address the problem of two-class weather classification
from a single outdoor image. This seemingly easy task
for humans – to tell whether a given image is sunny or
cloudy – turns out to be challenging. This paper attempts
to provide technical insight and solutions to address the
above issues, while acknowledging that our work is a first
but significant step for weather understanding from single
images. Note that naive schemes based on image brightness
or color/intensity statistics (Figures 1 and 2) are doomed to
fail in this two-class classification problem. While hardware
solutions relying on expensive sensors are employed, for
centuries human vision is still the most powerful tool for
weather observation. If we can exploit existing surveillance
and smartphone cameras, which are found almost every-
where, it may be possible to turn human weather obser-
vation into a powerful and cost-effective computer vision
application.

Previously, in [37], we demonstrated that careful engineer-
ing of well-chosen weather-specific features employed in
supervised learning can adequately address this two-class
weather classification problem. In this paper, we further
investigate the efficacy of the state-of-the-art convolutional
neural network (CNN) in solving the problem. The CNN
approach as well as the CNN feature is data-driven, which
is in contrast to hand-picked weather features in [37]. As
will be shown in the experimental section, we found that
the concatenation of the CNN feature and weather-specific
features reports the best performance, namely, a 7–8% im-
provement over the sole use of a CNN classifier that is
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Fig. 1. (a) A sunny image with mean lightness 32.41. (b) A cloudy image
with mean lightness 58.25.

trained end-to-end using the given training data. The data-
driven CNN feature and the weather-specific features work
together to exploit the synergies between the two. Based on
this new overall weather feature, our approach consists of
the following three technical contributions:

First, we describe the design and implementation of var-
ious weather cues, which are used to form the weather
feature [37]. These everyday weather cues (such as sky,
shadow, reflection, contrast and haze) are what humans are
still using for weather observing – a hazy or grayish sky
characterizes a cloudy day while hard shadow cast on the
ground indicates a sunny day, as illustrated in Figure 3(a).
Conversely, in the absence of any weather cues, even we
humans may not be confident in labeling the weather type,
as illustrated in Figure 3(b). In this paper, we concatenate
the CNN feature with the above weather-specific features to
form the overall weather feature in training and testing.

Given the overall weather feature, the next question is how
to properly learn the classifier. The main issue is that the
weather cues used in this paper may not be all available in
an image – e.g., not every outdoor image has a sky region
– which is problematic to a discriminative training process
adopted by traditional classifiers such as SVM. To address
this issue, our second technical contribution consists of a
collaborative learning framework using homogeneous voters
– the outdoor images are clustered where images in the same
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Fig. 2. Pixel intensity distributions in the lightness L channel in the
LAB color space of 5K cloudy images and 5K sunny images. It is
almost impossible to draw a decision boundary between the two types
of weather.

cluster are similar in terms of weather cues. This allows
us to build a classifier in a conventional way thanks to
the homogeneity in each cluster. The final labeling is the
weighted voting result of the cluster classifier outputs. The
cluster closer to the testing image is given a higher weight.
As will be explained in the following, homogeneous voters
are learned under a unified optimization framework.

To make our system more robust to training images har-
vested from the web, we propose a novel strategy to enrich
our training set by synthesizing for each training image
its weather counterpart images, which belong to a subclass
of images of the same scene taken under different camera
settings and/or after photo editing that can be characterized
by a global color/intensity transfer. The training image and its
synthesized weather counterparts together are then used in
latent SVM learning which encourages each training sample
and its counterparts to have the same weather label. Our
synthesis strategy is scalable. That is, the production of
the weather counterparts given a training image is fully
automatic, which requires no further data collection or
annotation by humans.

Finally, we perform quantitative comparison with a number
of typical baselines including SVM, Adaboost [58], [62],
and prior weather-related methods [26], [61], [46]. Our final
contribution consists of a 10,000-image weather dataset in
which the images are properly selected and annotated. This
is used to evaluate our learning and labeling strategy.

This manuscript extends its conference version [37] along
the following dimensions:

• The overall weather feature combines the data-
driven CNN feature and handcrafted weather fea-
tures.

• A data-driven approach for synthesizing weather
counterparts to make scalable data collection and
training; the new system is insensitive to global in-
tensity transfer and achieves improvement over [37].

• A latent SVM framework is proposed to capture a
wide variety of global intensity transfer.

• More experiments are conducted to evaluate the
proposed method.

The paper is organized as follows. In Section 2 we review the
related work. In Section 3, we introduce our weather-specific
and data driven CNN features. In Section 4, we describe
our weather dataset and weather counterparts generation.
Section 5 presents the collaborative and latent SVM learning

(a)

(b)

Fig. 3. Weather cues. (a) Common weather cues in red rectangles. (b)
Regions in (a) lacking any weather cues.

of our weather classifier. Section 6 discusses our results on
weather classification. We conclude this paper in Section 7.

2 RELATED WORK

This section gives an overview of the related work on
weather understanding, which can be regarded as a cate-
gory in scene recognition. The background of the convolu-
tional neural network (CNN) is also investigated since the
CNN feature is an important component in our computa-
tional framework.

2.1 Weather Understanding

2.1.1 Weather Understanding with Hand-crafted Feature

Weather understanding plays a vital role in many real-world
applications such as navigation control in self-driving cars.
Automatic understanding of weather conditions enhances
road safety by, for instance, controlling the vehicle speed
in response to real-time weather situation [61], [46]. In [20],
a built-in weather understanding component was found in
an accurate navigation system that involves sky detection.
Raindrops have been a frequently used cue for weather
recognition, and in [23], discriminative raindrop templates
were learned to infer weather situation. In [50], a photomet-
ric stereo-based method was proposed to estimate weather
situation. Multiple images were required to estimate the
illumination situation of a given site. Therefore, only a few
sites (e.g. popular tourist sites) can meet this requirement.
In [40] Narasimhan et al. proposed a physics-based model to
capture multiple scattering of light rays from a source to the
camera. This model works well for cases where scattering
effect is strong, such as fog, haze, mist and rain at night.
In [24], 40 transient attributes were studied and a model
was learned to predict these attributes given a single image.
The approach is standard “features + SVM” scheme where
the features used are standard (e.g. HOG, SIFT) which may
not capture well weather characteristics. In [65] a multi-class
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weather classification method was described using multiple
weather features and multiple kernel learning.

In [7], [51], weather types were recognized by the motion of
cloud, snow flakes, etc. These weather-related phenomena
depict periodic movement which provides specific weather
patterns for detection.

Though the above methods have shown good performance
in their respective applications, custom devices or condi-
tions were often required. Exploiting existing smartphones
which are cheaper, and surveillance cameras which can be
found or installed almost everywhere, can make it possible
to turn general weather observation into a powerful and
cost-effective computer vision application.

2.1.2 Weather Understanding with CNN

Our problem is related to classification which can also be
solved by Convolutional Neural Networks (CNN). Deep
CNN has led a series of breakthroughs in image classifi-
cation [22]. It is a feed-forward, end-to-end multilayered
neural network inspired by the organization of the animal
visual cortex. The convolutional neural network has found
applications in image and video recognition tasks, such as
video classification [19], object detection [11], and action
recognition [1]. Excellent models, such as AlexNet [22],
Network-in-Network [35], VGG [52] and ResNet [14] have
been developed. Unlike general image classification (e.g. ob-
ject classification), weather classification relies on weather-
sensitive cues (as we shall demonstrate in the experiment
section) which is somewhat similar to fine-grained recogni-
tion in the level of details required, while the deep CNN is
excellent in capturing global scene semantics which needs
to be integrated to make such recognition succeed [64], [34].
There is only a handful of research attempts in applying
CNN to weather understanding. In [9], convolutional neural
networks (VGG) is directly used in classifying weather, and
in [56] to predict outdoor ambient temperature and the
time of the year. The CNN filter may however miss subtle
weather cues inherent in the input image.

2.2 Scene Understanding

Weather understanding is a specific case of scene recog-
nition. General scene recognition focuses on discovering
discriminative scene structure. As explained in [45], scene
structure can be regarded as a combination of parts which
are called regions of interest. These discriminative parts pro-
vide a powerful representation of the scene. Thus exploiting
them in relevant tasks has recently become a popular trend.

The work [48], [30], [31], [53], [32], [17] discovered parts
with specific visual concepts. Each learned part is expected
to represent a single or a cluster of visual objects, which
is beneficial to alleviate visual ambiguity. Meanwhile, un-
supervised discovery of discriminative parts has received
much attention. Though handcrafted part filters are easy
to comprehend, they strongly rely on human labeling and
are not scalable. Unsupervised frameworks [55], [18], [21],
[28], [42], [43], [49], [66], [32], [33] can be more practical and
efficient especially for large data sets.

Recently, various mid-level representations have been em-
ployed to enhance the discriminative power in classifi-
cation [3], [30], [31], [66]. State-of-the-art methods [53],
[32], [17] proposed discriminative parts and used them
to construct mid-level representation, e.g., response maps
obtained from convolution with part filters. These mid-level
representations are fed into discriminative classifiers and
evaluated on different scene classification datasets. Mid-
level representation can be a better alternative or comple-
mentary to traditional low-level representations [6], [36],
[41], [58], [27], [44], [62], because mid-level representation
is capable of differentiating among a large variety of inter
and intra categories as described in [63].

We note the methods in scene classification cannot be em-
ployed to solve our problem. Though weather is part of
the scene, it is not as concrete (e.g., no closed boundary) as
objects such as trees, buildings, and mountains, thus risking
information loss when we apply these methods.

2.3 Weather Applications

Weather cues have been used to enable various applications.
In [2], deep convolutional neural networks was used to esti-
mate transient attributes including weather, time of the day,
season and subjective properties of a given scene. In [12], the
interaction between the appearance of an outdoor scene and
the ambient temperature was studied, where the statistical
correlations between image sequences from outdoor cam-
eras and temperature measurements were derived. In [15],
weather conditions with the scene structure and position
of the sun were used to estimate the time and location the
image was captured. Snow recognition was studied in [57],
which enables the production of satellite maps of snowfall
using geo-tagged, time stamped images from Flickr. Cloud
cues were explored in [59], where a method was presented
for estimating the geometry of an outdoor scene. Another
work that used cloud cues is [16], where cloud motion
enables geometric calibration of static outdoor cameras.

3 THE OVERALL WEATHER FEATURE

We compute for each image the overall weather feature, a 4717-
D feature consisting of two parts, namely the CNN feature
and five weather features. The feature vector is formed by
concatenating the six components

[ fsk; fsh; fre; fco; fha; fcn ] (1)

where the first five features, namely, sky, shadow, reflection,
contrast and haze, correspond to a key weather cue to be
defined shortly. We incorporate the CNN feature [22] fcn

to describe the image in general, which is extracted from
a learned two-class weather CNN model. Since not all of
these cues are necessarily present in a given outdoor image,
we also compute the existence vector

[ vsk; vsh; vre; vha; vcn ], (2)

where each scalar score in [0, 1] indicates the confidence
that the corresponding weather cue is present in the given
image and in particular, vcn is the confidence score of the
CNN classifier. Since image contrast difference exists in both
sunny and cloudy photos, vco is always 1 and excluded.
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3.1 Weather Feature
3.1.1 Sky
If present, the sky is the most important cue for weather
labeling. A clear, cloudless sky is blue as air molecules
scatter blue light more than red light. Cloud is made of tiny
water droplets which make the sky look grayish white.

To define vsk, the sky region is detected in a pixel-wise
manner in the following steps. We respectively collect 20,000
sky and non-sky patches, each of size 15 × 15, and extract a
131 dimensional feature, which contains the SIFT descriptor
(128D) and mean HSV color (3D). This feature was sug-
gested in [54]. Then a random forest classifier is learned on
the two patch classes. Now, given an image, we uniformly
sample 15×15 patches and test their labels (sky or non-sky)
as seeds. Sky region can be segmented by implementing
graph cuts on those seeds (see Figure 4(a)–(b)). Let A be the
sky to image area ratio. We set vsk ∈ [0, 1] as

vsk =

{
1 if A > 0.5

min{2A, 1} otherwise
(3)

To define the fsk vector we have considered various alter-
natives. Straightforward color histogram feature in the sky
region suffers from two defects. First, possible sky colors
(both cloudy and sunny) are sparse, thus yielding most color
bins with the zero value (Figure 4(c)). Second, no adequate
consideration is given to color contrast. In this paper, we
define fsk using color-pair dictionary coding as follows.

We collect 2,000 images with detected sky regions. Neigh-
borhood pixels in pairs are extracted from the sky region to
form a large number of 6D vectors, each of them consisting
of a total of 6 RGB values. This process results in about
100,000 pixel pairs. We then learn a sky color-pair dictionary
D ∈ R

6×256 on the vectors using the method described
in [38], thus producing a set of neighborhood-pixel vectors
sparsely coded over the learned dictionary, expressed as

min
βi

‖pi −Dβi‖
2
2 + λ‖βi‖1, (4)

where pi ∈ R
6×1 is the ith vector, βi ∈ R

256×1 is the sparse
code over D. We solve Eq. (4) using [58]. Our final fsk is
filtered by max pooling of all βi. That is, the jth bin of our
feature is set to maxi{βi,j} where βi,j is the jth bin of βi.

Max pooling can preserve subtle sun-to-cloud contrast in
the feature representation. Figure 4(d) shows a typical fsk

plot. In comparison to color histogram, our 256-D fsk covers
the full range of the histogram and encodes color contrast
information as well. The advantage over color histogram
was demonstrated in [37].

3.1.2 Shadow
Hard shadow boundaries form another useful cue because
they are often found in outdoor photos shot in sunny days.
To compute vsh and fsh, we resort to shadow detection
tools. Unlike sky detection, shadow detection in an image
is still a challenging problem. Our extensive evaluation
indicates while working well in sunny images, state-of-the-
art shadow detection often fails for cloudy images, where
dark regions are often misclassified as shadow as shown in
Figure 5.

(a) (b)

(c) (d)

Fig. 4. Sky. (a) input image, (b) detected sky region, (c) color histogram
of the sky, (d) plot of fsk.

(a) (b)

Fig. 5. Shadow detection results of [25] for (a) a cloudy image and (b) a
sunny image. Shadow detection in cloudy images is vulnerable to false
detection.

Notwithstanding, we apply [25], rank the resulting shadow
boundary confidence scores and take the 10th highest score
to set vsh. This serves as a rough relative indicator in our
method. A larger vsh represents possibly stronger shadow
presence. High precision is not needed in the estimation.

Using a data-driven approach we design our fsh by relying
on the shadows detected in the training images restricted
to sunny outdoor photos. If a given boundary is similar
to those training shadow boundaries, we regard this as a
shadow boundary typical of a sunny image.

In detail, initially, for all of the sunny images in the training
set, we apply [25] to detect shadow boundaries and gen-
erate their corresponding confidence scores and boundary
descriptors. For each image, we keep only the top 10 most
confident shadow boundaries, and save them to the pool P
which has 10V samples, where V is the number of sunny
images in the training set.

Given a boundary, we measure its likelihood to be a shadow
boundary typical of a sunny photo by the mean distance to
its K-nearest (K = 5) neighbors in P . Two examples of
K-nearest neighbor matching are shown in Figure 6. The
Euclidean distance between the two boundaries descriptor
vectors was used [25]. Given an image, we obtain its top
10 most confident shadow boundaries and compute their
likelihood as described above to form the 10-D fsh vector.
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5 Nearest NeighborsTesting

Fig. 6. K-nearest neighbor matching in P. Shown in the blue rectangles
are the five nearest neighbors.

( )a

( )f( )b

( )c ( )g( )e

( )h( )d

Fig. 7. Reflection cue. A sunny image with strong sunlight reflection in
(a) versus a cloudy image with inherently white regions in (e). (b) and (f)
are the corresponding alpha mattes. In (c) and (g), red and blue points
indicate background and foreground seeds used in alpha matting. (d)
and (h) are distributions of the alpha maps, taken as the fre cue.

3.1.3 Reflection

Strong sunlight reflected from shiny objects is another pow-
erful cue. Except for a perfect mirror reflector, sunlight
reflection is usually characterized by a brightly lit region
in the image where pixels in the region center are brightest
and saturated in nearly all color channels. The reflection
intensity decays from the center toward the boundary of the
reflection region. An example was shown in Figure 7, which
compares strong sunlight reflection with the reflection from
a white matte/dull object.

We set vre to 1 if white pixels are present in the image and 0
otherwise. To construct fre, we apply image matting [29] at
the detected white pixels. The definite foreground region
consists of white pixels, and definite background region
consists of a closed curve enclosing the foreground seeds.
We then estimate the closed curve under the constraint that
the distance between pixels along the curve and enclosed
foreground seeds should be larger than a threshold (0.5 in
our experiments). This closed curve can be computed by
simple dynamic programming. An example was shown in
Figure 7(b)–(c).

Given the matting result (e.g., Figure 7(b) and (f)) we plot
the alpha matte distributions as shown in (d) and (h), and
then assign the 100-bin alpha matte histogram as our 100-D
fre vector.

3.1.4 Contrast

Outdoor images captured in sunny and cloudy days exhibit
different global and local saturation contrast. To compute
fco, we utilize contrast information encoded as the percentile
in image saturation. For example, a value at the 20th satu-
ration percentile means that 20% of the image pixels are
grayer. Clearly, if all saturation percentiles are the same for
a given image, the saturation contrast is low. If on the other
hand the 50th percentile is at 100 (saturation level) while the
49th percentile is 0, this image is very likely to have a high
saturation contrast. In our paper, we use the C channel of
LCH color space as our saturation map.

We collect all saturation percentile ratios to build fco and
leave the selection process to the final classifier. Specifically,
we denote pi as the ith percentile in the saturation map.
The set of all saturation percentile ratios is given by {r|r =
pi/pj ,∀i > j}, where i and j are multiples of 5. We thus
obtain 171 percentile ratios in total, which are used to form
our 171-D fco vector. An example is shown in [37].

3.1.5 Haze

Cloudy weather may come with haze. Haze priors have
been well studied in computer vision: the dark channel prior
presented in [13] is effective. Similarly, we compute the dark
channel as

J k(x) = min
r,g,b

{ min
y∈Ω(x)

{J c(y)}}, (5)

where J c is a color channel and Ω(x) is a local patch (with
8 × 8) centered at x. Most haze-free regions have a low
intensity in the dark channel. We measure the haze level
and set vha of a given image as the median value of its dark
channel.

We define the fha component with the consideration that
haze becomes thicker when a region is distant from the
camera. These regions commonly exist at the top of an
outdoor image. We consider haze location by using a spatial
pyramid scheme. The input image is resized into 512× 512.
The dark channel in each image is uniformly partitioned
into 22, 42, and 82 non-overlapping regions to obtain 84
sub-regions. We use the median value of the dark channel
intensity in these regions to form the 84-D fha vector. An
example of haze feature is shown in [37].

3.2 CNN Feature

Our new method in this paper includes the CNN feature
which incorporates global discriminative information of the
image. We train a CNN model on the two-class image set;
the model we used is the AlexNet [22]. As in standard
setting [11], the 7th layer neurons of the AlexNet model
is extracted to form our 4096D feature fcn. This feature
is effective when the CNN classifier is confident with its
prediction. With the confidence scores of sunny and cloudy
image scnn and ccnn (scnn + ccnn = 1), we measure vcn as

vcn = 2max{scnn, ccnn} − 1, (6)

where vcn is in the range of [0, 1]. Thus, only discriminable
feature of the CNN model contributes to the system.
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(a) ISO = 200 (b) ISO = 800 (c) ISO = 1600 (d) (e) (f)

Fig. 8. Camera parameters and photo editing. (b) and (c) are weather counterparts of (a). These weather counterparts are obtained by adjusting
camera parameters while capturing the same scene. Here, a high ISO value makes the picture sensitive to light. (e) and (f) are weather counterparts
of (d). These weather counterparts are obtained via editing the original photos.

4 WEATHER IMAGES AND COUNTERPARTS

DATASET

We created a new weather dataset that contains 10,000
images for training and testing. The dataset and the classifier
executable are publicly available. The training images col-
lected from the web were taken by different cameras, under
different settings, and might have been edited as well. As
most of our proposed weather features are designed based
on scene illumination, we describe a new strategy to make
our system insensitive to camera settings and photo editing
that can be defined by a global transfer function.

A robust weather recognition system should output a uni-
form weather label for an image as well as its weather
counterpart images, which are images of the identical scene
transformed by a global intensity mapping, and hence they
should have the same weather label. Figure 8 shows exam-
ples of weather counterpart images.

To make our data collection scalable, we propose to au-
tomatically generate weather counterparts for the training
data. In the following, we first describe the construction of
the weather dataset, and then present a perceptual study
to validate the dataset, followed by detailing our learning-
based weather counterpart generation.

4.1 Weather Image Dataset

Our weather dataset contains sunny and cloudy images ob-
tained from three sources: Sun Dataset [60], Labelme Dataset
[47] and Flickr. The minimum and maximum dimensions of
the images are respectively 600 and 1500.

To avoid bias, the helpers recruited to collect and label im-
ages were unaware of the purposes or methods used in our
experiments. They worked with their own understanding,
and collected each 14,000 outdoor images, in which sunny
and cloudy images are in equal proportion.

We discarded very similar images by first computing the
color histogram distance for all of the image pairs, and
then rejected those identical or highly similar. As a result,
1,121 sunny images and 812 cloudy images were rejected.
Next, we asked two helpers to independently check the
remaining images (5,879 sunny and 6,188 cloudy). Images
labeled as ambiguous weather condition by either or both
of the helpers were discarded. A total of 5,467 sunny images
and 5,612 cloudy images remained after this round. Finally,
we asked the third helper to pick 5,000 sunny and 5,000
cloudy images in the final dataset.

mean (Average) variance (Average)
Sunny 0.88 0.03
Cloudy 0.85 0.02

TABLE 1
The mean and variance of the mean user-assigned probabilities not

equal to 0 or 1.

Average regression error
LLC [58] 0.442 ± 0.027
ScSPM [62] 0.437 ± 0.031

CNN classifier [22] 0.032 ± 0.002
Ours 0.026 ± 0.003

TABLE 2
Regression error (mean ± variance) of different methods. The

momentum, weight decay and learning rate of CNN are 0.0001, 0.9 and
0.005 respectively. The SVM step in LLC and ScSPM is replaced by

SVR.

4.2 Perceptual Validation

We first validate our weather image dataset using a user
study. A total of 11 participants were recruited for the
validation experiment. The participants consisted of 5 males
and 6 females whose ages ranged from 26 to 41. All of the
subjects reported normal or corrected-to-normal vision with
no color-blindness, and reported that they were familiar
with the outdoor scenes to be tested in the study. The par-
ticipants were volunteers who were unaware of the purpose
of the experiment.

We asked the participants to assign a sunny/cloudy score
to each image where the two assigned scores should sum
up to 1. We found that 97.6% of the images were assigned
a score of 1 for the designated class by all of the subjects,
which indicates that the weather type of most of the images
in our dataset are unambiguous.

For the remaining 3.4% images, we compute the mean and
variance of the user-assigned “probability scores” across
different subjects, and report the average scores in Table 1.
If we take 0.5 as the threshold for the “mean probability,”
the user-assigned weather type has 100% accuracy. We
also regress these user-assigned probability scores, and the
regression errors are shown Table 2. Note on the one hand in
the evaluation in the following sections, we do not use these
user-assigned probabilities as the measurement metric due
to the fact that the assigned scores are subjective, although
the average score across different subjects is used here. On
the other hand, we believe this may lead to interesting and
worthwhile future work on using user-assigned probability
scores (i.e., user’s observation) in performance evaluation.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Examples of weather counterpart mapping. (b) and (c) are
weather counterparts of (a). We build the mapping function from (a) to
(b)-(c) respectively denoted as H1 and H2. Given the testing image
(d), (a) is among those visually similar to (d) in the weather counterpart
dataset. (e) and (f) are respectively the mapped results of H1 and H2

with input (a).

4.3 Weather Counterpart Image Generation

Now, we build a dataset for learning weather counterpart
images. We capture 1,000 outdoor images with different
camera parameters. To guarantee pixel-wise alignment, a
tripod was used during capture. For each image, 4 weather
counterpart images were captured using different camera
parameters. The ISO setting is the most important camera
parameter and we found it sufficient to capture a large set
of tone variances in different cameras.

In addition, we recruited seven helpers to edit the 1,000 out-
door images using Photoshop. Five of them were without
computer vision background. To avoid editing bias, these
subjects were given no specific instruction except that their
editing should not change the weather label of the image.
The editing operation mainly includes gamut mapping, tone
mapping, sharpening, blurring, etc. For each image, 4 edited
versions are produced.

Therefore, for each of the two cases we have 5 (1 original +
4 additional) images, which are ordered differently to form
20 image pairs after permutation. Finally we obtain a total
of (1000+1000)× 20 image pairs, which are named weather
counterpart image pairs.

Weather Counterpart Mapping Functions We now learn
the mapping relationship from a given image to its weather
counterpart. We assume the RGB color of an outdoor image
(denoted as I) and its weather counterpart image (denoted
as Io) has the mapping relationship expressed as

{ro, go, bo} = H(r, g, b), (7)

where {r, g, b} and {ro, go, bo} are the input and mapped
RGB color vectors. Eq. (7) has only 3 variables, so we can
build a 3D array to turn this mapping operator into a table
look-up operation.

The table construction is as follows. The intensity in each
variable (channel) is quantized into 256 bins, which pro-
duces the mapping table with dimension 256 × 256 × 256.
We define vp and v

o
p as the quantized RGB vector of pixel

color at p in I and Io respectively. For an input (r, g, b), by
defining c = [r, g, b]T , the output of the mapping table is

H(r, g, b) =
1

K

∑

p∈D(c)

{exp[−
1

σ2
‖vp − c‖2

2]v
o
p + γc}, (8)

where

D(c) = {q|‖vq − c‖2
2 ≤ δ,∀q ∈ Θ}. (9)

Here Θ is the pixel set of the image. The K in Eq. (8) is a
normalization factor, which is given by

K =
∑

p∈D(c)

exp[−
1

σ2
‖vp − c‖2

2] + γ. (10)

In our experiments, we set δ = 45, γ = 0.1 and σ = 5.
The output of H(r, g, b) is the weighted combination of
pixel-pairs mapping whose input RGB vector is close to
[r, g, b]T . Therefore, the mapping relationship of I and Io

can be smoothly transferred to table H. If we cannot find
sufficient number of RGB vectors close to [r, g, b]T in the
original image,

∑
p∈D(c) exp[− 1

σ2 ‖vp −c‖2
2] is small, so that

we trust more the original input c in this case.

Weather Counterparts Generation We produce 40,000
mapping functions for all 40,000 weather counterpart pairs
in our dataset. Each function captures a color transform
from the first image to the second in the corresponding
weather counterpart pair. Given a training image, we use
the mapping where the input images are similar to produce
the weather counterpart images for training.

We use the color GIST descriptors [8] to extract the color
and context information. We pick d = 50mapping functions
whose input image is closest to the given image according to
color GIST features, and then use the d mapping functions
to produce d weather counterpart images. Figure 9 shows
examples of weather counterpart images.

5 COLLABORATIVE LEARNING WITH HOMOGE-
NEOUS VOTERS

Traditional classifiers such as SVM cannot achieve good
performance on our overall weather feature because they
assume all of the components are present simultaneously
in every image, which may unfortunately not be the case.
For example, outdoor images do not always contain the sky
region. Images lacking one or more weather cues would
significantly affect SVM’s classification performance.

Our learning strategy is to partition the training images
into disjoint clusters of homogeneous voters, so that voters
closer to a given testing image have more weights when the
weather label is considered.

5.1 Voting Scheme

Our training outdoor images are first partitioned into homo-
geneous clusters according to the existence vector of each
image as defined in Eq. (2). The partitioned sets thus corre-
spond to different weather cue patterns, such as “reflection
+ shadow”, “sky + haze”, and “sky + reflection + shadow”.
Images in the same cluster/pattern are the homogeneous.
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(a)

(b)

Fig. 10. Sample images found in two clusters. (a) “sky + shadow” cluster
with center {0.90, 0.87, 0.26, 0.11}. (b) “sky + haze” cluster with center
{0.94, 0.24, 0.27, 0.84}, where {vsk, vsh, vre, vha} is composed of the
respective existence scores.

In implementation, we partition the set of training images
intoM subsets {Ω1, . . . ,ΩM} based on the existence vectors
using hierarchical clustering [10]. We set the cluster error
threshold to 0.5 in terms of Euclidean distance. M can be
found automatically. We denote the set of cluster center
vectors as {ê1, . . . , êM}. Figure 10 shows sample images of
two converged clusters and their cluster centers.

In the testing phase, given an overall weather feature x

with existence vector e, the training data whose existence
vectors are similar to e should be used. So our classifier is
implemented using a weighted voting scheme, expressed as

h(x, e) = sign[
M∑

i=1

s(êi, e)ĥi(x)], (11)

where sign[·] is the function outputting 1 (resp. −1) for
non-negative (resp. negative) input, s(êi, e) is a similarity
function under parameter σ:

s(êi, e) =
exp(−

‖bei−e‖2

2

2σ2 )
∑M

i exp(−
‖bei−e‖2

2

2σ2 )
, (12)

and ĥi(·) (defined shortly) is the homogeneous voter trained
using the data in Ωi. Our classifier Eq. (11) gives a larger
weight to the homogeneous voter whose existence vector
pattern is similar to that of the testing data.

5.2 Collaborative Learning

For training image i, we denote the overall weather feature
as xi, and the weather label as yi ∈ {−1,+1}, where −1
and +1 correspond respectively to “cloudy” and “sunny”.

For each homogeneous voter, we model ĥi(·) as

ĥi(x) = sign(

p∑

j=1

ωj,ix(j) + bi), (13)

where x(j) is the jth element of vector x. If each homo-
geneous voter works independently without information
sharing, the classifier in Eq. (13) can be modeled as a
standard SVM [5], expressed as

min
ωj,i,bi,ζi,k

p∑

j=1

ω2
j,i + C

∑

k∈Ωi

ζi,k

s.t. yk(

p∑

j=1

ωj,ixk(j) + bi) ≥ 1 − ζi,k, ζi,k ≥ 0, ∀k ∈ Ωi,

(14)
where p = 4717 is the dimension of the overall weather
feature and C is a constant.

In our framework, we do not train each ĥi(x) independently
because this will lead to a large bias. Our voters work
collaboratively to determine the classification result and we
optimize them together in a unified framework.

By removing sign from ĥi(x), we make the system linear,
which updates Eq. (11) into

h(x, e) = sign[

M∑

i=1

s(êi, e)(

p∑

j=1

ωj,ixk(j) + bi)]. (15)

We make this change because a voter should not be re-
stricted to output binary values. This also helps to indicate
ambiguous situation where sunny and cloudy features are
present at the same time, see Figure 18.

5.3 Latent SVM Learning
Now, for each training sample, we produce d weather coun-
terpart images and extract the 4717-D weather feature on
them. Given training image t, we denote the weather feature
of its lth weather counterpart image as x

l
t (l = {1, . . . , d}).

We also define x
0
t = xt.

For each training sample, we require that its weather coun-
terparts to have the same weather label in the training
phase. This requires us to prevent all the weather counter-
part features from falling into the margin during the training
stage. To this end, we define a latent variable to indicate
which weather counterpart image can produce the mini-
mum classification margin, and encourage the minimum
margin to be large during optimization. According to the
max-margin strategy, we can write the constraints as

min
c∈{0,...,d}

{yk(

p∑

j=1

ωj,ix
c
k(j) + bi)} ≥ 1 − ζi,k,

ζi,k ≥ 0, ∀k ∈ Ωi, ∀i = 1, . . . ,M, (16)

and

min
m∈{0,...,d}

{yt[
M

X

i

s(bei, et)(

p
X

j=1

ωj,ix
m
t (j) + bi)]} ≥ 1 − ξt,

ξt ≥ 0, ∀i = 1, . . . , M, ∀t = 1, . . . , N (17)

where N is the number of training images, c and m are
two latent valuables to indicate which weather counterpart
image produces the minimum classification margin.

Denoting the latent variables as C = {c(1), . . . , c(N)} and
M = {m(1), . . . ,m(N)} for Eqs. (16) and (17) respectively,
the final objective function for h(x, e) is written as
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min
ωj,i,bi,ξt,ζi,k,C,M

M
X

i=1

p
X

j=1

ω2
j,i + C1

M
X

i=1

X

k∈Ωi

ζi,k + C2

N
X

t=1

ξt

(18)

s.t.

min
c(k)∈{0,...,d}

{yk(

p
X

j=1

ωj,ix
c(k)
k

(j) + bi)} ≥ 1 − ζi,k,

ζi,k ≥ 0, ∀k ∈ Ωi, ∀i = 1, . . . , M (19)

min
m(t)∈{0,...,d}

{yt[

M
X

i

s(bei, et)(

p
X

j=1

ωj,ix
m(t)
t (j) + bi)]} ≥ 1 − ξt

ξt ≥ 0, ∀i = 1, . . . , M, ∀t = 1, . . . , N (20)

where C1 and C2 are constants.

Eq. (18) can be regarded as latent SVM whose latent
variables are C and M. We solve Eq. (18) by iteratively
optimizing {ωj,i, bi, ξt, ζi,k} as a standard SVM problem,
and optimize the latent values {C,M} in the constraining
conditions. The following steps are adopted:

1) Keep {ωj,i, bi, ξt, ζi,k} fixed, optimize the latent
{C,M} subject to the constraints (19) and (20). This
is a simple minimization operation.

2) Keep {C,M} fixed, optimize {ωj,i, bi, ξt, ζi,k} by
solving a standard SVM problem which can be
solved using Lagrange multipliers [5].

For the second step, voter collaboration is characterized by
Eq. (20), which forces all of the voters to work together in
the classification. The effectiveness of each voter is governed
by Eq. (19). It guarantees that each voter is learned from
its corresponding homogeneous data. Eqs. (19) and (20)
can accomplish good classification performance. We solve
Eq. (18) using different σs for s(·) in Eq. (12). In the final
stage, we pick the σ with the minimum energy for the
objective function (18).

Similar to other latent SVM solvers, the two-step iteration
converges to a satisfactory {ωj,i, bi} in our experiments. This
is because the difference among feature weather counterpart
images is much smaller than the difference among all of
the training samples. In the two-step iteration, compared to
the first step (latent variables optimization), the second step
plays a more important role in model update with SVM
weights. The latent variable optimization can be regarded
as a fine-tuning step in the feature space, in order to capture
the variance introduced by different camera parameters and
image editing. Empirically, the update stops after 8 − 10
iterations.

6 EXPERIMENTS

We report the classification results under different eval-
uation settings, and further validate our dataset using a
perceptual study. In the following, the CNN feature is the
feature extracted from the CNN model used as input to our
system. The CNN classifier refers to the CNN model trained
end-to-end on our dataset. The visualization of the learned
convolutional filters can be found in the supplementary
material.
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Fig. 11. (a)–(d) are respectively the performance curves of sky, shadow,
reflection, and haze classifiers. The x-axis values are the respective
percentages of selected images (with the highest existence score) in
the dataset. The y-axis is the classification accuracy (in %).

6.1 Classification Results

The training and classification were done using the weather
dataset constructed. We adopted the cross validation scheme
where in each round, 80% of the data were selected ran-
domly as the training set, with the remaining 20% as the
testing set. We ran 5 rounds of experiment and recorded the
mean and variance of the classification accuracy.

On two-class labeling, even random guess can reach 50% ac-
curacy. We use the normalized accuracy given by max{(a−
0.5)/(1 − 0.5), 0}, where a is the raw accuracy obtained.
Thus, the normalized accuracy is within [0, 1] and random
guess is expected to get zero.

6.1.1 Individual Features and Scores

We use SVM to evaluate individual weather features. Note
that it may not be fair for the CNN feature whose perfor-
mance is sensitive to choice of parameters. Nevertheless
we include the CNN feature in this section, and defer the
discussion of its performance under different parameter
settings in a later section. The momentum, weight decay
and learning rate of the CNN are 0.0001, 0.9 and 0.005
respectively to produce the best performance.

Table 3 tabulates the classification results. Although the
overall weather feature vector (4717D) is lopsided to the
CNN feature (4096D), and that using the CNN feature alone
reports better performance than any of the individual non-
CNN features, we shall show that the combination of CNN
and non-CNN features reports the best performance by
taking the advantages of both features. Not surprisingly, the
sky is the most important weather cue among the five non-
CNN features. We believe that this is due to the fact that sky
detection is relatively easier and more stable. The majority
of failure cases are images without a prominent sky region.
In addition, the reflection and shadow classifiers also work
well. The performance of the contrast classifier on the other
hand depends on the complexity of the scene.

We note that the haze cue is weaker than the sky and
contrast cues mainly due to the fact that many images in our
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Feature Normalized accuracy
Sky 44.3 ± 1.9
Shadow 41.1 ± 2.2
Reflection 27.0 ± 2.1
Contrast 40.5 ± 2.0
Haze 34.1 ± 1.9

CNN feature 83.6 ± 2.0

TABLE 3
Classification results (mean ± variance) using individual features.

Feature Normalized accuracy
Sky 86.3 ± 1.9
Shadow 86.9 ± 2.1
Reflection 89.0 ± 2.0
Contrast 86.2 ± 1.9
Haze 87.7 ± 1.5

CNN feature 61.4 ± 2.0
All 91.4 ± 1.6

TABLE 4
Classification results (mean ± variance) with individual weather cues

being left out. “All” means individual weather cues are included.

dataset simply do not exhibit detectable haze. To confirm
this, we select 415 images with haze vha score larger than
0.7 and 415 sunny images. The haze classifier performance
is improved up to 84.2% in normalized accuracy when it is
applied to these 830 images. We also found that the haze
cue can help identify sunny images as well in classification,
since many sunny images have vivid color which exhibits
low dark-channel intensities.

Next, we evaluate individual existence scores, which are
used to form Eq. (2). For each individual feature, we select s
percent of the images with the highest existence score in the
dataset, and apply SVM classification on this image subset.
Figure 11 shows the performance with varying s of each
individual classifier. The plot indicates that our existence
score design is effective – each individual feature is more
useful when it has a higher existence score.

6.1.2 Ablation Study

We also conducted an ablation study, that is, to study the
performance of the system when a given weather cue is
left out. Table 4 verifies that all of the proposed cues are
useful in accounting for the overall weather classification
performance, since removing any one of them results in
a performance drop. In particular, the momentum, weight
decay and learning rate of our CNN are 0.0001, 0.9 and
0.005 respectively. We note that the CNN feature plays an
important role among all of the features due to the larger
drop in comparison to other features.

6.1.3 Data Augmentation

We enrich the data set by introducing weather counterpart
images in the training phase. In this section we compare
the classification results on training using the data with and
without data augmentation. Table 5 shows that our data
augmentation leads to about 7% improvement in normal-
ized accuracy. Note that we use the best parameters for the
CNN classifier and our classifier.

Therefore, for the rest of our evaluation in this section we
will use the augmented training dataset.

Classifier Normalized accuracy
CNN classifier (without DA) 77.8 ± 2.0
CNN classifier (with DA) 83.3 ± 2.1
Ours (without DA) 84.0 ± 1.8
Ours (with DA) 91.4 ± 1.6

TABLE 5
Classification results (mean ± variance) with and without data

augmentation; “with DA” and “without DA” respectively stand for training
with and without data augmentation. The learning rate, momentum and

weight decay of the CNN are respectively 0.0001, 0.9 and 0.005.

Normalized accuracy
SVM 41.2 ± 2.2

Adaboost 36.4 ± 2.3
LLC [58] 0.3 ± 0.1
ScSPM [62] 0.2 ± 0.1

CNN classifier [22] 83.3 ± 1.8
Ours 91.4 ± 1.6

TABLE 6
Classification results (mean ± variance) of different methods. The

momentum, weight decay and learning rate of the CNN are 0.0001, 0.9
and 0.005 respectively.

6.1.4 Comparison
We report our overall classification performance compared
with typical baseline systems, weather related systems, and
the CNN classifier. For the latter, we will show and explain
that relying on the CNN without the proposed weather-
specific features will result in a significant performance
drop, despite that CNN is powerful in encoding global scene
structure and characteristics.

Comparison with Baseline Systems The first baseline is to
implement SVM directly on the 4717-D weather feature. We
test both the linear and non-linear versions with different
kernels and report the results with the best performance.
The second baseline is the traditional Adaboost, which
combines several classifiers to build a stronger one. We take
each feature bin as a weak classifier. Another two baseline
methods based on dictionary learning [39] are typical image
classification methods, namely LLC [58] and ScSPM [62].

For the SVM baseline we tried different parameters: C ∈
[0.0001, 100] and we report the best one (C = 0.05). We tried
different non-linear kernels, including the Gaussian kernel,
RBF kernel and Polynomial kernel. The best kernel is the
polynomial kernel which produces a performance similar to
the linear solver. For the Adaboost baseline, we took each
single dimension in the 1645-D feature as a weak classifier,
and tried 50 different permutations of the weak classifiers.
We found that the variance in accuracy is very small –
0.16 only. For LLC and ScSPM, we use the codes provided
in [58] and [62] with default parameters. We also tried three
dictionary sizes, 512, 1024 and 2048. We found all of the
parameters cannot yield a result significantly greater than 0
normalized accuracy.

Table 6 lists the classification results. Figures 12 and 13
show a few examples, where we test 5 different σ values
in Eq. (12), that is, {0.5, 0.1, 0.01, 0.05, 0.001}, and select the
best result with the lowest energy in Eq. (18).

For traditional image classification methods LLC [58] and
ScSPM [62], the normalized accuracies are close to 0. This
is because these methods rely on scene structure and do
not consider illumination information. SVM and Adaboost
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Fig. 12. Detection results: cloudy images.

Fig. 13. Detection results: sunny images.

Normalized accuracy
Lalonde et al. [26] 46.5 ± 1.7
Yan et al. [61] 24.6 ± 2.6

Roser and Moosmann [46] 26.2 ± 2.3
Laffont et al. [24] 21.4 ± 1.9

Ours 91.4 ± 1.6

TABLE 7
Classification statistics of different methods.

do not yield significant improvement over single weather
classifiers, such as those of sky or shadow (c.f. Tables 3
and 6). We also find that the use of kernel SVM yields similar
performance.

Comparison with Related Methods We also compare our
classifier with weather-related methods. The first related
work is Lalonde et al. [26]. Note that their system is not
designed for weather classification; one component, namely,
the sun visibility prediction, can be regarded as a coarse
weather estimator. We implemented this component and
tested it on our dataset. Another two vehicle-based weather
classifiers [61], [46] were also compared. The comparison
with [24] is also provided. It can output 40 attributes of
image feature including “sunny” and “cloudy”. We train
the regressor on our data.

Table 7 tabulates the classification statistics. For the method
of [26], the assumption that an outdoor scene is composed
of ground, sky, and vertical surfaces may not be satisfied
(see a few exceptions in Figures 12 and 13). For the work
of [61], [46], the weather estimators are specially designed
for driver assistance. They rely on vehicle-mounted image
priors, which cannot properly deal with general natural
images.

The framework proposed in [24], where off-the-shelf but not
weather-specific features are used, produces less effective
results. But it still outperforms [61], [46] since it does not
rely on on vehicle-mounted priors. We also observe that the
precisions for “cloudy” and “sunny” attributes reported on
the dataset of [24] is high (> 0.95), because the testing
images in [24] are dominated by a prominent sky region
which is relatively easy to recognize.

Comparison with CNN In this section, we train a CNN
classifier end-to-end to perform the two-class classification.

sunny 0.02 sunny 0.03 sunny 0.97 sunny 0.94
cloudy 0.98 cloudy 0.97 cloudy 0.03 cloudy 0.06
(a) (b) (c) (d)

Fig. 14. Four CNN failure cases. In (a) and (b), Sunny image mis-
detected as cloudy. In (c) and (d) cloudy image mis-detected as sunny.
“sunny score” and “cloudy score” refer to output CNN confidence score
in the sunny and cloudy class.

The standard structure provided by [22] is adopted, and we
fine tune on the AlexNet. We report the result with the best
parameter setting.

For the sake of fairness, the CNN feature in our classifier
adopts the same set of parameters with the one being
compared. The results are reported with various hyperpa-
rameters.

First, in Table 8 we show the performance under different
learning rates; the most important parameter for CNN
training. The other two important parameters are namely
the momentum and weight decay. Table 9 summarizes their
effects in the comparison experiments. We found that the
proposed non-CNN weather features are complementary
with the CNN feature in the overall weather feature vector.
That is, while the CNN feature is capable of capturing
global image characteristics, it may not encode well weather
characteristics which are better represented by non-CNN
weather cues. The result shows that our system which com-
bines CNN feature and non-CNN features leads to about
8% improvement.

To further verify this point, we manually label non-CNN
weather cues to explore their full potentials. For the shadow
feature, we manually label shadow regions in all of the
images using bounding boxes, followed by shadow extrac-
tion [25] within the box region. The existence score is 1 (with
shadow) or 0 (without shadow). For the reflection feature,
we label reflection regions manually with a 1-dimensional
feature. If reflection occurs the feature bin is 1; otherwise 0.
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learning rate CNN classifier Ours
0.001 81.5 ± 1.9 88.7 ± 2.0

0.0001 83.3 ± 1.8 91.4 ± 1.6
0.00001 82.0 ± 2.0 89.5 ± 1.9

TABLE 8
Comparison with CNN classifier under different learning rates, given

momentum and weight decay are respectively 0.9 and 0.005.

parameters CNN classifier Ours
ν = 0.9, ξ = 0.005 83.3 ± 1.8 91.4 ± 1.6
ν = 0.9, ξ = 0.0025 81.4 ± 1.8 89.6 ± 1.7
ν = 0.45, ξ = 0.005 77.1 ± 2.1 85.2 ± 1.8
ν = 0.45, ξ = 0.0025 78.6 ± 1.9 86.7 ± 2.0

TABLE 9
Comparison with CNN classifier, given learning rate is 0.0001, ν and ξ

are respectively momentum and weight decay.

Normalized accuracy
CNN classifier 83.3 ± 1.8
Ours (Sky) 93.5 ± 1.8
Ours (Shadow) 96.3 ± 1.7
Ours (Reflection) 95.2 ± 1.6

Ours (Sky + Shadow + Reflection) 97.4 ± 1.2

TABLE 10
Comparison with manual feature localization. In the table, the feature
inside the parentheses are manually labeled as described in the text.
The learning rate, momentum and weight decay for the CNN classifier

are respectively 0.0001, 0.9 and 0.005.

The existence score is the same as the feature bin value.
For the sky feature, with a few exceptions most of the
sky regions can be correctly segmented, and we manually
label the missing sky regions. Table 10 tabulates the results,
which demonstrates that the proposed features are indeed
effective in weather recognition and perform better than the
CNN classifier. Thus, we believe that with the continuing
improvement of low-level vision techniques, the proposed
non-CNN weather cues will improve the overall perfor-
mance significantly by working in synergy with the CNN
feature. Figure 14 shows some fail cases of the CNN classi-
fier which can otherwise be correctly labeled by our method.
For example, Figure 14(a) and (b) are recognized as cloudy
by the CNN classifier due to its globally gray color tone.
But our system can look into more details such as shadows
to produce the correct weather label. In Figure 14(c) and
(d), although shadows are found, they are not strong cast
shadow caused by the sun. On the other hand, the small
sky region can be correctly detected by our method.

6.2 Comparison on Two-Class Laffont Dataset

In [24], a dataset including 40 transient attributes was
proposed. In this dataset, 8,571 images in total from 101
webcams are annotated by crowd-sourcing. “Sunny” and
“cloudy” are two of the attributes in their setting. That is, for
each image, confidence score of “sunny” and “cloudy” are
available. As suggested in [24], attributes with confidence
score larger than 0.8 is considered strong positive attributes.
The images with strong positive sunny/cloudy attributes
are selected to form the two-class Laffont dataset. We found
in this dataset none of the images is labeled both “sunny”
and “cloudy”, so the images are unambiguous. The result-
ing dataset contains 1,729 cloudy images and 1,085 sunny
images. Figure 15 shows example images of the two-class

Fig. 15. Examples of the two-class Laffont dataset.
Normalized Accuracy

[24] 92.4 ± 1.3
CNN classifier 96.4 ± 0.5

Ours without CNN feature 98.2 ± 0.1
Ours 98.6 ± 0.2

TABLE 11
Comparison on the two-class Laffont Dataset

Laffont dataset. We apply different methods on the dataset by
using 80% of it for training and 20% for testing, and report
the cross-validation results. Table 11 shows that our method
has a better performance than [24] on the two-class dataset.
In particular, note that the performance of our method and
the CNN classifier are close to 100%. This is because the
images in the dataset typically have a prominant sky region
which makes the classification easier.

6.3 Application in Weather Monitoring using Surveil-
lance Cameras

We verify our technique in a real-world application: real-
time weather monitoring. Surveillance cameras can be
found almost everywhere, so we believe running our fast
and cost-effective method on these cameras can effectively
monitor real-time weather in urban areas. This is particu-
larly useful where solar panels are extensively installed on
the rooftops of many buildings; sunny and cloudy weather
provides important guidance for optimizing power trans-
fer in the main grids. That is, when cloudy weather is
detected for an extended period of time, the main power
grid may start to take over early to maintain stable power
supply and avoid outage. We apply our weather predictor in
surveillance videos footage, and collected 2000 surveillance
images, 1000 of them are sunny and the other 1000 are
cloudy. The normalized classification accuracy is 93.2%.
Sample images are shown in Figure 16.

7 CONCLUSION AND FUTURE WORK

We have presented a learning-based approach for classify-
ing two types of weather. This apparently simple two-class
weather labeling problem is not trivial given the great va-
riety of outdoor images. The feature cues we used resonate
well with our own common sense in judging weather condi-
tions. Because some of the feature cues may be unavailable
in images, the key to our computational framework is a
collaborative learning strategy where voters closer to the
testing image in terms of weather information/structure are
given more weight in classification. We have also incorpo-
rated the powerful CNN feature into our overall weather
feature. To resist variations caused by different camera
parameters and photo editing, a latent SVM framework is
proposed to learn from various synthesized weather coun-
terpart images. Our experimental results showed that this
is an effective strategy, which we believe has good potential
beyond weather classification.
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Fig. 16. Some detection results for surveillance images. The first and
second row are sunny and cloudy images respectively

(a) (b)

Fig. 17. (a) Sunny image mis-detected as cloudy, and (b) cloudy image
mis-detected as sunny.

Our current approach is limited to label two weather types.
More research needs to be engaged in generalizing the
approach to labeling more conditions on larger dataset [4].
For example, Figure 18 shows two images where sunny and
cloudy features are present at the same time. They may be
labeled as “partly sunny” or “partly cloudy” and in fact, our
system labels (a) as sunny, with the rescaled SVM sunny
score 0.641 (and cloudy score 0.359), while labeling (b) as
cloudy with the rescaled SVM cloudy score 0.716 (and sunny
score 0.284), which we believe are reasonable for two-class
weather classification.

We hope this paper will spark interest and subsequent work
along this line of research. Executable and the weather
dataset are available at the project website.
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