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• We present a cloud based platform for big data and stream processing with workflows.
• The ClowdFlows platform enables processing of multiple concurrent data streams.
• Several machine learning algorithms were implemented in the map-reduce paradigm.
• Using all data in distributed mode is better than using a subset in non-distributed.
• The ClowdFlows platform handles big data sets with nearly perfect linear speedup.
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a b s t r a c t

The paper presents a platform for distributed computing, developedusing the latest software technologies
and computing paradigms to enable big data mining. The platform, called ClowdFlows, is implemented
as a cloud-based web application with a graphical user interface which supports the construction
and execution of data mining workflows, including web services used as workflow components. As
a web application, the ClowdFlows platform poses no software requirements and can be used from
any modern browser, including mobile devices. The constructed workflows can be declared either as
private or public, which enables sharing the developed solutions, data and results on the web and in
scientific publications. The server-side software of ClowdFlows can be multiplied and distributed to
any number of computing nodes. From a developer’s perspective the platform is easy to extend and
supports distributed development with packages. The paper focuses on big data processing in the batch
and real-time processing mode. Big data analytics is provided through several algorithms, including
novel ensemble techniques, implemented using the map-reduce paradigm and a special stream mining
module for continuous parallel workflow execution. The batch mode and real-time processing mode are
demonstrated with practical use cases. Performance analysis shows the benefit of using all available data
for learning in distributed mode compared to using only subsets of data in non-distributed mode. The
ability of ClowdFlows to handle big data sets and its nearly perfect linear speedup is demonstrated.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Computer-assisted data analysis has come a long way since
its humble beginnings on first digital computers with stored
programs. In his 1962 paper entitled ‘‘The future of data
analysis’’ [1] J. W. Tukey stated that the availability of electronic
computers for some tasks is surprisingly ‘‘important but not
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vital’’ and ‘‘is vital’’ for others. Without doubt, the situation has
changed profoundly and any serious attempt to mine knowledge
from real world data must take advantage of modern computing
methods and modern computer organization. However, while
most scientists claim that the size of data and their rate of
production is one of today’s main challenges in data mining [2],
it is often forgotten that developments in the field of data analysis
have also produced an almost unimaginable amount of methods,
algorithms, software and architectures. They are available to
anyone, but their complexity and specific requirements prevent
the general public and also research specialists to use them
effectively without knowing the internal details. This problem has
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been recognized years ago [3]; in his seminal work John Chambers
noted that ‘‘there should not be a sharp distinction between users
and programmers’’ and that language, objects, and interfaces are
key concepts that make computing with data effective [4].

The development of modern programming languages, pro-
gramming paradigms and operating systems initiated research on
computer platforms for data analysis and development of modern
integrated data analysis software. Such platforms offer a high level
of abstraction, enabling the user to focus on the analysis of results
rather than on the ways to obtaining them. In the beginning, sin-
gle algorithmswere implemented as complete solutions to specific
datamining problems, e.g., the C4.5 algorithm [5] for the induction
of decision trees. Second generation systems like SPSS Clementine,
SGI Mineset, IBM Intelligent Miner, and SAS Enterprise Miner were
developed by large vendors, offering solutions to typical data pre-
processing, transformation and discovery tasks, and also providing
graphical user interfaces [6]. Many of the later developments took
advantage of the operating system independent languages such as
the Java platform to produce complete solutions, which also in-
clude methods for data preprocessing and visual representation of
results [7].

Visual programming [8], an approach to programming, where
a procedure or a program is constructed by arranging program
elements graphically instead of writing the program as a text, has
become widely recognized as an important element of an intuitive
interface to complex datamining procedures. Allmodern advanced
knowledge discovery systems offer some form of workflow
construction and execution, as this is of crucial importance for
conducting complex scientific experiments, which need to be
repeatable, and easy to verify at an abstract level and through
experimental evaluation. The standard data mining platforms like
Weka [7], RapidMiner [9], KNIME [10] and Orange [11] provide
a large collection of generic algorithm implementations, usually
coupled with an easy-to-use graphical user interface. While the
operating system independence and the ability to execute data
mining workflows was the most distinguished feature of standard
data mining platforms a decade ago, today’s data mining software
is confronted with the challenge how to make use of newly
developedparadigms for big data processing andhow to effectively
employ modern programming technologies.

This paper presents a data mining platform called Clowd-
Flows [12] and focuses on its capabilities of big data processing.
ClowdFlows was developed with the aim to become a new gener-
ation platform for data mining, using the latest technologies in the
implementation. It implements the following advanced features.

Most notably, the ClowdFlows platform runs as a web
application and poses no software requirements to the users—
e.g., ClowdFlows can also be accessed frommodernmobile devices.
Its server side software is easily multiplied and distributed to any
number of processing nodes. As a modern data mining platform,
ClowdFlows supports interactive dataminingworkflowswhich are
composed, inspected and executed by using the ClowdFlows web
interface. ClowdFlowsworkflows can be private or public, the later
offer a unique way of sharing implemented solutions in scientific
publications thus solving the Executable paper challenge [13].Web
services are supported and can be used as workflow components
in an intuitive way. Processing of big data in batch mode is
enabled by integrating the Disco framework, a lightweight, open-
source framework for distributed computing using themap reduce
paradigm [14]. In order to process big data in batch mode, we
have developed a new machine learning library for the Disco
MapReduce framework and included it in ClowdFlows. The library
includes several standard algorithms as well as new ensemble
techniques, which we evaluate and show the benefit of exploiting
all available data in distributed setting compared to using only
subsamples in a single node. Finally, ClowdFlows is developer-
friendly as its server-side is written in Python, easily extensible,
and supports distributed development using packages.

The ClowdFlows platform is released under an open source
license and is publicly available on the web [12]. Users can
choose either to use the publicly deployed version available at
http://clowdflows.org, or clone the sources and deploy the system
on their own machine or cluster of machines [15].

The rest of the paper is structured as follows. Section 2 presents
the related work on data mining platforms and modern data pro-
cessing paradigms. In Section 3 we present a motivational use
case followed by the presentation of the design and implementa-
tion of the ClowdFlows platform. Section 4 presents the real-time
analysis features of the ClowdFlows platform and demonstrates
the ClowdFlows stream mining capabilities with a use case of dy-
namic semantic analysis of news feeds. The processing of big data
in batch mode and the development of a machine learning library
for the Map Reduce paradigm is presented in Section 5 which also
includes a practical use case. Section 6 presents newly developed
distributed random forest based ensemble methods. The batch
processing mode is evaluated and validated in Section 7. In Sec-
tion 8 the ClowdFlows platform is compared to related platforms
and options for their integration are presented. Section 9 summa-
rizes the work and concludes the paper by suggesting directions
for further work. In the Appendix, summation form algorithms in
DiscoMLL are described.

2. Related work

Visual construction and execution of scientific workflows is one
of the key features of the majority of current data mining software
platforms. It enables the users to construct complex data analysis
scenarios without programming and allows easy comparison of
different options. All early major data mining platforms, such as
Weka [7], RapidMiner [9], KNIME [10] and Orange [11] support
workflow construction. The most important common feature
is the implementation of a workflow canvas where complex
workflows can be constructed using drag, drop and connect
operations with available components. The range of available
components typically includes database connectivity, data loading
from files and pre-processing, data and patternmining algorithms,
algorithm performance evaluation, and interactive and non-
interactive visualizations.

Even though such data mining software solutions are user-
friendly and offer a wide range of components, some of their
deficiencies severely limit their utility. Firstly, all available
workflow components are specific and can be used in only one
platform. Secondly, the described platforms are implemented as
standalone applications and have specific hardware and software
dependences. Thirdly, in order to extend the range of available
workflow components in any of these platforms, knowledge of
a specific programming language is required. This also means
that they are not capable of using existing software components,
implemented as web services, freely available on the web.

In order to benefit from service-oriented architecture concepts,
software tools have emerged, which are able to use web
services and access large public databases. Environments such as
Weka4WS [16], Orange4WS [17], Web Extension for RapidMiner
and Taverna [18] allow the integration ofweb services asworkflow
components. However, with the exception of Orange4WS and
Web Extension for RapidMiner, these environments are mostly
focused on specific scientific domains such as systems biology,
chemistry, medical imaging, ecology and geology and do not offer
general purpose machine learning and data mining algorithm
implementations.

http://clowdflows.org
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Remote workflow execution (on machines different from the
one used for workflow construction) is employed by KNIME
Cluster execution and RapidMiner using the RapidAnalytics server.
This allows the execution of local workflows on more powerful
machines and data sharing with other users, with the requirement
that the client software is installed on the user’s machine.
The client software is used for designing workflows, which are
executed on remotemachines,while only the results can be viewed
using a web interface.

All the above mentioned platforms are based on technologies
that are becoming legacy and do not benefit from modern
web technologies, which enable truly independent software
solutions. On the other hand, web-based workflow construction
environments exist, but they are mostly too general and not
coupled to any data mining library. For example, Oryx Editor [19]
can be used for modeling business processes andworkflows, while
the genome analysis tool Galaxy [20] (implemented as a web
application) is limited to workflow components provided by the
project itself. An exception is the ARGO project [21], where the
aim was to develop an online workbench for analyzing textual
data based on a standardized architecture (UIMA), supporting
interactive scientific workflow construction and user collaboration
through workflow sharing, providing a selection of data readers,
consumers and some components for text analytics (mostly
tagging, annotation and feature extraction). Finally, the OnlineHPC
web application, which is based on the Taverna server as the
execution engine, offers an onlineworkfloweditor,which ismostly
a user friendly interface to Taverna.

Grid workflow systems such as Pegasus [22], DAGMan [23]
and ASKALON [24] were developed with the aim of simplifying
intensive scientific processing of large amounts of data where
the emphasis is on distribution of independent command line
applications (grid jobs or tasks) and summarization of results.
As the interactive analysis and graphical interfaces are not
their most important features, some of them do not implement
graphical interface toworkflows but provide flexible programming
interfaces instead. These platforms contain one or more grid
middleware layers, which enable the execution on computer grids
such as HTCondor and Globus.

Some platforms support more than one model of computa-
tion (see the analysis of workflow interoperability by Elmroth
et al. [25]) and enable the use of web services, grid services as well
as other execution environments (e.g., custommodules via foreign
language interfaces). Kepler [26], Triana [27] and Taverna [18] are
the most well known examples of such platforms.

As a response to the ever increasing amount of data several
new distributed software platforms have emerged. In general,
such platforms can be categorized into two groups: batch data
processing and data stream processing.

A well known example of a distributed batch processing frame-
work is Apache Hadoop [28], an open-source implementation of
the MapReduce programming model [14] and a distributed file
system called Hadoop Distributed Filesystem (HDFS). It is used in
many environments and several modifications and extensions ex-
ist, also for online (stream) processing [29] (e.g., parallelization of
several learning algorithms using an adaptation of MapReduce is
discussed by Chu et al. [30]). ApacheHadoop is also the base frame-
work of Apache Mahout [31], a machine learning library for large
data sets, which currently supports recommendationmining, clus-
tering, classification and frequent itemset mining. A more recent
alternative to Hadoop is Apache Spark. Spark was developed to
overcome Hadoop’s shortcoming that it is not optimized for it-
erative algorithms and interactive data analysis, which performs
multiple operations on the same set of data [32]. Radoop [33], a
commercial big data analytics solution, is based on RapidMiner
and Mahout, and uses RapidMiner’s data flow interface. The Disco
project [34] that we use is an alternative to Apache Hadoop. It
is a lightweight open source framework for distributed comput-
ing based on the MapReduce paradigm and written in Erlang and
Python.

For data stream processing, two best known platforms are
S4 [35] and Storm [36]. The S4 platform is a fully distributed
real-time stream processing framework. The stream operators are
defined by the user code and the configuration jobs describedwith
XML. Storm is a stream processing framework that focuses on
guaranteed message processing. The user constructs workflows in
different programming languages such as Python, Java, or Clojure.
Neither of these two platforms features an easy to use graphical
user interface.

SAMOA [37] is an example of a new generation platform
that targets processing of big data streams. In contrast to dis-
tributed data mining tools for batch processing using MapReduce
(e.g., ApacheMahout), SAMOA features a pluggable architecture on
top of S4 and Storm for performing common tasks, such as classi-
fication and clustering. The platform does not support visual pro-
gramming with workflows. MOA (Massive On-line Analysis) is a
non-distributed framework for mining data streams [38]. It is re-
lated to theWekaproject and a bi-directional interaction of the two
is possible. MOA does not support visual programming of work-
flows but the ADAMS project [39] provides a workflow engine for
MOA,which uses a tree-like structure instead of an interactive can-
vas.

Sharing data and experiments has been implemented in the
Experiment Database [40], which is a database of standardized
machine learning experimentation results. Instead of a workflow
engine it features a visual query engine for querying the database,
and an API for submitting experiments and data.

Substantial efforts have also been invested in developing
systems for streamlining experimentation and data analysis in
multi agent based systems, particularly for game-playing, in
distributed systems [41]. In such systems distributed-computing
applications can be customized by a human monitoring expert
who controls the execution of an experiment through aweb-based
graphical user interface.

More recent additions to the family of machine learning soft-
ware are Google’s TensorFlow [42] and the Machine Learning Ser-
vice from Microsoft Azure [43]. TensorFlow is an implementation
for executing machine learning algorithms on thousands of com-
putational devices such as GPU cards. The system can be used to
express a wide variety of algorithms for problems in speech recog-
nition, computer vision, robotics, and natural language processing.
However, the system lacks a conventional graphical user interface
and is invoked as a software library. The Machine Learning Ser-
vice from Microsoft Azure provides an easy to use and intuitive
graphical user interface to construct data mining workflows on a
canvas, but it is proprietary and requires the user to subscribe to
Microsoft’s cloud services.

3. ClowdFlows platform

Software technologies that were used to implement the
ClowdFlows platform allow an easy integration of very diverse
programming libraries and algorithm implementations. Various
wrappers allow the Pythonprogramming language environment to
connect to software written in Java, C, C++, C#, Fortran, etc. Several
libraries for web service interoperability are also available. The
ClowdFlows platform currently integrates three major machine
learning libraries: Weka [7], Orange [11] and scikit-learn [44].
Integration of Orange and scikit-learn is native as both are written
in Python/C++. Weka algorithms are implemented as web services
using the JPype [45] wrapper library.
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Fig. 1. A ClowdFlows workflow for comparison of algorithms from two different machine learning libraries (Weka and Orange). Algorithms are evaluated on a UCI data set
using the leave one out cross validation and their performance is visualized using VIPER charts. This workflow is publicly available at http://clowdflows.org/workflow/6038/.
Fig. 2. Visual performance evaluation of several machine learning algorithms
implemented in ClowdFlows.

3.1. Illustrative example

We first demonstrate the use of the platformwith an illustrative
use case followed by the design and architecture of ClowdFlows.

The goal of this simple use case is to present a few basic
features of ClowdFlows. To this end,wehavedeveloped aworkflow
for evaluating and comparing several machine learning algorithm
implementations. Decision tree, Naive Bayes and Support Vector
Machines algorithms from Weka and Orange are evaluated with
the leave-one-out cross-validation method on several publicly
available data sets from the UCI repository [46] and the results of
the evaluation are presented using the VIPER (Visual Performance
Evaluation) [47] interactive performance evaluation charts. The
interactive workflow demonstrates the use of web services as
workflow components, as the employed Weka algorithms have
been made available as web services.

The sample workflow for the evaluation and comparison of
several machine learning algorithm implementations is shown in
Fig. 1. This workflow is publicly available at http://clowdflows.
org/workflow/6038/.

The workflow performs as follows. First, instances of the se-
lected machine learning algorithm implementations are created
from the libraries (Weka and Orange) and concatenated into a list.
Second, a UCI data set is selected, loaded, and transformed into two
different data structures, one for each library. Validation is per-
formedusing the leave-one-outmethodon three pairs of algorithm
implementations from different libraries. Confusion matrices are
computed, and the results are prepared for visualization. In the fi-
nal step, the VIPER chart (Visual performance evaluation) is shown.
The chart offers interactive visualization of algorithm results in the
precision–recall space thus allowing a visual comparison of several
algorithms and export of publication quality figures. This perfor-
mance visualization is shown in Fig. 2.

The public ClowdFlows installation features many other exam-
ple workflows including workflows that demonstrate regression1

and clustering.2

3.2. Platform architecture and technologies

ClowdFlows is a cloud-based web application that can be
accessed and controlled from anywhere using a web browser,
while the processing is performed in a cloud of computing nodes.

The architecture of the ClowdFlows platform is shown in
Fig. 3. The platform consists of the following components: a
graphical user interface, a core processing server, a database, a

1 http://clowdflows.org/workflow/7539/.
2 http://clowdflows.org/workflow/7492/.
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http://clowdflows.org/workflow/6038/
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Fig. 3. An overview of the ClowdFlows platform architecture. A similar figure (without the big data analytics components) has appeared in our previous publication [48].
stream mining daemon, a broker that delegates execution tasks,
distributed workers, web services, and a module for big data
analysis in batch mode.

3.2.1. Graphical user interface
Users interact with the platform primarily through the graphi-

cal user interface in a web browser. We implemented the graphi-
cal user interface in HTML and JavaScript, with an extensive use of
the jQuery library [49]. The jQuery librarywas designed to simplify
client-side scripting, and is the most popular JavaScript library in
use [50]. The user interface is served from the primary ClowdFlows
server.

As illustrated in Fig. 1, the graphical user interface provides
a workflow canvas where workflow components (widgets) can
be added, deleted, re-positioned and connected with one another
to form a coherent workflow. The graphical user interface is
synchronized with the ClowdFlows server using asynchronous
HTTP requests, which notify the server of any and all user actions.

The job of the graphical user interface is to also render results
in a meaningful representation. Each widget that can produce
visualized results does so by sending the represented data in HTML
and JavaScript to the graphical user interface, which in turn shows
it to the user in a non-obtrusive pop-up dialog.

Aside from the workflow construction and results visualization
capabilities, this layer of the application also displays a list of public
workflows that can be copied by the currently logged in user.

All the graphical user interface code resides on the server but is
executed in the users’ browsers.

3.2.2. ClowdFlows server
The ClowdFlows server software is written in Python and uses

the Django web framework [51]. The Django framework is a high
level Python web framework that encourages rapid development
and provides an object-relational mapper and a powerful template
system.

The ClowdFlows server consists of a web application and the
widget repository.

The web application defines the models, views, and templates
of ClowdFlows. The integral part of the ClowdFlows platform
is the data model, which consists of an abstract representation
of workflows and widgets. Workflows are executable graphical
representations of complex procedures. Aworkflow inClowdFlows
is a set of widgets and their connections. A widget is a single
workflow processing unit with inputs, outputs and parameters.
Eachwidget performs a task considering its inputs and parameters,
and stores the results of the task to its outputs. Connections are
used to transfer data between two widgets and may exist only
between an output of a widget and an input to another widget.
Data is transferred through connections, so inputs can only receive
data from connected outputs. Parameters are similar to inputs, but
need to be entered by the user. Inputs can be transformed into
parameters and vice-versa, depending on the user’s needs.

Data from the data model are stored in the database. It should
be noted that there are two representations of widgets in the
data model and database. The abstract widget is a description of
a specific widget in the repository and holds no other information
than the inputs, outputs, parameters and function of the widget.
The non-abstract widget is a separate entity that represents a
particular instance of an abstract widget and contains information
about the data inputs and outputs, and its spatial position in
a specific workflow. To summarize, when the user constructs a
workflow, she chooses from a set of abstract widgets to create
instances of non-abstract widgets that can process data. This
design decision was made to allow user customization of widgets
and to ensure the functionality of workflows, even when the
abstract widgets change over time.

The ClowdFlows application also implements a workflow
execution engine which executes widgets in the workflow in the
correct order. The engine issues tasks to the workers to execute
widgets. Initially only the widgets that have no predecessors are
executed (a predecessor is a widget that is connected on the
input of a widget). Once these widgets have successfully executed
the engine searches for widgets whose predecessors have been
successfully executed and issues tasks to the workers to execute
them. When there are no more widgets to execute, a workflow is
considered successfully executed.

The ClowdFlows widget repository consists of four groups
of widgets: regular widgets, visualization widgets, interactive
widgets and workflow control widgets.

Regular widgets are widgets that take data on the input and
return data on the output. Visualization widgets do the same with
the addition that they provide an HTML/JavaScript view which
can be rendered by the graphical user interface to display results.
Interactivewidgets arewidgets that serve a view to the user during
execution time. Interactive widgets can show data on the input to
the user and can process the user interaction in its function which
affects the data on the output.

Workflow control widgets are special widgets that allow
creation of subworkflows (workflows encapsulated inwidgets that
contain a workflow), creation of for loops and special types of for
loops that are used for cross validation. With the workflow control
widgets, the workflows can also be exposed as REST API services.
These REST API services provide HTTP endpoints that can be called
from anywhere to invoke the execution of a workflow and fetch
the results.
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The functions of regular widgets, visualization widgets, and
interactive widgets are stored in the widgets libraries. The widget
libraries are packages of functions that are called when a widget
is executed. These functions define the functionality of each
particular widget.

By default, ClowdFlows comes with a set of widgets that can
be expanded. The initial set of widgets encompasses solutions
to many data mining, machine learning and other tasks such
as: classification, clustering, regression, association rule learning,
noise detection, decision support, text analysis, natural language
processing, inductive logic programming, graph mining, visual
performance evaluation, and others.

3.2.3. Database
The database is the part of the system that stores all the

information about the workflows and all the user uploaded data.
The object-relational mapper implemented in Django provides

an API that links objects to a database, which means that the
ClowdFlows platform is database agnostic. PostgreSQL, MySQL,
SQLite and Oracle databases are supported. MySQL is used in the
public installation of ClowdFlows. The database installation can be
deployed on a cluster to ensure scalability of the system.

3.2.4. Worker nodes
Worker instances are instances of the ClowdFlows server that

do not serve the graphical user interface and are only accessed by
a broker that delegates execution tasks. They execute workflows
and workflow components. The workers report success or error
messages to the broker and feature timeouts that ensure fault
tolerance if a worker goes offline during the run-time. The number
of workers is arbitrary and they can be connected or disconnected
during run-time to ensure scalability and robustness. Workers
subscribe to the message broker system, which can be deployed
on multiple machines. The ClowdFlows system offers support for
several message broker systems. RabbitMQ [52] is used in the
ClowdFlows public installation.

3.2.5. Web services
In order to allow consumption of web services and import

them as workflow components, the PySimpleSoap library [53] is
used. PySimpleSoap is a light-weight library written in Python
and provides an interface for client and server web service
communication, which allows importing WSDL (Web Service
Definition Language) web services as workflow components, and
exposing entire workflows as WSDL web services.

3.2.6. Scaling and process distribution over cloud resources
The ClowdFlows platform can scale horizontally in a very

straight forward way. The four components that need to be scaled
are the ClowdFlows server, the database, the broker, and the
worker nodes.

Scaling the ClowdFlows server is done simply by installing it
on multiple machines and running it behind a web server with
load balancing capabilities such as Nginx. Horizontally scaling the
ClowdFlows server is required when there are many simultaneous
users accessing the platform at once. The requests are then routed
round robin to different ClowdFlows server instances to reduce the
load.

As the ClowdFlows platform is database agnostic it is entirely
dependent on the scaling ability of the selected database software.
Popular database solutions such as MySQL and PostgreSQL can
be transformed into distributed scaled-out systems, however as
the ClowdFlows platform does not normally perform demanding
database operations (apart from simple insertions and selections)
this is not likely to require scaling.
The scalability of the broker also depends on the choice of
its implementation. Both RabbitMQ and Redis, which are popular
broker solutions, can be easily deployed into clusters where nodes
are added and removed. Scaling the broker is required if the data
that passes from one workflow component to another is large.

Similarly to the ClowdFlows server, the worker nodes (which
are just headless instances of the ClowdFlows server) can easily
be executed in parallel on multiple machines as long as they all
connect to a single broker (or broker cluster). The broker ensures
that tasks are distributed evenly across the workers. Increasing
the number of workers is by far the most frequently required
scaling operation. Each worker can execute a set number of
widgets in parallel at any given time. If there are more workflows
executed than available workers some workload will be delayed
until workers finish tasks of active workflows.

The scaling of the stream mining deamon and the batch
processing module is handled separately and is explained in
Sections 4 and 5, respectively.

3.3. Public workflows

Since workflows in the ClowdFlows platform are processed and
stored on remote servers they can be accessed from anywhere over
the internet. By default, each workflow can only be accessed by its
author.Wehave implemented an option that allows users to create
public versions of their workflows.

The ClowdFlows platform generates a URL for each workflow
that is defined as public. Users can share their workflows by
publicizing this URL. Whenever a public workflow is accessed by
the user, a copy of the workflow is created on the fly and added
to the user’s private workflow repository. The workflow is copied
with all the data to ensure the reproducibility of experiments. Each
such copied public workflow can be edited, augmented or used as
a template to create a newworkflow, which can be made public as
well.

3.4. Extensibility and widget development

There are twoways to addwidgets to the ClowdFlows platform.
A widget can be either implemented as a Python function and
included in a ClowdFlows package or bemanually imported via the
graphical user interface as a WSDL Web service.

In the ClowdFlows platform the widgets are grouped into
packages. Each package consists of a set of widgets with common
functionalities. A package can be bundled with the code of the
platform or released as a separate Python package, which can
be installed on demand. An example of such a package is the
Relational Data Mining (RDM) package for ClowdFlows.3 This
package exists as a stand alone Python package but can also
be included in ClowdFlows. Upon doing so the widgets are
automatically discovered by the ClowdFlows platform and added
to the repository.

Creating a custom package for ClowdFlows requires the devel-
oper to have ClowdFlows installed locally. The local installation
of ClowdFlows provides several command line utilities for dealing
with packages. These utilities create bare-bones packages that in-
clude skeleton code for widgets. A ClowdFlows widget is a Python
function that receives a dictionary of widget inputs on the input
and returns a dictionary of outputs as its output. The body of the
function needs to be filled in by the developer of the widget to
transform the inputs into the outputs as expected. The widget’s
inputs and outputs need to be described in the JSON format in or-
der to be shared with other installations of ClowdFlows (including

3 https://github.com/xflows/rdm.

https://github.com/xflows/rdm
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the public installation). This JSON file can be written manually or
by using the ClowdFlows administration interface, which provides
simple forms where widget details can be entered. The JSON files
are then generated from the database using command line utilities
bundled with the local installation of ClowdFlows.

In a multiple worker setting each worker node needs to have
all the available external packages installed. Fig. 4 shows a worker
node with external packages installed and its JSON description of
widgets imported using the administration tools.

Another way of adding widgets is by using the graphical user
interface and entering the URL of a WSDL described Web service.
This can be done without altering the code of the platform which
makes it easy to use. The Web service description file is consumed
by ClowdFlows and parsed to determine the inputs and outputs of
the functions of the Web service. Each function of a Web service is
represented as a single widget in ClowdFlows that can be used and
reused in any number of workflows by the user that imported the
service.

3.5. Data exchange with external systems

The ClowdFlows platform provides several ways of exchanging
data with external systems. We distinguish between two types of
functionalities: the inward and outward interoperability.

Inward interoperability is achieved either by consuming web
services and presenting them to the users as widgets of the
ClowdFlows platform, or by creating widgets that call code from
other systems. By default the ClowdFlows platform consumes web
services that provide functionalities of the Weka platform, and
provides widgets that access code and data from the Orange and
scikit-learn packages.

Outward interoperability allows any workflow to be exposed
as a REST API endpoint. In order to benefit from this feature each
workflow can have several API Input and API Output widgets on
the canvas. These widgets are linked with the inputs that the
REST API endpoint receives and the JSON output of results that it
should return. In this way it is possible to construct a workflow
in the ClowdFlows platform and execute it without using the
graphical user interface, whichmakes it suitable for use in external
applications.

4. Real-time data streammining

Processing of real-time data streams is enabled in ClowdFlows:
a specialized stream mining deamon was implemented that
continuously executes workflows in parallel with a modified
workflow execution engine that implements a haltingmechanism.
The stream mining capabilities of the ClowdFlows platform are
described below.

4.1. Stream mining workflows and stream mining deamon

Stream mining workflows are workflows that are connected
to a potentially infinite source of incoming data and need to be
executed whenever there is new data on the input. Due to the
nature of online data sources, it is often necessary to poll a data
source for new data instead of having the data source push the
data to external services such as ClowdFlows. To control execution
of stream mining workflows we implemented a special deamon
that executes workflows at a fixed time interval and provided a
functionality to halt the execution of a workflow to streammining
widgets.

The stream mining deamon is a process that runs alongside
the ClowdFlows server, loops through deployed stream mining
workflows and executes them. The execution is similar to the
regular workflow execution with the difference that widgets may
Fig. 4. A worker node of the ClowdFlows architecture with two external packages
installed.

halt the execution of workflows. In practice, the workflow is
executed as frequently as the data appears on the data source and
produces outputs with a fixed latency depending on the workflow
complexity. Stream mining workflows are, in contrast to regular
workflows, executed a potentially infinite number of times until
the execution is stopped by the user.

4.2. Stream mining widgets

In contrast to widgets in regular workflows, widgets in stream
mining workflows have the internal memory and the ability to
halt the execution of the current workflow. The internal memory
is used to store information about the data stream, such as the
timestamp of the last processed data instance, or an instance of the
data itself. These two mechanisms were used to develop several
specialized stream mining widgets.

In order to process data streams, streaming data inputs were
implemented. Each type of stream requires its own widget to
consume the stream. In principle, a streaming input widget
connects to an external data stream source, collects instances of
the data that it has not yet seen, and uses its internal memory to
remember the current data instances. This can be done by saving
small hashes of the data to preserve space or only the timestamp
of the latest instance if timestamps are available in the stream. If
the input widget encounters no new data instances at the stream
source it halts the execution. No other widgets that are directly
connected to it via its outputs will be executed until the workflow
is executed again.

Several popular stream mining approaches [54] were imple-
mented as workflow components. The aggregation widget was
implemented to collect a fixed number of data instances before
passing the data to the next widget. The internal memory of the
widget is used to save the data instances until the threshold is
reached.While the number of instances is below the threshold, the
widget halts the execution. The internal memory is emptied and
the data instances are passed to the next widget once the thresh-
old is reached.
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Fig. 5. The semantic triplet graph from an RSS feed workflow constructed in the ClowdFlows platform. The workflow is publicly available at http://clowdflows.org/
workflow/1729/.
The sliding windowwidget is similar to the aggregation widget,
except that it does not empty its entire internal memory upon
reaching the threshold. Only the oldest few instances are forgotten
and the instances inside the sliding window are released to other
widgets in the workflow for processing. By using the sliding
window, each data instance can be processed more than once.

Sampling widgets either pass the instance to the next widget
or halt the execution, based on a condition. This condition can be
dependent on the data or not (e.g., drop every second instance).
The internal memory can store counters, which are used to decide
which data is part of the sample.

Special stream visualization widgets were developed for the
purpose of examining results of real-time analyses. Each instance
of a stream visualization widget creates a web page with a unique
URL that displays the results in various formats. This is useful
because the results can be shared without having to share the
actual workflows.

4.3. Illustrative use case

The aim of this use case is to construct a semantic graph from a
stream of news articles in real time.

A semantic triplet graph [55] is a graph constructed from
subject–verb–object triplets extracted from sentences. Our goal is
to develop a reusable workflow that allows extraction of triplets
from an arbitrary source of news articles, displays them in a two-
dimensional force directed graphwithwords as nodes and updates
them in real-time. By doing this, we transform an incoming stream
of news articles into a live semantic graph that is continuously
updated.

The use case is presented as a step-by-step report on how the
workflow was constructed. Following this description the user
can construct a fully functional workflow for an arbitrary stream
of data and examine the results. In this particular workflow the
Middle East section of the CNN news website is used as the
incoming stream on which the semantic graph is constructed.

4.3.1. Identification and development of necessary workflow compo-
nents

In order to produce a workflow that transforms an incoming
stream of news articles into a semantic triplet graph we require
three components: a component that connects to the RSS feed and
fetches new articles as they appear, a component that extracts
triplets from the articles, and a component that the triplets in
the graph form. In order to create a visually appealing and useful
semantic graph we decided to create three supporting widgets:
a widget that fetches the article text and summarizes it by
selecting five most important sentences from the article, a widget
that normalizes the triplets by performing lemmatization on the
extracted words, and a sliding window to force the graph to
‘‘forget’’ older news.

We implemented a widget that connects to an arbitrary RSS
feed. This widget accepts a single parameter: the URL of the RSS
feed. The internal memory of widgets was utilized to store hash
codes of article URLs that have already been processed. With this
we ensure that each article is only processed once. If all URLs in the
feed have already been processed the widget halts the execution.
The widget’s single output is the URL of the article that should be
processed. This widget was implemented as a Python function as
explained in Section 3.4. The function has access to the argument
(the URL of the RSS feed) and to the internal memory of the widget
which is persistent for a particular execution of a stream. The
function uses a high level Python library requests for fetching the
data and parsing the feed.

We implemented a widget that fetches the article text from
the URL, extracts the article’s title and body, and summarizes it
by selecting five most important sentences in the article. We de-
veloped a widget that wraps the PyTeaser library for text summa-
rization [56]. The most important sentences are selected based on
their relevance to the title and keywords, as well as the position
and length of the sentences. The widget outputs the summary as a
string of characters.

The triplet extraction widget implements the algorithm pro-
posed in [57] using the Stanford Parser [58]. The widget first tok-
enizes the sentences and generates a parse tree for each sentence.
The algorithm searches the parse tree for the subject, predicate,
and object triplet. If the triplet is found, it is appended to the list
of triplets that the widget returns as its output. The triplet extrac-
tion widget was implemented as a WSDL Web service which was
imported into the ClowdFlows.

Normalization of words helps in building a more cohesive
graph by joining similar nodes into a single node. We employ the
WordNet Lemmatizer implemented in the Python NLTK library
[59,60]. The lemmatization uses the WordNet’s built-in morphy
function. The input words are returned unchanged if they cannot
be found inWordNet. This technique helps to eliminate repetitions
of similar or same entities in the graph. As NLTK is a Python library,
we implemented this widget as a Python function as explained in
Section 3.4.

To dynamically visualize the semantic triplet graph we use a
sliding window widget to keep only the 100 recent triplets. By
doing this the graph only shows current news and ‘‘forgets’’ older
news.

The visualizationwidget utilizes theD3 Data-DrivenDocuments
JavaScript library [61] to display the semantic triplet graph. The
graph is constructed by creating a node for each unique word
in the current sliding window. Edges are constructed from the
subject–verb and verb–object connections. The graph is rendered
using a force-directed algorithm [62]. The visualization is updated
in real-time, new nodes and edges are created in real-time and
old ones are removed from the graph. Visualization widgets also
render an HTML view, which allowed us to use a JavaScript library
to implement the visualization. Anything that can be displayed on
a web page can be displayed as a result of a visualization widget.

All the developed widgets were added to the repository and
are part of the stream mining ClowdFlows package. For the sake
of simplicity the Triplet Extraction Web service call was wrapped
into a Python function otherwise new installations of ClowdFlows
would require users to manually import it as a Web service.

4.3.2. Constructing the workflow
We constructed the workflow using the ClowdFlows graphical

user interface. Widgets were selected from the widget repository,
added to the canvas and connected as shown in Fig. 5.

In the RSS reader widget we entered the URL of the CNN
news section feed—http://rss.cnn.com/rss/edition_meast.rss. We

http://clowdflows.org/workflow/1729/
http://clowdflows.org/workflow/1729/
http://clowdflows.org/workflow/1729/
http://clowdflows.org/workflow/1729/
http://clowdflows.org/workflow/1729/
http://rss.cnn.com/rss/edition_meast.rss
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Fig. 6. The results of monitoring the Middle East edition of the CNN RSS feed. This visualization is publicly available at http://clowdflows.org/streams/data/110/63907/.
have set the size of the sliding window to 100, thereby showing
the latest 100 news triplets in the graph.

We marked the workflow as public so that it can be viewed
and copied. The URL of the workflow is http://clowdflows.org/
workflow/1729/. By clicking the button ‘‘Start stream mining’’
on the workflows view (http://clowdflows.org/your-workflows/)
we instructed the platform to start executing the workflow with
the stream mining daemon. A web page is created with detailed
information about the stream mining process. This page contains
the link to the visualization page with the generated semantic
graph.

4.3.3. Monitoring the results
By using a stream visualization widget in the workflow we can

observe the results of the execution in real time. The ClowdFlows
platform generates a web page for each stream visualization
widget in the workflow.

Our workflow has only one stream visualization widget (see
Fig. 5), therefore the ClowdFlows platform generates one web
page with the results. The visualization of the CNN data stream
can be found at http://clowdflows.org/streams/data/110/63907/.
This visualization shows how the words in the most important
sentences of multiple articles are linked to each other via the
extracted subject–verb–object triplets. A screenshot of the semantic
triplet graph is shown in Fig. 6.

The workflow presented is general and reusable. The RSS feed
chosen for processing is arbitrary and can be trivially changed. The
results of the workflow can be further exploited by performing
additional data analysis on the graph, such as constructing a
summary of several news articles or discovering links between
them. Such a graph could be used to recommend related news to
the reader.

4.3.4. Evaluating the limitations of stream mining in ClowdFlows
Stream mining workflows are executed by the Stream mining

deamon, which is a separate process that exists with the sole
purpose of executing stream mining workflows on a set time
interval. For streams with a high rate of incoming data this time
interval has to be set in such way that the rate of processing
the data is higher or equal to the production rate of the data on
the inputs, while producing the results with a fixed latency (the
amount of time it takes to execute a workflow).

Streaming workflows usually run for a fixed amount of
time. Having the execution interval (frequency) shorter than the
workflow execution time (latency) means that the workflow for
the same stream will be executed many times in parallel. Since
ClowdFlows is a collaborative platform with many concurrent
executions of streamminingworkflows it is important to know the
limitations of such executions so that it is possible to determine
when to add new resources to ensure all data is processed. We
have identified two possible scenarios when executing stream
mining workflows: workflows that process data faster than the
data is produced, andworkflows that process data slower than it is
produced.

http://clowdflows.org/streams/data/110/63907/
http://clowdflows.org/workflow/1729/
http://clowdflows.org/workflow/1729/
http://clowdflows.org/workflow/1729/
http://clowdflows.org/workflow/1729/
http://clowdflows.org/workflow/1729/
http://clowdflows.org/your-workflows/
http://clowdflows.org/streams/data/110/63907/
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Table 1
Average data analysis time for streaming data based on different incoming rates of data instances and different setups of worker
nodes. The cells display the average processing time for each data instance in seconds (plus the standard deviation) and the relative
amount of data instances processed during a minute of stream execution time.

Data spawn rate/Worker nodes 1 × 8 2 × 8 3 × 8

0.33 instances per second 3.597 ± 0.005 (100%) 3.603 ± 0.007 (100%) 3.602 ± 0.008 (100%)
1 instance per second 3.596 ± 0.006 (100%) 3.597 ± 0.009 (100%) 3.600 ± 0.014 (100%)
3 instances per second 7.702 ± 2.096 (85%) 3.599 ± 0.010 (100%) 3.600 ± 0.009 (100%)
6 instances per second 20.049 ± 8.220 (44%) 7.673 ± 2.061 (76%) 3.618 ± 0.010 (100%)
Fig. 7. Average data analysis times for streaming data based on different incoming
rates of data instances over different setups of worker nodes.

For cases where the latency is shorter than the amount of time
it takes for new data to appear it is clear that these workflows will
never be executed in parallel. Each workflow will process the data
before there is new data on the input. Even with a very small time
interval the subsequent parallel executions would be immediately
halted due to no data being present on the input, and thus this
would not affect the resources.

We conducted an experiment where we created artificial
streams with several production rates and processed them in a
workflow with a latency of 3 s per data instance. We tested the
stream mining capabilities of ClowdFlows against different rates
of data production on the inputs: 0.33 instance per second, 1
instance per second and 3 instances per second for different setups
of worker nodes. For each setting we adjusted the frequency to
ensure processing of data.

We tested the platform with one, two, and three worker nodes.
Worker nodes were installed on equivalent computers with 8 CPU
cores. Theworkerswere setup towork on8 concurrent threads.We
measured the processing time for processing each instance of data
and calculated the relative amount of data processed in a minute
in percentages. A hundred percent means that all the data on the
input streamwas successfully processed. The results are presented
in Table 1 and displayed on the chart in Fig. 7.

The results show that using a single worker it is possible to
process data at a rate three times slower than the rate of production
on the input and preserve the same throughput as on the input
stream. Using two workers it is possible to process data ten
times slower, while a configuration with three workers allows
for a twenty times slower processing rate and still cope with the
demand. This allows users to have complex workflows perform
analyses on the data and still see results in real time while being
confident that all data was processed.

It is important to note that inter-node communication does not
increase with the addition of new worker nodes. Worker nodes
communicate exclusively with the broker. Tasks are issued to the
broker by the stream mining daemon and results are returned to
the broker by the worker nodes. Even if there is a single worker
node processing the stream, the communication is always going
to and from the broker. The communication delay is therefore
constant.

The test also shows that the leniency for slow processing can be
improved by adjusting the number of worker nodes. The worker
nodes can be added and removed during runtime, which means
that processing high volume streams can be resolved simply by
adding more computing power to the ClowdFlows worker cluster.

5. Batch data processing with DiscoMLL library

We present the ClowdFlows system for analysis of big data in
batch mode. We have chosen the Disco MapReduce framework to
performMapReduce tasks as Disco is written in Python and allows
for a tighter and easier integration with the ClowdFlows platform.
The downside of this choice is an apparent lack of a specialized
machine learning library or toolkit within the framework, which
motivated us to develop our own library with a limited but useful
set of machine learning algorithms.

In this section we first introduce the MapReduce paradigm,
followed by a description of the Disco Framework. We describe
the implementation details of the Disco Machine Learning Library.
Finally we present the integration details of batch big data
processing in ClowdFlows and conclude with an illustrative use
case.

5.1. MapReduce paradigm

MapReduce is a programming model for processing large
data sets, which are typically stored in a distributed filesystem.
Algorithms based on the MapReduce paradigm are automatically
parallelized and distributed across the cluster. The user of
MapReduce paradigm defines a map function and a reduce
function. The map function takes an input key/value pair and
generates a set of intermediate key/value pairs. Intermediate keys
are grouped and passed to the reduce function. An iterator is used
to access the intermediate keys and values. The reduce function
merges these values and usually forms a smaller set of values. The
output of a MapReduce job can be used as the input for the next
job or as the result.

5.2. Disco framework

Disco is designed for storage and large scale processing of data
sets on clusters of commodity server machines. It provides fault-
tolerant scheduling, execution layer, and a distributed replicated
storage layer. Core aspects of cluster monitoring, jobmanagement,
task scheduling and distributed file system are implemented in
Erlang, while the standard Disco library is implemented in Python.
Activities of Disco cluster are coordinated by a central master host,
which handles computational resource monitoring and allocation,
job and task scheduling, log handling, and client interaction. A
distributed MapReduce job executes multiple tasks, where each
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task runs on a single host. The job scheduler assigns resources to
jobs, minimizes the data transfer over network, takes care of load
balancing and handles changes in cluster topology.

Disco Distributed Filesystem (DDFS) provides a distributed
storage layer for Disco. It is a tag based filesystem designed
for storage and processing of massive amounts of immutable
data. DDFS provides data distribution, replication, persistence,
addressing and access.

5.3. Disco Machine Learning Library

To the best of our knowledge there is currently no Python pack-
age with machine learning algorithms based on the MapReduce
paradigm for Disco, whichmotivated the development of the Disco
Machine Learning Library (DiscoMLL) [63]. DiscoMLL is an open
source library, build on NumPy [64] and the Disco framework.
DiscoMLL is a part of the ClowdFlows platform and is responsi-
ble for the analysis of big batch data. This enables ClowdFlows
users to process big batch data using visual programming. Dis-
coMLL provides many options for data set processing: multiple in-
put data sources, feature selection, handling missing data, etc. It
supports several data formats: plain text data, chunked data on
DDFS and gzipped data formats. Data can be accessed locally or via
file servers.

To take advantages of the MapReduce paradigm, it is necessary
that algorithms have certain properties. As shown in [65], machine
learning algorithms that fit the statistical query model [66] can be
expressed in so called summation form and distributed on a multi-
core system. An example is an algorithm that requires statistics
that sum over the data. The summation can be done independently
on each core by dividing the data, assigning the computation to
multiple cores and at the end aggregating the results.

All implemented algorithms have a fit phase and predict phase.
The fit phase consists of map and combine tasks, which are
parallelized across the cluster. Usually algorithms have one reduce
task that aggregates outputs ofmap tasks and returns URL of the fit
model, which is stored on DDFS. The learnedmodel differs for each
algorithm, since it contains the actual model and the parameters
needed for the predict phase. The predict phase consists only of
map tasks which are also parallelized across the cluster. The first
step of the predict phase is to read the model from DDFS and pass
it as parameter to map tasks. Then the data is read and processed
with the model. The predict phase stores predictions on DDFS and
outputs the URL.

We have implemented the following algorithms which are in
summation form: Naive Bayes, Logistic Regression, K -means clus-
tering, Linear regression, Locally weighted linear regression, and
Support Vector Machines. Implementations of these algorithms
can be found in the Appendix.

To assure enough algorithms with state-of-the-art perfor-
mance [67]we also implemented several existing andnewvariants
of ensemble methods adapted to distributed computing paradigm.
The proposed ensembles are based on decision trees, which are not
in summation form. These methods are presented in Section 6.

5.4. Integration in the ClowdFlows platform

The batch mode big data analysis in ClowdFlows is a separate
module that is accessed by the worker nodes via an HTTP interface
of the Disco cluster. This configuration is presented in Fig. 8.

To configure a Disco cluster, it is only necessary to set slave
server hostnames or IP addresses, and the number of their CPU
cores. All nodes of the cluster are connected to the Internet to
access the input data on file servers. An input data is transferred to
workers using HTTP GET requests and passed directly tomap tasks.
The ClowdFlows platform submits MapReduce jobs using HTTP
Fig. 8. An overview of the ClowdFlows system for batch mode big data analysis.

interface via a proxy server to the Disco master host. In contrast
to input data, results of MapReduce jobs are stored on DDFS and
their locations are passed back to the ClowdFlows platform.

Widgets that submit MapReduce jobs were developed which
allow construction of workflows for big data. Each widget calls
the Disco master using an HTTP interface. The workflows designed
with these widget do not differ in presentation from workflows
that deal with regular data. The MapReduce paradigm and
implementation methods are not obvious from the workflows
themselves.

5.5. Use case: Naive Bayes classifier for big data

In order to demonstrate the batch big data processing mode
of ClowdFlows we have implemented a simple workflow that is
capable of processing data sets that do not fit into memory of
conventional machines.

The aimof the use case is to build a classifier froma large test set
and to use it to classify data. We first describe the implementation
details of the Naive Bayes classifier in the Disco Machine Learning
Library, then we follow it with a description of a ClowdFlows
workflow that utilizes the DiscoMLL.

5.5.1. Naive Bayes in Disco Machine Learning Library
The basic form of the Naive Bayes (NB) classifier uses discrete

features. It estimates conditional probabilities P(xj = k|y = c)
andprior probabilities P(y) from the training data,where kdenotes
the value of discrete feature xj and c denotes a training label. The
map function (Algorithm 1) takes the training vector, breaks it
into individual features and generates output key/value pairs. Each
output pair contains the training label i.e., value of y, feature index
j and feature value of xj as the key and 1 as the value. This output
pair marks the occurrence of a feature value given training label.
The map function also outputs the training label as the key and
1 as the value, to mark the occurrence of a training label. The map
function is invoked for every training instance. The reduce function
(Algorithm 2) takes the iterator over key/value pairs. Values with
the same key are grouped together in the intermediate phase. If
the key consist of one element, it represents an instance’s label
and values are summed and stored for further calculation of the
prior probability. The values of other pairs are summed and output.
These pairs represent the occurrences of xj = k ∧ y = c and enable
calculation of conditional probabilities P(x|y) in the predict phase.
After all pairs are processed, prior probabilities are calculated and
output. The output of the reduce function presents a model that is
used in the predict phase. The outputs of the predict phase were
compared with the Orange implementation of the Naive Bayes
Classifier [11] and return identical results.

As an example, consider the NB classifier with the input data
set in Table 2, where the target label is Sex. At the beginning of the
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Table 2
Example data set of the human physical appearance.

Sex Hair length Height

M Short Tall
M Short Tall
F Long Medium

MapReduce job, each training instance is read and passed to the
map function as its input argument (sample). For the first training
instance, the sample assigns x = [Short, Tall] and y = M . The for
loop iterates through x and outputs pairs ((M, 0, Short), 1) and
((M, 1, Tall), 1). The value 1 is added to mark one occurrence
of the specific feature value and training label. The map function
also outputs the pair (M, 1) to mark the occurrence of label M .
The procedure is repeated for all training instances. Note that the
first two training instances in Table 2 are the same and produce the
same output pairs. Prior to invocation of the reduce function, the
output pairs are grouped by the key. We get the following pairs:
((M, 0, Short), [1, 1]), ((F , 0, Long), [1]), ((M, 1, Tall), [1, 1]),
((F , 1, Medium), [1]), (M, [1, 1]), (F , [1]). Notice that values
from the first and second training instance are grouped by the
key and their counts are merged in a list [1, 1]. The iterator over
pairs is passed to the reduce function. For each key, the values are
summed. The keys that mark training label occurrences are used
to calculate prior probabilities, others are output in the form of
((M, 0, Short), 2). These values constitute the model that is used
in the predict phase.

Algorithm 1: The map function of the fit phase in the NB

function map( sample , params )
x , y = sample
for j = 0 to length (x )

#key : label , a t t r index and value
#value : 1 occurrence
output ( ( y , j , x_j ) , 1)

#mark labe l occurrence
output (y , 1)

Algorithm 2: The reduce function of the fit phase in the NB.

function reduce ( i te ra tor , params )
y_dist = hashmap ( )
for key , values in i t e r a to r

i f key has 1 element
#labe l frequencies
y_dist . put ( key , sum( values ) )

e lse i f key has 3 elements
#occurrences x_j = k and y = c
output ( key , sum( values ) )

pr ior = calculate_pr ior_probs ( y_dist )
output ( " pr ior " , pr ior ) #P(y )

For numeric attributes, a NB classifier uses a different approach
to probability estimation. We provide a description of this method
in the Appendix.

5.5.2. Constructing the workflow
We constructed a workflow that analyzes a big data set

using the Naive Bayes machine learning algorithm based on the
MapReduce paradigm.

For the purpose of this use case, we generated 6 GB of semi-
artificial data [68] from the UCI image segmentation data set. The
Fig. 9. The workflow for learning the NB classifier, predicting unseen in-
stances and displaying the evaluation results. The workflow can be accessed at
http://clowdflows.org/workflow/2788/.

training and testing data set each contain 3 GB of data. Both data
sets were divided into chunks and loaded on a file server. The
components are connected as shown in Fig. 9.

The ClowdFlows workflow consists of training a model on the
image segmentation training data set with NB, using the model to
predict testing instances and visualization of the results.

First, we set the input parameters specifying the image
segmentation train data object. We entered multiple URLs to
process the data in parallel. The feature index parameter was set
to 2–21, to include all the features available in the data set. The
identifier attributewas set to 0 and the target label indexwas set to
1 as it represents the target label. In the widget that represents the
prediction data object, we entered the URLs of the corresponding
chunks. The Naive Bayes widget learns the model. The Apply
Classifierwidget takes the prediction data and themodel’s location
to predict the data. The Results View shows the results, the Class
Distributionwidget shows the distribution of labels in the data set,
the Model View widget enables us to review the statistics of the
model and the Classification Accuracy widget is used to calculate
the accuracy of the classifier. By pressing the button ‘‘start’’, the
workflow executes a series of MapReduce jobs on the cluster. After
theworkflow is finished the results are provided as a hosted file on
the distributed file system.

6. Distributed ensemble methods for batch processing

Ensemble methods are known for their robust, state-of-the-art
predictive performance [67]. Aswewant to assure high usability of
ClowdFlows we developed several tree-based ensembles adapted
for distributed computation with MapReduce and implemented
them in DiscoMLL. We first describe the ideas behind the most
successful ensemble method, random forest [69], then we review
existing distributed ensembles, followed by our methods.

Random forest is one of the most robust and successful data
mining algorithms [70]. It is an ensemble of randomized decision
trees used as the basic classifiers. Two randomization mechanisms
are used: a bootstrap sampling with replacements on the training
set, separately for each tree, and random selection of a subset of
attributes in each interior node of the tree. A notable consequence
of using bootstrap sampling with replacement for selection of
training sets is that on average 1/e ≈ 37% of training instances
are not selected in each tree (so called out-of-bag set or OOB). This
set can be used for unbiased evaluation of themodel’s performance
and its visualization.

Tree-based ensembles can exploit distributed computing in
two ways: either computing basic models independently on
local subsets of instances stored in worker nodes or computing
individual trees with several nodes. The first approach is used in
the MReC4.5 [71] and COMET [72] systems, while the second is
used in the PLANET [73]. These systems are not publicly available,
so direct comparison with them is not possible.

http://clowdflows.org/workflow/2788/
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The MReC4.5 system [71] implements a variant of bagging
where the master node bootstrap samples the training instances
and distributes them to local nodes, where C4.5 like decision
trees [74] are constructed in the map step and returned to the
master node in the reduce step. In the prediction phase all trees
return their votes. The weakness of this approach is memory
consumption as worker nodes operate on the data set the size of
the whole data set and keep it in its internal memory.

The COMET system [72] uses non-overlapping data samples in
worker nodes. During the map phase many trees are created in
each node using small training sets obtained with importance-
sampled voting [75]. Importance-sampled voting uses OOB set to
steer the training set sampling for consecutive trees in the same
worker node. A large collection of trees are returned to the master
node (the reduce phase). During prediction only a subset of trees
is used, depending on the agreement of already returned votes.

The PLANET system [73] constructs each tree from all data in a
distributed fashion. To keep the number of map steps low and to
evaluate attributes in several nodes at once it creates trees level by
level instead of in a depth-first manner as usual.

We developed three tree-based ensemble methods using the
MapReduce approach. To allow processing of big data we split data
sets to chunks that fit into local memory of worker nodes. All three
methods construct decision trees on local nodes in the map phase
and gather collected trees into a forest in the reduce phase.We im-
plemented a binary decision tree learning algorithm,which runs on
a single worker and expands decision tree nodes using a priority
queue. The algorithm allows different types of attribute sampling
in interior tree nodes and offers several types of attribute evalua-
tion functions, e.g. information gain [74] andMDL [76]. As the trees
are constructed locally in workers we need a single map step.

In the reminder of the section we present the three methods.
Their evaluation is included in Section 7.2.

6.1. Forest of Distributed Decision Trees

The first variant, called Forest of Distributed Decision Trees
(FDDT), performs a distributed variant of bagging [77]. Instead of
bootstrap sampling of the whole data set it builds decision trees
on chunks of training data. In each interior decision tree node
all attributes are evaluated and the best one is selected as the
splitting criterion. In the prediction phase all trees are used and
their majority vote is returned as a prediction.

6.2. Distributed Random Forest

The second variant, called Distributed Random Forest (DRF),
is a distributed variant of the random forest algorithm [69]. It
uses bootstrap sampling with replacement on local data chunks
to construct the training sets. In each interior node a random
subsample of attributes is evaluated and the best one is selected
as the splitting criterion. In the prediction phase a subset of trees
is randomly selected and used for prediction. If the difference
between the most probable prediction and the second most
probable prediction is larger than a pre-specified parameter the
most probable prediction is returned, otherwise more trees are
selected and the process is repeated. The process ends when the
difference is large enough or all the trees have been used for
prediction. This process speeds up the prediction phase by using
only a small subset of trees for prediction of less difficult instances.

6.3. Distributed Weighted Forest

The third variant, called Distributed Weighted Forest (DWF),
is based on the idea that not all trees perform equally well for
each instance, so it weights the trees for each prediction instance
separately, extending the idea of [78] to a distributed environment.
The construction phase of randomized trees is the same as in
DRF, but after each tree is constructed, it is used to predict class
values of its OOB instances. If two instances are classified into the
same leaf node, their similarity score is increased. In this way we
get a similarity score for all instances stored in a worker node,
which we can divide by the number of trees in a worker t to get
a [0, 1] normalized distance [69]. The distances are passed to the
k-medoid clustering algorithm, which returns medoids (instances,
whose average distance to all instances in the same cluster are
minimal). The default value for the number of clusters k is set to
⌈
√
a + 1⌉, where a is the number of attributes. Larger values of k

improve the prediction accuracy, but also increase the prediction
time. Medoids are used to determine prediction reliability of trees.
A reliability score used is the prediction margin, defined as a
difference between the predicted probability of the correct class
and the most probable incorrect class. This margin is used to
weight trees during the prediction phase. The DWF algorithm
returns a local (small) forest for each worker node, the medoids,
and reliability scores for each tree in the local forest.

During the prediction phase we first compute the similarity
between a test instance and all the medoids in all the forests using
the Gower coefficient [79], which is defined for both nominal and
numeric attributes. The medoids with the highest similarity to the
test case are used as tree quality probe. Only trees with positive
and large enough reliability score (larger than median) for each
medoid are used and their prediction scores are weighted with
the reliability scores. The class with the highest sum of weighted
predictions is returned. The described prediction process aims to
improve the prediction by using only trees that perform well on
instances similar to the given new instance.

To reduce memory consumption of k-medoid algorithm and
the space required to store instance similarities, we sample the
instances used in the tree reliability estimation process. The size
of the sample is a parameter of the method.

7. Evaluation of big data processing in ClowdFlows

To validate our implementation of batch processing of big
data we evaluated the big data processing in ClowdFlows by
first empirically proving that our map-reduce implementations
of algorithms are equivalent in performance to their standard
counterparts implemented in widely used libraries. Next we use
large data sets and assume that data sets is too big to fit into the
main memory of a single worker we test their performance in
distributed environment and on assumption that the data set is to
big to fit into the main memory of a single worker.

We also validated our newly developed distributed ensemble
methods by comparing them to bagging and random forests
implemented in the scikit-learn toolkit [44]. Additionally, we test
their performance in distributed environment and on assumption
that the data set is to big to fit into the main memory of a single
worker.

7.1. Evaluation of DiscoMLL summation form algorithms

In order to verify the quality of implemented algorithms we
compared themwith standard single processor based implementa-
tions from the scikit-learn toolkit [44]. We used 10 relatively small
data sets from UCI repository [80] and 3 big data sets. The charac-
teristics of data sets are presented in Table 3.

We first tested DiscoMLL algorithms based on statistical
queries, which, although implemented in a distributed fashion,
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Table 3
The characteristics of small UCI data sets (above the line) and big data sets (below
the line). The labels in column header have the following meaning: D = number of
discrete attributes, R = number of numeric attributes, C = number of class values,
N = number of instances, NC = number of chunks used in distributed processing,
TC = number of trees per chunk for ensemble methods, Cl = the majority class
used in binary classification.

Data set D R C N NC TC Cl

abalone 1 7 29 2087 18 30 9
adult 8 6 2 24420 18 30 ≤50K
car 6 0 4 864 18 30 unacc
isolet 0 617 26 3899 18 30 17
segmentation 0 19 7 1155 18 30 sky
semeion 256 0 10 796 18 30 1
spambase 0 57 2 2300 18 30 –
wilt 0 5 2 2418 18 30 –
wine-white 0 11 10 2448 18 30 6
yeast 1 8 10 740 18 30 cyt

covertype 54 0 7 290506 8 10 2
epsilon 0 2000 2 250000 65 3 –
mnist8m 0 784 10 4050000 119 3 1

follow the same principles as non-distributed implementations
and shall achieve the same accuracy.4

For MapReduce methods we use a distributed computational
environment with 10 nodes (a master node and 9 worker nodes).
Each computational node is a 2 CPU AMD Opteron 8431 2.4 GHz
with 1 GB RAM using Ubuntu 12.04, so in total we have 18
concurrent processes and each is assigned approximately 1/18 of
training instances.

On small data sets 5 × 2 cross-validation was used to test the
performance of algorithms. Each training set was randomly split
into 18 chunks matching 18 processors in our testing scenario.
The results are collected in Table 4. For each algorithm we
present two scores: in the left-hand columns the scores of scikit-
learn using the whole training set are given and in the right-
hand columns the results of DiscoMLL are presented, where each
of 18 workers received 1/18 of the training data. We observe
that distributed algorithms achieve similar accuracies as non-
distributed algorithms. The comparison across algorithms is not
possible as for binary classifiers, logistic regression and linear
SVM, we binarized all non-binary data sets by setting the label for
instances with the most frequent class value to 0 (as indicated in
Table 3, column Cl) and labels of all the other instances to 1.We also
compare the clusterings produced by the k-means algorithm and
the clusterings defined by the target labels. The number of clusters
for k-means was set to the number of target labels in each data set.
In Table 4 we show the values of the adjusted rand index. One can
notice that the values for scikit-learn and DMLL are very similar,
which indicates that similar clusterings are produced.

In Table 5we present the results of summation form algorithms
on big data sets, for which we assume that they do not fit into
the memory. scikit-learn models are therefore trained on subsets
with N/NC samples (see Table 3 for these values), while DiscoMLL
models are trained on the entire data set distributed over worker
nodes (each node contains N/NC samples). All models were tested
on the entire test set. The performance of DiscoMLLmodels is equal
or significantly better than the performance of scikit-learnmodels,
except for Naive Bayes and Linear SVM on the mnist8m data set.

7.2. Performance of distributed ensembles

We evaluate the performance of developed ensemble methods
(FDDT, DRF and DWF), described in Section 6, and compare their

4 In contrast to that, the implemented distributed ensemble methods are not
equivalent to thenon-distributed implementations aswe train them in adistributed
fashion using subsets of training data. We compare them to scikit-learn ensemble
methods in Section 7.2.
classification accuracy with bagging (scikit BG) and random forests
(scikit RF ) implemented in the scikit-learn toolkit. We compare
distributed and non-distributed algorithms in two ways:

• giving each worker the whole data set (only possible for small
data sets) we expect comparable predictive performance;

• training the distributed ensembles on subsets, we can expect
decreased accuracy in comparison with non-distributed meth-
ods with all instances at their disposal. Altogether the dis-
tributed algorithms can process far more data than single ma-
chines so we expect improved performance in comparison to
singlemachineswith only chunks of data. For thesemethodswe
therefore analyze the decrease of accuracy due to distributed
learning. We start with small data sets and observe if the find-
ings generalize to big data sets.

We use a similar testing scenario as for summation form
algorithms in Section 7.1, i.e. we use 5 × 2 cross-validation and
each training set is randomly split into 18 chunks to match the
number of processors in our distributed environment. To measure
the decreased performance due to distributed implementations,
we simulate the data distribution process using scikit-learn, as
follows. We train a model on a subset of 1/18 training instances,
predict the entire testing set and measure the classification
accuracy. This process is repeated for each of 18 subsets. The
same testing method is used with DiscoMLL ensemble algorithms
(DiscoMLL subset).We expect similar performance: scikit subset ≃

DiscoMLL subset . To measure the upper bound of classification
accuracy for the algorithms, we train the classification models
using all the instances with scikit (scikit ideal). In practice this
is not always feasible due to the size of data sets, therefore we
also measure the performance in the distributed scenario using
the distributed ensembles, which producemodels in parallel using
subsets and then combine local models in the prediction phase.
Due to distributed learning, we expect the following relation
between the performance scores: scikit subset ≤ DiscoMLL dist ≤

scikit ideal.
We present average classification accuracy of distributed and

non-distributed ensembles on small data sets in Table 6. To
statistically quantify the differences between different methods
we test the null hypothesis that distributed ensembles (training
a model on the entire data set split into chunks) return models
with the same prediction accuracy compared to single processor
based implementations, which trainmodels on subsets of data.We
applied a paired t-test to measure the significance of differences
between matching scikit subset and DiscoMLL dist scores. In
cases when the null hypothesis is rejected we can assume that
distributed ensembles are beneficial. The scikit BG subset score
is compared with FDDT dist score and scikit RF subset score is
compared with DRF dist and DWF dist scores. The + signs in
FDDT dist, DRF dist, and DWF dist columns denote significant
improvements of classification accuracy and the - signs denote
significant decrease in accuracy. We observe that FDDT achieves
significant improvement over scikit BG on every data set except
yeast. Similarly DRF achieves a significant improvement over scikit
RF on all data sets except on car and wilt data sets. The DWF
algorithm achieves several significant improvements over scikit
RF, but also two significant decreases of classification accuracy (on
wilt and yeast data sets). In general DWF is mostly inferior to DRF.
We believe that the reason for this is unreliable assessment of
sample similarity based on k-medoid clustering, which is sensitive
to noise in the form of less important features. This causes certain
samples labeled differently to appear similar. Improvement in the
efficient instance similarity assessment is a topic of future work.

Based on the above performance we can confirm our expecta-
tions and report a significant increase of accuracy for distributed
methods, which use the entire data set split into chunks, com-
pared to single processor methods using only subsets of data. On
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Table 4
Results of summation form algorithms in distributed and non-distributed fashion on small data sets. Classification accuracy is presented for classification algorithms and
the adjusted rand index is given for k-means clustering. For logistic regression and Linear SVM the data sets are binarized. The + and − signs denote a significant increase
or decrease of classification accuracy, respectively.

Data set Naive Bayes Logistic regression Linear SVM k-means
scikit DMLL scikit DMLL scikit DMLL scikit DMLL

abalone 0.22 0.23 0.83 0.83− 0.83 0.83 0.04 0.06+
adult 0.81 0.83+ 0.80 0.82+ 0.80 0.81+ −0.01 −0.01
car 0.71 0.84+ 0.86 0.86 0.87 0.86 0.02 0.01
isolet 0.81 0.81 1.00 0.99− 1.00 0.99− 0.46 0.44
segmentation 0.77 0.77 1.00 1.00+ 1.00 1.00 0.37 0.36
semeion 0.82 0.84+ 0.97 0.91− 0.97 0.95− 0.37 0.38
spambase 0.82 0.81 0.92 0.92 0.92 0.89− 0.04 0.04
wilt 0.88 0.88 0.95 0.97+ 0.95 0.94− −0.01 −0.01
wine-white 0.44 0.44 0.56 0.56+ 0.56 0.56 0.01 0.01
yeast 0.23 0.23 0.70 0.69 0.70 0.70 0.03 0.03
Table 5
Results of summation form algorithms on big data sets. scikit-learn trains models on data subsets while DiscoMLL trains models on the entire data set, but in distributed
fashion. Classification accuracy is presented for classification algorithms and adjusted rand index is given for clustering.

Data set Naive Bayes Logistic regression Linear SVM k-means
scikit DMLL scikit DMLL scikit DMLL scikit DMLL

covertype 0.26 0.68 0.76 0.76 0.76 0.76 0.00 0.00
epsilon 0.60 0.67 0.80 0.90 0.80 0.90 0.00 0.00
mnist8m 0.49 0.46 0.98 0.98 0.98 0.95 0.27 0.29
Table 6
Classification accuracy of ensemblemethods in distributed and uniprocessormode on small data sets. The scikit BG subset performance is comparedwith FDDT dist and scikit
RF subset performance is compared with DRF dist and DWF dist. The + and − signs denote a significant improvement and reduction of classification accuracy, respectively.

Data set scikit BG scikit RF FDDT DRF DWF
subset ideal subset ideal subset dist subset dist subset dist

abalone 0.22 0.23 0.22 0.24 0.22 0.26+ 0.22 0.26+ 0.22 0.26+
adult 0.84 0.86 0.84 0.85 0.84 0.86+ 0.85 0.86+ 0.84 0.86+
car 0.79 0.96 0.77 0.95 0.79 0.84+ 0.78 0.80 0.77 0.79
isolet 0.75 0.90 0.76 0.94 0.72 0.88+ 0.74 0.88+ 0.72 0.85+
segmentation 0.87 0.97 0.87 0.97 0.88 0.92+ 0.88 0.92+ 0.80 0.89+
semeion 0.54 0.84 0.58 0.92 0.48 0.77+ 0.53 0.82+ 0.50 0.80+
spambase 0.89 0.95 0.91 0.95 0.90 0.92+ 0.91 0.92+ 0.91 0.93+
wilt 0.96 0.98 0.96 0.98 0.96 0.97+ 0.96 0.95 0.96 0.95−
wine-white 0.49 0.64 0.50 0.65 0.51 0.53+ 0.51 0.55+ 0.49 0.54+
yeast 0.46 0.61 0.43 0.61 0.46 0.51 0.48 0.50+ 0.44 0.40−
the other hand, the performance of distributed methods is well
beyond the upper bound achieved by using the entire data set in
non-distributed mode which leaves much opportunity for further
research.

Table 7 presents the results of ensemble methods on big
data sets, which are too big to fit into memory of a single
machine (ideal scores cannot be computed). For these data sets,
scikit-learn algorithms use subsets with N/NC samples while
DiscoMLL distributed ensembles use the entire data sets split
into chunks to train a model. To make parameters comparable,
scikit-learn ensembles construct all the trees on a single subset,
while DiscoMLL ensembles construct less trees per subset (as
indicated in Table 3, column TC) and combine them into ensembles
of equal size. We observe that distributed ensembles mostly
achieve higher accuracy. This confirms the benefits of a distributed
approach: for data sets too large to fit intomemory, the distributed
ensemblemethods can usemore data split into chunks and thereby
outperform the non-distributed methods.

Fig. 10 shows learning time of DiscoMLL ensemble methods
and their speedup with different number of CPUs on artificially
increased [68] segmentation data set (for other data sets the
behavior is similar). All methods achieve almost ideal linear
speedup i.e. if the time using one node (2 CPUs) is t , the time using
x nodes (2x CPUs) is only slightly larger than t/x.

The actual times usedby themethods are parameter dependent,
but in general DWF is slower than DRF and FDDT as it uses
Table 7
Results of ensemble methods on big data sets, which do not fit into memory of
single machines. Scikit algorithms use subsets of data, while DiscoMLL algorithms
use distributed computation (dist) to learn on the entire data sets split into chunks.

Data set scikit BG scikit RF FDDT DRF DWF
subset subset dist dist dist

covertype 0.82 0.79 0.82 0.82 0.82
epsilon 0.71 0.70 0.73 0.74 0.73
mnist8m 0.89 0.92 0.90 0.92 0.92

clustering. DRF is faster than FDDT if it uses the same number of
trees as it estimates only

√
a features in each tree node, where a

is the number of attributes. FDDT is faster than scikit RF using the
same number of processors.

8. Comparison and integration of ClowdFlows with related
platforms

ClowdFlows is an open source data mining platform that
can successfully process big data and handle potentially infinite
streams of data.

The graphical user interface of ClowdFlows is implemented as
a web application that is executed on a remote server. This distin-
guishes the platform fromother platforms such as RapidMiner, KN-
IME, Weka, and Orange which require an installation which poses
distinct software and hardware requirements. The side effect of
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Fig. 10. Learning times of MapReduce ensemble methods with different number
of CPUs.

this feature is that users can share their workwith anybody as only
a web browser is required to view, modify or execute a workflow
in ClowdFlows.

Even though ClowdFlows can be deployed on a single machine
it is designed with a modular architecture and scalability in mind.
Different parts of the system are decoupled so that they may be
duplicated for higher performance.

The non-local nature of ClowdFlows makes it an ideal platform
for running long term workflows for processing data streams as
users do not need to worry about leaving their machines turned
on during the process of mining the stream.

ClowdFlows is to the best of our knowledge the only platform
that provides a graphical user interface to the Disco Framework
and publicly available implementations of data mining algorithms
for big data mining in this framework.

The ClowdFlows platform can also be regarded as an open
source alternative to the Microsoft Azure Machine Learning
platform which requires a subscription with the Azure cloud.
ClowdFlows is released under a permissive open source license and
can be deployed on public or private clouds.

ClowdFlows in its current state cannot handle processing fin-
ished workflows of other platforms but can integrate procedures
and algorithms implemented in other platforms and use them in-
ternally as part of its own workflows. ClowdFlows features algo-
rithm implementations from Weka, Orange, and scikit-learn. In
this way ClowdFlows can be used as a graphical user interface
for other platforms, including platforms that do not have graphi-
cal user interfaces for constructingworkflows, such as TensorFlow.
While the TensorFlow interface is not yet implemented in Clowd-
Flows, it is a subject for further work. The platform is compati-
ble with ClowdFlows as they are both interfaced and expressed in
Python.

The ClowdFlows platform can be usedwithin other datamining
platforms either by calling ClowdFlows Python functions or by
importing REST API services deployed by any live installation of
ClowdFlows. The second method exposes an HTTP URL endpoint
which executes the workflow when input data is posted to it.

The ClowdFlows platform has been evaluated in independent
surveys where it was valued as one of the leading platforms with
regards to the number of features [81].
9. Conclusions and further work

We presented the ClowdFlows, a data mining platform that
supports the construction and execution of scientific workflows.
The platform implements a visual programming paradigm, which
allows users to present complex procedures as a sequence of
simple steps. This makes the platform usable for non-experts. The
ClowdFlows platform allows importing web services as workflow
components. With this feature the processing abilities of the
ClowdFlows platform are not limited to the initial roster of
processing components, but can be expanded with web services.
The interface for constructing and monitoring of workflow
execution is implemented as aweb application and can be accessed
from any contemporary web browser. The data and the workflows
are stored on the server or a cluster of servers (i.e., a cloud), so that
the users are not limited to a single device to access their work.
Similarly, workflows are not limited to a single user, but can be
made public, which allows other users to use existing workflows
either to reproduce the experiments, or as templates to expand and
create new workflows.

We presented two modules for big data processing: a real-time
analysis module and a batch processing module. Both modules are
accessible via an intuitive graphical user interface that are easy to
use for data mining practitioners, students, and non-experts.

The stream mining mode uses the stream mining daemon
that executes workflows in parallel. The workflow components
offer several novel features, so that workflows can connect to
potentially infinite number of data streams and process their data.
We demonstrated their use by extracting semantical triplets from
a live RSS feed.

For analyzing big data in batchmodewe developed DiscoMLL, a
machine learning library for the Disco MapReduce framework and
several ClowdFlows widgets that can interact with a Disco cluster
and issue MapReduce tasks. We implemented several summation
form algorithms and developed three new ensemble methods
based on random forests. Performance analysis shows the benefit
of using all available data for learning in the distributed mode
compared to using only subsets of data in the non-distributed
mode.Wedemonstrate the ability of our implementation to handle
big data sets and its nearly perfect linear speedup.

Both the batch-mode and real-time processing modules were
demonstrated with practical use cases that can be reproduced
and executed either on the public installation of the ClowdFlows
platform, or on a private cluster.

There are several directions for future work. First, the Clowd-
Flows platform currently implements its own stream processing
engine which is built-in and easy to use. On the other hand, the
Storm project is widely accepted as a de facto solution for massive
stream processing and we plan to provide a loose integration of
Storm into the ClowdFlows platform. Likewise, the ApacheHadoop
and Spark will be integrated to complement the Disco framework.

Second, the existing ClowdFlows workflow engine will be
extended to support different underlying processing platforms.
The workflow engine should be able to delegate andmonitor tasks
transparently providing an easy-to-use programming interface.

Third, the ClowdFlows platform currently is not able to import
or export workflows from other visual programming tools. For
example, workflows constructed in Taverna or RapidMiner using
web services and standard input/output components could easily
be imported.

Fourth, we will simplify the installation procedures of Clowd-
Flows clusters by providing one-click deployment and automati-
zation of scaling.

Finally, the available widget repository will be extended with
high quality open-source data processing libraries to cover several
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new data analysis scenarios, e.g., high-throughput bioinformatics,
large scale text processing, graph mining, etc.

To conclude, we believe that ClowdFlows has the potential
to become a leading platform for data mining and sharing
experiments and results due to its open source nature and its
non-opinionated design regarding its collections of workflow
components. It is our strategic vision for developers to create their
own workflow components, expand the ClowdFlows workflow
repository and deploy their own versions of ClowdFlows as a part
of a large ClowdFlows network. Since ClowdFlows was released as
open source software it has been forked many times and deployed
on public servers with custom opinionated sets of workflow
components (e.g. ClowdFlows Unistra and TextFlows [82]). With
the addition of big data mining and stream mining capabilities
presented in this paper we expect the number of users and
ClowdFlows installations to increase.
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Appendix. Summation form algorithms in DiscoMLL

Besides distributed ensemble methods (FDDT, DRF, and DWF)
presented and analyzed in Section 6, DiscoMLL contains imple-
mentations of several existing machine learning algorithms in
summation form. Since to the best of our knowledge their pseudo
code in MapReduce remains unpublished, but is of interest to the
scientific community, we include it in this appendix. We present
Naive Bayes, logistic regression, K -means clustering, linear regres-
sion, locally weighted linear regression, and support vector ma-
chine algorithms.

Naive Bayes for numeric attributes

Naive Bayes (NB) for discrete attributes was presented as an
example in Section 5.5.1. Here we describe handling of numerical
attributes. On numerical features the NB classifier (also called
Gaussian Discriminative Analysis in this context) uses numerical
features to learn the following statistics: mean, variance and prior
probability P(y). The map function (Algorithm 3) takes a training
instance, breaks it into individual features and generates output
key/value pairs. Each output pair contains the training label y and
the feature index j as the key and the feature value xj as the value.
The occurrences of training labels are output in pairs, the training
label as the key and 1 as the value. The combiner calculates local
statistics (mean, variance and prior probability) for each map task
to reduce network load. The reduce function (Algorithm 4) accepts
partially calculated statistics for each attribute and combines them
appropriately. The statistics are output and used to build a model,
which is applied in the predict phase. The output of the predict
phase was compared to the Naive Bayes algorithm implemented
in the scikit-learn toolkit [44].

We combined theNB classifier for discrete andnumeric features
into a single algorithm. The computed conditional scores for
discrete and numeric attributes are combined into a single score
to predict the label ŷ with the maximal score as stated in Eq. (A.1)
below.

ŷ = argmax
y

P(y)

 
j∈Numeric

P(xj|y)

 
j∈Discrete

P(xj|y)


. (A.1)
Algorithm 3: The map function of the fit phase in the NB for
numeric attributes.

function map( sample , params )
x , y = sample
for j = 0 to length (x )

#key : label , a t t r ibute index
#value : a t t r ibute value
output ( ( y , j ) , x_j )

#mark labe l occurrence
output (y , 1)

Algorithm 4: The reduce function of the fit phase in the NB for
numeric attributes.

function reduce ( i te ra tor , params )
y_dist = hashmap ( )
for key , values in i t e r a to r

i f key has 1 element
#count labe l occurrences
y_dist . put ( key , sum( values ) )

e lse i f key has 2 elements
#combine loca l s t a t i s t i c s
mean = calculate_mean ( values )
var = ca lculate_var iance ( values )
output ( key , mean)
output ( key , var )

pr ior = calculate_pr ior_probs ( y_dist )
output ( " pr ior " , pr ior ) #P(y )

Logistic regression

The logistic regression classifier is a binary classifier that uses
numeric features. The classifier learns by fitting θ to the training
data, using the hypothesis in the form hθ (x) = g(θ T x) =

1/(1 + exp(−θ T x)). We use the Newton–Raphson method to
update θ := θ − H−1

∇θℓ(θ). For the summation form, we
calculate the subgroups of gradients by map tasks, denoted as
∇θℓ(θ), by


subgroup(y − hθ (x))xj, and the Hessian matrix by

H(j, k) := H(j, k) + hθ (x)(hθ (x) − 1) xj xk. The subgroups of
the gradient and the Hessian matrix can be computed in parallel
by map tasks as shown in Algorithm 5. The logistic regression
updates θ in each iteration, where one iteration represents one
MapReduce job. Before the execution of each MapReduce job,
the θ are stored in object params and passed as argument. The
map function calculates the hypothesis with x and θ from the
previous iteration. The subgroups of gradient and Hessian matrix
are calculated and output. The reduce function (Algorithm 6) takes
an iterator over key/value pairs. Values with the same key are
grouped together by the intermediate phase. The reduce function
sums subgroups of gradients and Hessian matrix, updates θ and
outputs it. This procedure takes place until convergence or a user-
specified number of iterations. The output of the predict phasewas
compared with the logistic regression algorithm implemented in
Orange [11].

Algorithm 5: The map function of the fit phase in the logistic
regression.

function map( sample , params )
x , y = sample
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h = calc_hypothesis (x , params . thetas )
output ( " grad " , ca lc_gradient (x , y , h ) )
output ( "H" , calc_hessian (x , h ) )

Algorithm 6: The reduce function of the fit phase in the logistic
regression.

function reduce ( i te ra tor , params )
for key , value in i t e r a to r

i f key == "H"
H = sum( value )

e lse
grad = sum( value )

thetas = params . thetas − inv (H) ∗ grad
output ( " thetas " , thetas )

K-means clustering

The k-means is a partitional clustering technique that aims
to find a user-specified number of clusters (k) represented by
their centroids. The computation of distances between the training
instances and centroids can be parallelized. In the initial iteration,
the map function randomly assigns data points to k clusters. The
mean of data point values, assigned to a certain cluster, defines its
centroid. The MapReduce procedure is repeated until it reaches a
user-specified number of iterations. The map function (Algorithm
7) takes sample as the input parameter, which represents a data
point. It computes the Euclidean distance between a data point and
each centroid. It assigns each data point to the closest centroid and
outputs the cluster identifier as key and the data point as value.
The reduce function (Algorithm 8) recomputes centroids for each
cluster and outputs the cluster identifier as key and the updated
centroid as value. The k reduce tasks are parallelized across
the cluster, where each task recalculates a certain centroid. The
implementation of the k-means algorithm was taken from Disco
examples and was adapted to work with DiscoMLL. The output of
the predict phase was compared to the k-means implementation
in the scikit-learn toolkit [44].

Algorithm 7: The map function of the fit phase in the k-means.

function map( sample , params )
distances = ca lc_dis tances ( sample ,

params . centers )
center_id = min( distances )
output ( center_id , sample )

Algorithm 8: The reduce function of the fit phase in the k-means.

function reduce ( i te ra tor , params )
for center_id , samples in i t e r a to r

update_center (params . centers [ center_id ] ,
samples )

for center_id , samples in params . centers :
output ( center_id , average ( samples ) )

Linear regression

The linear regression fits θ to training data with the equation
θ∗

= A−1b, where A =
m

i=1(xix
T
i ) and b =

m
i=1(xiyi) with m
training instances. To put these equations into summation form,
the map function calculates


subgroup(xix

T
i ) and


subgroup(xiyi) as

shown in Algorithm 9. The reduce function (Algorithm 10) iterates
over subgroups of A and b and sums them. Then it calculates the
equation for θ∗ and outputs the parameters.

Algorithm 9: The map function of the fit phase in the linear
regression.

function map( sample , params )
x , y = sample
A = outer_product (x , x )
b = inner_product (x , y )
output ( "A" , A)
output ( "b " , b )

Algorithm 10: The reduce function of the fit phase in the linear
regression.

function reduce ( i te ra tor , params )
for key , value in i t e r a to r

i f key == "A"
A = sum( value )

e lse :
b = sum( value )

thetas = inner_product ( inv (A) , b )
output ( " thetas " , thetas )

Locally weighted linear regression

Locally weighted linear regression (LOESS) stores training data
and computes a linear regression at prediction time, separately for
each testing instance. In the linear regression formula instances
are weighted with their distances to the testing point, so that
points closer to the given testing instance have a strong effect on
prediction. This effect is modeled with parameter τ .

LOESS finds a solution of the equation Aθ = b, where

A =

m
i=1

w(i)(x(i)(x(i))T ),

b =

m
i=1

w(i)(x(i)y(i)),

where w(i) are distance based weights, x(i) is a training instance,
and y(i) is function value of instance i. For summary form
computation we use map function to compute subsets for A and
b, while reduce sums subsets and finds solution to θ = A−1b.

LOESS makes one pass through training data for prediction of a
single testing instance,which takes toomuch time for prediction of
many instances. Our implementation computes theta parameters
for several instances in one pass (Algorithm 11).

Algorithm 11: Computation of θ parameters with LOESS.

def get_thetas ( t ra in_set , tes t_set , tau = 1) :
re su l t _ur l = [ ] , t e s t _ se t = {}
read_test_set = read ( te s t _ se t )
for id , x in read_test_set :

t e s t _ se t [ id ] = x
i f below_max_capacity ( te s t _ se t ) :

params = Params ( test_set , tau )
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# compute thetas for given subset
thetas = compute( t ra in_set , params)
re su l t s _ur l . append( thetas )
tes t ing_se t = {}

return resu l t s _ur l

Function (Algorithm 12) uses dictionary of testing instances.
Training instances are used to compute weights, and subset of
matrices A and b for all testing instances. Function map returns as
many pairs as there are testing instances in a dictionary.

Algorithm 12: The map function for LOESS

def map( instance , params ) :
xi , y = instance
for id , x in params . tes t_ instances :

w = weights ( xi , x , params . tau )
sub_A = w ∗ outer_product ( xi , x i )
sub_b = w ∗ xi ∗ y
yie ld ( id , ( sub_A , sub_b ) )

Function reduce (Algorithm 13) sums all subsets of matrices for
test instanceswith the same id. It sorts pairs on the key andmerges
values based on the key (function kvgroup). For each test case we
sum subsets of matrices A and b, and compute parameters θ .

Algorithm 13: Function reduce for LOESS.

def reduce ( i te ra tor , params ) :
for id , value in kvgroup ( i t e r a to r ) :

A , b = 0 , 0
for sub_A , sub_b in value :

A += sub_A
b += sub_b

thetas = vector_product ( inverse (A) , b )
predict ion = vector_product ( thetas ,

params . t e s t _ se t [ id ] )
y ie ld ( id , ( thetas , predict ion ) )

Support Vector Machines

We implemented an incremental linear SVM, described in [83],
which requires a single pass over the training set with time
complexity O(n3) and space complexity O(n2). The method
assumes numeric attributes, and a binary class encoded with −1
or +1. A training set with n instances and m attributes is stored
in matrix A, and class values are stored in a diagonal matrix D. We
compute matrix E = [A− e], where e is a unit matrix of dimension
m × 1. For a user supplied parameter ν, we compute
w
γ


=

 I
ν

+ ETE
−1

ETDe. (A.2)

With the map function (Algorithm 14) we compute ETE and ETDe
in a distributed fashion.

Algorithm 14: Function map for linear SVM.

def map( sample , params ) :
A , D = sample
e = unit_matrix ( len (A) , 1)
E = column_merge (A , −e )
ETE = inner_product (ET , E )
ETDe = inner_product (ET , D, e )
y ie ld ( " key " , (ETE , ETDe ) )

In the reduce function (Algorithm 15) we sum ETE and ETDe,
create the unit matrix I of size (n + 1) × (n + 1), which is divided
by parameter ν. Using (A.2) we return parameters of linear SVM of
size (n + 1) × 1.

Algorithm 15: Reduce function of linear SVM.

def reduce ( i te ra tor , params ) :
sum_ETE , sum_ETDe = 0 ,0
for key , value in i t e r a to r :

i f key == "ETE " :
sum_ETE += value

else :
sum_ETDe += value

I = unit_matrix (sum_ETE . dimension_x )
sum_ETE += I / params . nu
yie ld ( " key " , vector_product (

inverse (sum_ETE ) , sum_ETDe ) )

Each test instance x is extended with 1 in the prediction phase,
z = [

x
−1]and we get the prediction y as

y = sign

zT
 I

ν
+ ETE

−1
ETDe


. (A.3)
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