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Abstract

On-line commercial transactions involve an inherent mistrust between
participant parties since, sometimes, no previous relation exists between
them. Such mistrust may be a deadlock point in a trade transaction where
the buyer does not want to perform the payment until the seller sends the
goods and the seller does not want to do so until the buyer pays for the
purchase. In this paper we present a fair protocol for data trading where
the commercial deal, in terms of delivering the data and performing the pay-
ment, is atomic, since the seller cannot redeem the payment unless the buyer
obtains the data and the buyer cannot obtain the data without performing
the payment. The protocol is based on Bitcoin scripting language and the
fairness of the protocol can be probabilistically enforced.

Keywords: Fair exchange protocol, blockchain, Bitcoin, smart contracts.

1. Introduction

From its first uses, computer networks have been applied as a business
base ground to perform commercial transactions. Obviously, on-line interac-
tions impose some restrictions on how such transactions can be performed
since there is no physical contact between the parties. One of the first prob-
lems that on-line economic transactions faces is distrustful that parts in the
transaction may have on each other. When a buyer is in a regular shop buy-
ing some groceries, whether the seller will provide the groceries in a bag first
or the buyer will give the money for that purchase before is irrelevant since

Preprint submitted to Future Generation Computer Systems July 13, 2017

*Manuscript with source files (Word document)
Click here to view linked References



 

the on-site transaction reduces the distrustful of the parts. However, if the
economic transaction is on-line such situation implies a disadvantage for the
party that performs the first step of the protocol. If the buyer pays before
receiving the purchase, the seller could act maliciously by not sending the
goods and, conversely, if the seller delivers the goods before getting paid, the
buyer could disappear with the product without paying. Such situation is
solved in real transactions by creating some trust relationship between buyer
and seller. Such trust is somehow based on the fact that the buyer is willing
to pay before the product is delivered because standard on-line payment sys-
tems, like credit cards or bank transfers, have the possibility to be reversed.
So the buyer has some confidence that if something goes wrong, for instance,
the product is not delivered, he could prove it, the system could reverse the
payment and he would not be at a disadvantage.

However, the situation is different when blockchain based cryptocurren-
cies are the payment system for purchases. Blockchain based cryptocurren-
cies avoid the double-spending problem of digital cash systems by maintain-
ing a general ledger in which all transactions are stored. The main property
of such ledger is its immutability which makes payments final once a transac-
tion is deep enough in the blockchain. Once the payment is firmly included
in the blockchain, it is impossible to reverse such payment, unless the payee
of such transaction unilaterally agrees to return the money. Such mechanism
leaves the buyer in a weaker position when the payment is performed before
obtaining the goods.

The best approach to solve this unequal advantage of the parties in a pur-
chase is to set the whole transaction atomic in the sense that the payment
and goods delivery takes place at the same time. With this approach, in case
one of the parties does not cooperate, neither delivery nor payment are com-
pleted. In fact, such situation is the best emulation of on-site shop scenario
where the payment and the delivery take place at the same time, almost
atomically. Of course, translating such approach to a virtual environment
implies that goods traded would be restricted to digital data.

The described scenario can be seen as a fair exchange protocol where
two parties agree in the exchange of some data for a given value (in this
case measured in bitcoins). Usually, fair exchange protocols can be used to
sign a contract between two parties stating the conditions under which the
exchange has to be carried. As we will see in Section 2, different proposals
has been developed in this field and their main goal is that no party can
gain advantage over the other. However, the mechanisms provided so far
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need to relay in a TTP with different trust levels. But in the way to reduce
or avoid dependency of a TTP, the Bitcoin protocol may open a new path
to implement fair exchange protocols. The main strength of Bitcoin for fair
exchange protocol is twofold. On one hand, Bitcoin provides a distributed
platform where complex transactions authenticated by digital signatures can
be executed through smart contracts and can be enforced without the need
of a TTP. On the other hand, Bitcoin itself is used as a digital currency so
it is suitable when those fair exchanges include economic transactions.

The contribution of this paper is the following. We propose a fair protocol
for data trading. Our protocol is fair since none of the participants have
an advantageous position in the execution of the protocol. The protocol is
atomic in the sense that either it is fully executed, ending the buyer with
the data and the seller with the payment, or no party incurs in any loss.
Our proposal is a practical one, based on Bitcoin scripting language, and
can be deployed using existing technology, in contrast to other theoretical
approaches that are reviewed in Section 2.

The rest of the paper is organized as follows. In Section 2 we review
the state of the art in fair exchange protocols. Section 3 provides some
background on Bitcoin transactions, its scripting language and the main
relevant transactions used in our protocol. In Section 4 the fair protocol for
data trading is presented and its main properties analyzed. Finally, Section 5
concludes the paper.

2. Related work

Fair exchange protocols are usually divided into two party protocols and
protocols requiring a trusted third party (TTP). Two party protocols, pro-
vide a gradual exchange of messages or information between the two parties,
to gradually decrease uncertainty and increase fairness in the transaction,
without the need for a TTP. First proposed in [1], the idea is for the two
parties to exchange secrets bit by bit allowing them to verify the correctness
of the received bits. This idea was also proposed in other approaches [2]
more specifically for the signature of contracts. Probabilistic protocols for
fair exchange were introduced in [3], where the goal is for the parties to end
up with a given probability on the fairness (i.e. commitment to the contract
by the two parties) at a given time (or step).

Regarding the use of a TTP, we usually distinguish between online and
offline TTP. The online TTP acts as an intermediary between the two parties
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ensuring the fairness of the exchange [4, 5]. On the other hand an offline
TTP only acts in case of dispute and does not participate in the protocol
if all parts act honestly. This last approach is also called an optimistic fair
exchange [6, 7, 8].

Authors refer to the notion of perfect fairness (also called strong fair
exchange) when a party cannot leave the protocol with a small advantage over
the opponent [9]. Perfect fair exchange usually requires the use of TTP-based
protocols, although there are several alternatives to implement it. Some of
them relay in some penalty mechanism to be applied to the misbehaving
parties [10].

In [11] Bitcoin is used for the payment in an optimistic fair exchange (with
a TTP) with anonymity. Most notably, Bitcoin has been proposed for fair
exchange as a mean of implementing a penalty mechanism [12]. The idea is
that if a party leaves the protocol with more knowledge than the rest, those
honest parties are compensated. The same idea is applied to multiparty com-
putation in [13]. Following these works, similar approaches for implementing
penalty based incentives using smart contracts for several types of compu-
tations have been proposed in [14, 15, 16]. These include applications on
online lottery, decentralized poker, verifiable and secure computation, and
fair secure computation in general.

In our proposal, Bitcoin is used as the main mechanism to implement
and enforce the fair exchange. We do not rely in the use of a TTP and
instead of fairly sign a contract for the exchange of data, the contract is
explicitly executed as a Bitcoin smart contract. This has the advantage that
the exchange is produced, that is, the buyer gets the data and the seller the
money, completely or not. In some sense we can say that the exchange is
atomic. Although our approach does not achieve strong fairness, as we will
show, the advantage that a party (in our case the buyer) takes by leaving
the protocol can be bound by the other party.

Similarly to our proposal, [17, 18] uses Bitcoin with zero knowledge proofs
to allow payments in Bitcoin subject to the disclosure of a given secret. In
this case the secret is a symmetric key used to encrypt some given data. A
zero knowledge proof is used (externally to Bitcoin) to prove the validity of
the encrypted data and the secret key, thus providing some sort of strong
fair exchange. This is only feasible if a zero knowledge proof exists and
is feasible for the specific case (data). A more generic solution is outlined
in [19, 20] where a symmetric key is used to encrypt chunks of data such
that a subset can be revealed as a proof. As different keys are used for each
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chunk, revealing a subset does not ensure that the key of the other chunks
is correct. As we will show, in our proposal a private key from a public
key pair is revealed. This makes it easier to verify its correctness with the
corresponding public key and ensures that the key is valid for all data chunks
by just verifying one of them.

3. Bitcoin transactions background

Bitcoin transactions are usually seen as a transfer of bitcoins from a source
to a destination address, in which the former can prove the ownership of such
bitcoins, and thus spend them, by providing a digital signature. However,
Bitcoin transactions are far more complex, and allow the creation of richer
conditions that have to be met to redeem the funds [22]. Transactions may be
seen, in a more general way, as a collection of inputs, containing references to
previous transaction outputs, and a collection of outputs, containing the set
of conditions needed to be met to redeem them. Each input of a transaction
refers to an output of a previous one, where unlocking conditions have been
established. Hence, each input has to contain the proof of fulfillment of the
established conditions of the output it tries to redeem from.

Both unlocking conditions and proofs are coded in transactions using
Script, a stack-based, not Turing-complete scripting language with no loops.
In order to check the correctness of a transaction, the full script is executed by
concatenating both locking and unlocking scripts, leading to a final True on
the top of the stack if and only if the proof satisfies the unlocking conditions.
This kind of transactions including complex unlocking scripts are also known
as smart contracts. However, not every single condition can be coded nor
checked using Script. A limited number of operations (opcodes) are defined
in Bitcoin, bounding the variety of scripts that can be encoded using the
language. Furthermore, its use is even more restricted, since not all the de-
fined operations can actually be used. For instance, the most common script
transaction within Bitcoin, the standard Pay-To-Public-Key-Hash where a
digital signature is needed to redeem a transaction, is next provided:

ScriptPubKey: OP DUP OP HASH160 <pubKeyHash> OP EQUALVERIFY

OP CHECKSIG

ScriptSig: <sig> <pubKey>

5



 

Based on the Bitcoin scripting language, multiple special-purpose trans-
actions can be defined. In the following subsections some interesting types of
transactions, that are building blocks of the proposed data trading protocol,
are described.

3.1. Time locked transactions

Time locked transaction outputs are outputs that require a certain time in
the future to be reached in order to be redeemed. Depending on whether the
future time is absolute to Bitcoin, or relative to the transaction publishing
time, two types of time-locks can be found. On the one hand, absolute
time-locks, those based on the CheckLockTimeVerify opcode, establish a
fixed date in the future from when the transaction can be redeemed. Down
below an example of such time-lock (locked until 2022/12/13), along with a
standard signature, is provided:

ScriptPubKey: <2022/12/13> OP CHECKLOCKTIMEVERIFY OP DROP

<pubKey> OP CHECKSIG

ScriptSig: <sig>

On the other hand, relative time-locks, those based on the
CheckSequenceVerify opcode, establish an amount of time, starting from
the transaction publishing time, that has to be spent to unlock the output.
An example of such time-lock (locked for 25 days), together with a traditional
signature, can be found as follows:

ScriptPubKey: <25d> OP CHECKSEQUENCEVERIFY OP DROP

<pubKey> OP CHECKSIG

ScriptSig: <sig>

Notice that in both examples the ScriptSig, included in the transaction
that will spent the output, does not contain any time reference, since the
transaction creation time is used to check the time-locks. Moreover, both
examples include a traditional signature lock. The reason behind this second
lock is to restrict the redeemer to a single person, otherwise anyone will be
able to spend the output once the requested time has been reached. Figure 1
depicts a general time locked transaction, and can be seen as a representation
of any of the two introduced types.
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From: Someone

Someone

1 BTC

Signed:

To: Alice

Required to unlock:

1 BTC

From: Alice 1 BTC

Signed:

To: Someone else

Required to unlock:

1 BTC

Someone else signature

m

wait until

Alice Signature

Alice

Figure 1: Time locked transaction.

3.2. Private key locked transactions

Private key locked transactions [23] are another special case of Bitcoin
transactions in which the transaction output can be redeemed by anyone
who provides a private key corresponding to a predefined public key.

Two different approaches can be used to implement private key locked
transactions, via the definition of new Bitcoin opcode or by taking advantage
of a well-known vulnerability of ECDSA algorithm.

3.2.1. New Bitcoin opcode

One possibility to implement private key locked transactions is through
the implementation of a new crypto opcode that performs precisely a match-
ing validation between the public key and the corresponding private key:
OP CHECKKEYPAIRVERIFY. The OP CHECKKEYPAIRVERIFY opcode would check
whether the top two items of the stack, pubKey and privKey (corresponding,
respectively, to a public key and private key), match.

With the usage of this new opcode, a transaction output could be con-
structed such that, in order to be redeemed, the private key matching the
specified public key has to be revealed. An example1 of the scriptPubKey

of such an output together with the scriptSig needed to spend it would be:

ScriptPubKey: <pubKeyA1> OP CHECKKEYPAIRVERIFY OP 2DROP

<pubKeyA2> OP CHECKSIG

ScriptSig: <sigA2> <privKeyA1>

1The provided script includes a digital signature condition, following the structure of
the ones previously introduced in Section 3.1.
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The script will first check that the public and private keys belong to the
same key pair. Note that, if the validation is successful, the stack values will
remain untouched. Therefore, before checking the validity of the signature
with OP CHECKSIG, privKeyA1 and pubKeyA1 have to be removed from the
stack (since they are not needed for signature validation). The execution of
OP 2DROP removes them from the stack. Finally, OP CHECKSIG validates the
signature with the public key. If the signature is correct, the script terminates
successfully.

Note that the execution of OP CHECKKEYPAIRVERIFY would fail if the val-
idation is unsuccessful and would leave the stack as it was before if the
validation is successful. This ensures the new opcode can be implemented
as a soft fork modification of the Bitcoin core protocol by reusing one of
the currently unused OP NOPx opcodes, in a similar way that it has been
done in the past with the opcodes OP CHECKLOCKTIMEVERIFY (OP NOP2) and
OP CHECKSEQUENCEVERIFY (OP NOP3).

3.2.2. ECDSA vulnerability

Since the OP CHECKKEYPAIRVERIFY opcode described in the previous sec-
tion is not available, another approach to build transaction outputs that
require the disclosure of a specific private key to be redeemed can be taken,
using a vulnerability in the ECDSA signature scheme.

ECDSA (Elliptic Curve Digital Signature Algorithm) is the cryptographic
algorithm used by Bitcoin to create and validate digital signatures. The
ECDSA signature scheme is probabilistic in the sense that there exist many
different valid signatures made with the same private key for the same mes-
sage. Such feature is based on the selection of a specific random value k
during the signature process.

There exists a well known ECDSA signature vulnerability2 by which an
attacker that observes two signatures of different messages made with the
same private key is able to extract the private key if the signer reuses the
same k during the signature process. Therefore, the selection of k is critical
to the security of the system.

To implement private key lock transactions, we can make use of the afore-
mentioned ECDSA vulnerability to perform targeted private key disclosure

2The vulnerability is also present in the non-elliptic curve signature scheme of ElGamal
(and its popular variant, DSA) and is described in any fundamental cryptography text
book [24, 25].
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within Bitcoin. The Private key disclosure mechanism is performed by con-
structing transaction outputs that need to reveal a private key in order to
be redeemed, in such a way that we ensure the revealed private key is the
counterpart of a certain public key.

Let {PK, SK} be an ECDSA key pair belonging to Bob (with Addr(PK)
the Bitcoin address associated to it) and sigprev an existing signature made
with SK. Alice (that is interested in acquiring Bob’s private key) needs
to know the value of the previous signature sigprev, in order to be able to
request, afterwards, a second signature made with the same k. In contrast
with the approach followed in [23], where the previous signature appears in
the blockchain as the input script of an existing transaction, in this paper
our approach is that the existing signature sigprev does not appear in the
blockchain but it is sent to Alice by an off-chain exchange of values. In this
case, the previous signature sigprev may be transmitted confidentially (and
thus only Alice and Bob know its value). Following this approach, the signed
message m does not need to correspond to a Bitcoin transaction hash.

Once an existing previous signature sigprev is known by Alice, she creates
a transaction with an output that requires a second signature sig to be spent.
However, instead of using the classical pay-to-pubkey-hash script, she uses
a special script that forces Bob (the redeemer) not only to prove he has the
private key SK associated to the given address Addr(PK) by creating a valid
signature, but also to deliver a signature that has exactly the same k value
that was used when creating sigprev.

Doing so accomplishes two purposes: on the one hand, Bob proves he
knows the private key associated to the public key by generating a signature
that correctly validates with that public key; on the other hand, Bob is
implicitly revealing the private key associated to the same public key. Note
that Bob does not directly provide the private key, but provides information
from which the private key can be derived.

Figure 2 shows a scheme of the Bitcoin transactions involved in the con-
struction of a private key locked output. Once Alice knows the previous
signature, she can construct the transaction tx2, that transfers some bitcoins
of her property to Bob, only if Bob provides a valid signature that has the
same k as the previous signature sigprev that Bob previously sent to Alice.
Moreover, the output has an additional condition with a time lock allowing
Alice to get a refund of her bitcoins if Bob decides not to collaborate and
does not redeem tx2’s output.

The ScriptPubKey of the output (and its corresponding ScriptSig) that
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Bob

From: Someone

Someone

1 BTC

Signed:

To: Alice
Required to unlock:

1 BTC

Alice

From: Alice

Signed:

To: Bob | Alice 
Required to unlock:

Or:

Alice

1 BTC

Bob Signature (      SK )

1 BTC

Alice Signature

tx1

tx2

B A

Sig
Prev

Figure 2: Transactions involved in the scheme.

implement the mechanism described above are the following:

ScriptPubKey: OP DUP <pubKey> OP CHECKSIGVERIFY

OP SIZE <0x47> OP EQUALVERIFY

<sigmask> OP AND <rprev> OP EQUAL

ScriptSig: <sig>

First, the script validates the signature against the specified public key.
Then, the length of the signature is checked. Finally, a bitwise AND between
the new signature and sigmask

3 is computed, and the result is compared with
the k value of the previous signature. If both values are equal, the script
terminates successfully; otherwise, the script terminates with a False value
on the stack, making it fail.

Note that the only way to ensure that the script succeeds is by providing
a valid signature that has exactly the same k as the previous signature.

3sigmask: a byte array that has 1s on selected positions and 0s in the rest of positions
in order to be able to extract information from the k value of the signature (see [23] for
more details).
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Therefore, although the redeem ScriptSig that spends the output does not
include the value of the private key directly, it is implicitly leaking its value
by the ECDSA vulnerabilty.

Also note that the ScriptSig needed to spend the output only requires
one value: the new signature.

4. The data trading protocol

As we have already stated, the main property of our data trading protocol
is its atomicity which provides its fairness for the participants of the protocol.
The proposed protocol is run by two parties, the buyer, B, and the seller,
S, and no additional party, like a TTP is needed. Notice that, contrary
to other fair exchange protocols [6, 7, 8], our proposal does not define a
dispute mechanism, in which some proposals also need a TTP, thanks to
the atomicity of the protocol. Furthermore, since our protocol is based on
bitcoins, both parties need to be connected with the Bitcoin network to
send/receive transactions from the blockchain.

In our scenario, the buyer, B, wants to buy some data D to the seller, S,
and he is willing to pay x bitcoins for such data. In order to minimize any
possible advantage of one of the parties, we consider that the data being sold
can be divided in n different parts and each of those parts may have a meaning
by itself. Notice that this scenario is not as restrictive as it would appear since
multiple data falls into this category. On one hand, many multimedia data
has the desired properties. For instance, movies or songs can be sliced and
each slice may be recognized as part of the whole performance. The buyer
may be interested in adquiring the full movie or song, and would be able to
verify that it is indeed correct by just watching or listening to a few segments.
Datasets consisting on multiple images may also be partitioned, so that each
individual image is one of the parts. The images can be individually verified,
and then the full dataset can be sold. Just to name a specific example, one
may be interested in buying a dataset of images of historic monuments, and
may be able to check the correctness of the dataset by verifing that a sample
of the images are indeed photographies of monuments. On the other hand,
when dealing with sensor data, some sensing values may provide evidence
that the sensing is correct but the whole sensing data could be needed for
specific purposes. For instance, a temperature sensor may record samples
every hour. A buyer may be interested in adquiring the sensor data for a full
month, for sensors in a given country. By checking a few samples, the buyer
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may verify they match the expected values, and decide to buy the whole
dataset in order to perform the desired analysis.

4.1. Protocol description

The full protocol, depicted in Figure 3, can be divided in three main
parts: the Data correctness proof, in which a cut & choose protocol between
B and S is performed in order to convince B that the acquired data is
correct; the Signature commitment, used by B to obtain a previous signature
performed by S with the private key used to encrypt the data; and the Private
Key Exchange, used to exchange, atomically, the private key that allows to
decrypt the sold information for the agreed amount of bitcoins.

In the following paragraphs, we describe in detail each subprotocol. We
denote by {PK, SK} a public key pair and EPK(·) the encryption function
using the public key.

In the Data correctness proof subprotocol, the buyer B starts the
protocol by requesting data to the seller S. In such first step, B will in-
dicate to S the data he is willing to buy. Such request will include the
conditions, cond, that the data being sold have to hold. Such conditions
need to hold not only for the complete data being sold but also for each
of the sliced part of the data4. Upon reception, S generates a new key
pair {PK, SK} and sends B the following information (see Step 2 in Fig-
ure 3): the public key PK, the requested data D encrypted using PK,
and the data price x. In order to allow B to prove the data correctness,
S does not send the D as a whole bunch of encrypted data, but split in
n chunks which are encrypted individually (as shown in Figure 4), that is:
EPK(D) = {EPK(D0), EPK(D1), ..., EPK(Dn−1)}.

When B receives all the encrypted data, he requests a correctness proof
to S consisting in a random subset of non-encrypted data from D. To
that end, B selects the subset by randomly choosing a set of m pieces
from the encrypted dataset, that is ij ∀j ∈ [0,m − 1], ij ∈ [0, n − 1]. B
sends this information and S can build the correctness proof by choosing
the unencrypted pieces of data that matches the received indexes, that is,
proof = {Dij ∀j ∈ [0,m − 1], ij ∈ [0, n − 1]}. S sends such correctness
proof to B.

4Notice that such conditions will be verified by a validation mechanism. Whether such
mechanism is performed automatically or the validation needs a supervised environment
is out of the scope of our protocol.
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Figure 3: Fair data trading protocol.
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Once B has received the proof he verifies the correctness of D by checking
that the proof satisfies the conditions. Furthermore, B validates that the
received data also matches with the subset of received encrypted data, by
recreating the data encryption using PK. Therefore, since the subset has
been randomly chosen by B, the correctness of the full dataset can be proved
with a given probability. Section 4.3 analyzes in depth the impact of the
parameters of the scheme on such probability.

Once the data correctness has been proven, the Signature commitment
subprotocol is performed. B requests a signature sigprev over a nonce message
performed with the private key SK generated by S. S sends sigprev and B
validates that the signature is correct, using the public key PK that has
received in Step 2 of the Data Correctness Proof subprotocol.

Finally, the Private Key Exchange subprotocol is performed. In such
subprotocol, B builds a private key locked transaction, tx1, to perform the
atomic exchange between the private key, SK, and the bitcoin price x. Such
private key locked transaction is built using the technique described in Sec-
tion 3.2 and also adding another time constrain condition following the details
of Section 3.1. Such time constrain is used for B to recover the amount of x
bitcoins in case S decides not to reveal the private key by not spending the
received transaction. B broadcasts the transaction tx1 to the Bitcoin P2P
network. Once tx1 is included in a block, S can spend the output of such
transaction with an input of a new transaction tx2 in which S will provide
the second signature with the same k of sigprev. Once tx2 appears on the
blockchain, B will be able to recover the private key SK (following the de-
tails of Section 3.2) and decrypt the data EPK(D) he received in Step 2 to
retrieve the purchased data.

4.2. Implementation details

In the protocol description provided in the previous section some imple-
mentation details have been deliberately omitted to allow a better under-
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standing of the general protocol. In this section, we provide some comments
regarding such specific details.

4.2.1. Privacy protection

First of all, sensitive information exchanged in the protocol should be
protected from third parties. For instance, if an attacker could retrieve the
information transmitted in Step 2 and in Step 7, later on, with the knowledge
of tx2 (which is publicly available in the blockchain), he would be able to
decrypt the information and retrieve the original data D. To avoid such
situation, information transmitted on Steps 2 and 7 could be encrypted using
the public key of B, that could be sent to S in Step 1. Furthermore, in Step 4,
some part of the data is transmitted in clear for validation purposes. In this
case, an external attacker could also obtain such information. Again, such
situation can be avoided by encrypting the information of Step 4 in the same
way we just described for Steps 2 and 7.

4.2.2. Data encryption mechanism

As it is well known, public key cryptography is not suitable for encrypt-
ing large files due to its poor performance. Then, since the size of the data
chunks that are encrypted and transmitted in Step 2 can vary depending of
the traded data, we suggest to use digital envelopes to encrypt D. Digital en-
velopes [24] protect the message by using a two layer encryption in which the
data itself is encrypted using symmetric encryption, and then the symmetric
key is encrypted using public-key cryptography. Following such an approach,
for each chunk i of data created from D, Di, a symmetric key ki is also gen-
erated. Di will be encrypted using ki, that is Ci = Eki(Di) and ki will then
be encrypted using PK, that is, ci = EPK(ki). Thus, each encrypted chunk
of data Di sent by S to B during Step 2 should be replaced by {Ci, ci}, that
is, EPK(Di)→ {Ci, ci}. Furthermore, when sending the correctness proof, S
will include the corresponding symmetric encryption keys ki ∀i ∈ 0, ...,m−1.
Finally, B will need to undo the digital envelope process in Step 5 in order
to perform all the required verifications, and also in Step 12, when finally
decrypts D.

4.2.3. Script building

The private key locked transaction used in the secret key exchange sub-
protocol, tx1 also includes a time lock condition to allow B to refund his x
bitcoins in case S decides not correctly follow the last step of the protocol.
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The details on how the ScriptPubKey of such transaction can be build are
next provided5 :

ScriptPubKey: IF

OP DUP <S pubKey> OP CHECKSIGVERIFY

OP SIZE <0x47> OP EQUALVERIFY

<sigmask> OP AND <rprev> OP EQUAL

ELSE

<expiring time> OP CHECKLOCKTIMEVERIFY

OP DROP <B pubKey> OP CHECKSIG

ENDIF

4.2.4. Protocol costs

The proposed data trading protocol has a cost in terms of data transferred
between the two parties. On the one hand, two Bitcoin transactions are
involved in any exchange using our protocol. On the other hand, there is an
offchain exchange of messages between the buyer and the seller, that transfers
the data being sold together with some additional information needed for the
protocol.

Regarding the Bitcoin transactions, both will be sent to the Bitcoin P2P
network and will eventually be included into the blockchain. Transactions tx1

and tx2 (see Figure 3) are, respectively, 397 and 191-byte long. Therefore, the
bandwidth cost of sending both transactions to the P2P network is negligible.
Bitcoin transactions may include fees, that incentivize miners into including
them in the block they are mining. At the time of writing (beginning of July
2017), the total fees that should be paid are $1.39.6

Regarding the offchain data exchanged between the two parties, the lower
bound for transferred data is obviously defined by the sold data D size. Let
us analyse the overhead introduced by the protocol. First, there is a fixed
overhead produced by the exchange of fixed-length protocol data, such as
public keys and signatures. This fixed cost will be the same for all exchanges,
independently of the amount of data being sold or the chosen parameters.

5An example of such a transaction can be found in http://tbtc.blockr.io/api/v

1/tx/info/19f8799e074bf253ac1ed39aa25d97b7fd5d82d962d268723971dd84a7cd08f3
6Fees for both transactions at 91 satoshis per byte, expected inclusion time less than

one hour. The price is obtained from https://bitcoinfees.21.co/
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Second, there is a variable overhead, that depends on the parameters of the
scheme. Specifically, it depends on the number of chunks the data is divided
into and the percentage of chunks revealed during the data correctness proof.
Figure 5 analyses how these two parameters affect the overall amount of data
exchanged offchain between the two parties.

(a) Data transferred depending on the
number of chunks.

(b) Data transferred depending on the
percentage of chunks revealed.

Figure 5: Data transferred.

Increasing the number of chunks the data is divided into increases the
transferred data size in a constant fashion (Figure 5a). The reason is that
each chunk has a fixed overhead produced by the usage of the digital enve-
lope. On the contrary, increasing the percentage of chunks revealed increases
the transferred amount linearly with the data size (Figure 5b). Of course,
the bigger the data, the higher is the increase produced by augmenting the
percentage of chunks revealed. The overhead produced by our protocol is
mostly generated by the cut-and-choose mechanism.

4.3. Protocol fairness discussion

The main objective of the proposed protocol is to achieve fairness in the
sense that neither B nor S would have any advantage in the protocol. By
advantage we mean that B cannot obtain the data without paying x bitcoins
and S cannot obtain the bitcoins without revealing the data. The Data
Correctness Proof subprotocol ensures that S cannot sell fake data. Without
B verifying parts of the encrypted data, S could encrypt fake data and when
S obtains the bitcoins in tx2 and B the decryption key, B will learn that he
was cheated but it will be too late since S already has the bitcoins.
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In the following paragraphs, we will show how the buyer B is probabilis-
tically protected against deception by using a cut-and-choose mechanism.
Furthermore, the level of protection may be adjusted by fixing the ratio of
chunks revealed on Step 2.

In the main steps of the Data Correctness Proof subprotocol:

1. S encrypts each of the n chunks of data with a public key PK and
commits to the ciphered chunks by sending them to B.

2. B chooses a subset of m chunks and asks S to reveal the original data
corresponding to those chunks.

3. B validates the received chunks by checking both that the original data
meets the specified conditions and that the encryption of the original
data is equal to the committed values.

We say that a seller S successfully deceives a buyer B if the seller is able
to include b corrupted chunks of data within the n traded chunks without
the buyer noticing it after having validated the m revealed chunks (that is,
after finishing the Data Correctness Proof subprotocol). The probability Ω
of S successfully deceiving B is given by the following equation:

Ω(m,n, b) = 1−
min{b,m}∑

i=1

(
b
i

)(
n−b
m−i
)

(
n
m

)

Indeed,
(
n
m

)
counts the number of ways of choosing m elements from a

set of n elements. We are interested in knowing how many of those ways
include at least one corrupted chunk. We compute this value by counting
the number of ways of selecting m elements with exactly i of them being
corrupt and summing them up for all possible i values.

(
b
i

)(
n−b
m−i
)

computes
the number of ways of selecting exactly i corrupted chunks, that is, the
number of ways of selecting i bad chunks from the set of b corrupted chunks,(
b
i

)
, multiplied by the number of ways of selecting the rest m − i elements

from the non-corrupted set n−b,
(
n−b
m−i
)
. The summation gives the probability

of selecting at least one corrupted chunk within the m revealed, that is, the
probability of detecting a fraud. Therefore, the probability of deception is
the complement.

Figure 6 shows the probability of deception Ω for different ratios of chunks
revealed, m

n
, and different number of corrupted chunks included by the seller,

b, for n = 1 000. Note that, even when the checked chunks ratio is low, the
probability of successfully deceiving a buyer is low whenever b is over a certain
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threshold. For instance, when 20% of the chunks are checked, the probability
of deception is 0.8 if the seller includes just 0.1% of corrupted chunks (b = 1,
red dot on Fig. 6). However, if the seller includes 1% of corrupted chunks
(b = 10), the probability of successfully deceiving the buyer decreases to
0.106 (green dot on Fig. 6).

Figure 6: Probability of deception Ω. Grey lines highlight the values mentioned as numer-
ical examples.

When using the proposed data selling protocol, the two parties (buyer
and seller) agree on the value of the parameter m. Therefore, the buyer can
decide beforehand whether or not to buy a given dataset depending on the
deception risk he is willing to assume. Buyers will be interested in using high
m values, since these offer higher levels of protection. Of course, even honest
sellers will prefer low m values, since if the client does not finally buy the
data, m data chunks end up being revealed for free.

It is worth mention that a malicious buyer could try to get advantage
of the protocol by executing it with different identities (trying to perform a
sybil attack) buying the same product or even colluding with other buyers.
Multiple executions of the Data correctness proof could potentially provide
attackers with all the chucks of decrypted data. To avoid such situation, the
ordering of the encrypted chunks {EPK(D0), EPK(D1), ..., EPK(Dn−1)} used
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in the data correctness proof protocol is randomly chosen for each buyer,
so the probability that the buyer (or a coalition) obtains all the chunks
decrypted can be minimized by increasing the value n. Note that given two
different encrypted sets of data, an attacker would not be able to know the
correspondence between each data chunk in both sets.

As an example, let us consider a certain seller S that sells a dataset
divided in n = 1 000 chunks. The buyer may allow to accept, at most, 5%
of corrupted chunks in his purchased data, and the seller does not want
neither to reveal in the Step 2 more than the 5% of the chunks. With this
configuration, if we analyze the probability Ω for b = 50 (the 5% of the 1 000
chunks),

Ω(50, 1 000, 50) ≈ 0.072

the buyer can be sure that the seller cannot cheat with a probability
greater 1− 0.072 = 0.928. Of course, if the buyer does not have any trust in
the seller, he could force the seller to reveal 10% of chunks instead of only
5% in Step 2. With this settings, the buyer knows that the probability the
seller cheats is almost negligible, less than a 0.004.

5. Conclusion

In this paper we have introduced a fair data trading protocol based on
Bitcoin transactions. The protocol uses a new type of transactions, the
private key locked transaction, that provide an atomic way of exchanging a
private key for Bitcoins. Such key is used to encrypt all the traded data,
and will be traded, as a part of a Bitcoin smart contract, only when the
two parties agree. The correctness of the data sold using the protocol is
verifiable by the buyer before performing the transaction by checking a small
random subset of data. By using such a cut-and-choose technique, deception
is avoided with a high probability while only a small part of the information
is learned by the buyer.

The protocol can be implemented by using the recently proposed private
key locked transaction and exchanging a few messages between the parties
involved in the process, making it easy to deploy. Moreover, it lays on the
security measures Bitcoin provides, without introducing more complexity,
and it is bound to the computational capabilities of the Bitcoin Scripting
language.
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We believe that, since there is no need of any other entity, like a TTP, to
implement the protocol, it could be easily deployed to provide an additional
security layer in the process of data trading using Bitcoins, reducing the trust
the involved parties have to share among them, and promoting the use of such
a currency for trading with non-physical goods. The application of such a
protocol covers a wide range of topics, from general interest data, such as
songs, pictures or movies, to even specific purpose data, such as data sensing
readings. The integration of such a data trading in data sensing scenarios
could provide a secure way of data correctness verification, reducing users
misbehaving ratio and optimizing the rewarding system.
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