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a b s t r a c t

Choosing committees with independent members in social networks can be regarded as a group selection

problem where independence, as the main selection criterion, can be measured by the social distance be-

tween group members. Although there are many solutions for the group selection problem in social networks,

such as target set selection or community detection, none of them have proposed an approach to select com-

mittee members based on independence as group performance measure. In this work, we propose a novel

approach for independent node group selection in social networks. This approach defines an independence

group function and a genetic algorithm in order to optimize it. We present a case study where we build a

real social network with on-line available data extracted from a Research and Development (R&D) public

agency, and then we compare selected groups with existing committees of the same agency. Results show

that the proposed approach can generate committees that improve group independence compared with ex-

isting committees.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

Organizations need representative individuals to make decisions

bout particular concerns. These representative individuals are ap-

ointed in committees, and we expect from his members to make de-

isions based on the benefit of the whole community they are repre-

enting, avoiding bias that could arise from closeness between them.

n this context, the best committees are those which show the great-

st independence between his members. How to choose these mem-

ers based on objective criteria could be a difficult task, either be-

ause of the definition of the criteria or because of the analysis of the

ommunity from where members are chosen. Therefore, a committee

n which some of its members are closely related is an unbalanced

ommittee.

Fig. 1 shows a graphical example of difference between balanced

nd unbalanced committees that allow us to appreciate the distri-

ution of selected nodes within a graph. A balanced distribution is

ssential to improve desirable features, such as independence. For in-

tance, a committee to discuss about budget allocation must avoid bi-

sed decisions by ensuring that committee members are not closely

elated.
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As mentioned before, Fig. 1 shows a simple example of individu-

ls and their dispersal. Fig. 2 shows a graphical representation of the

ommunity used to evaluate this approach. This graph allows us to

nderstand the problem complexity and critical importance of choos-

ng the best committee members to maximize independence.

Initially, the committee member selection problem can be solved

y a mathematical combination, but the computational cost associ-

ted to this approach could be very high. For instance, given a com-

unity with n members, the maximal number of groups is given by
n − 1, and complexity is O(2n). In addition, if committees are r size

roups, the number of possible solutions is given by applying bino-

ial coefficient nCr and complexity is O(n!).

If there is no polynomial function to solve the problem, an alterna-

ive could be to adopt a non deterministic approach to approximate

ptimal solutions. For instance, a stochastic approach could produce

andom solutions, and then apply an independence function to rank

hese solutions. This approach is subjective because of the probabil-

ty in selecting random committee members, and because of the joint

robability of the committee.

However, the problem can be addressed by implementing some

ptimization strategy to approximate optimal solutions, such as ge-

etic algorithms. A genetic algorithm could be implemented to search

or the greatest independence between committee members, but not

ecessarily to guarantee the best solution. In other words, could be

nough to approximate an optimal solution. For committee selection

roblem, the best solutions will be determined by the maximal inde-

endence between his members.
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(a) (b)

Fig. 1. Difference between balanced (a) and unbalanced (b) committees, where selected members are the largest 4.

Fig. 2. Graphical representation of the community used to evaluate the approach.
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If we consider committee candidates as individuals connected

with each other through ties, it is possible to determine which of

these ties could be relevant to analyze independence. These individu-

als and their relationship represent the basic elements of a social net-

work; therefore, we can apply social network analysis to select com-

mittee members with the greatest independence. However, a social

network approach requires a social network, and data to represent its

elements, such as actors, ties, kind of network, and analysis object.

The current social network analysis techniques aim to identify the

value or number of relations, roles or prominence of nodes, and to

discover hidden groups or cohesive groups. The aim of this work is to

present an alternative to the committee selection problem by choos-

ing a set with maximal independence between members. To do this,

we build a social network and then we define an independence group

performance function and a genetic algorithm, to obtain n member

committees with the greatest independence between members.

The main contributions of this work are summarized as follows.

(1) We propose an approach for the committee selection problem

with independent members as a group selection problem in social

networks. (2) We define a novel group independence performance

function to assess group fitness in social networks. Then, such a mea-

sure was optimized by means of a genetic algorithm. (3) We build

a social network from a Research and Development (R&D) public

agency with on-line available data. (4) We use such a social network
o evaluate the proposed approach. Then, we compare results with

urrent committees of the same public agency.

This document is organized as follows. Section 2 describes the

onstruction process of the social network. Section 3 describes the

mplementation of the genetic algorithm and the function to eval-

ate group independence. Section 4 describes a case study and the

onfigurations of the genetic algorithm, along with a discussion of the

xperiment results. Section 5 presents a discussion of the current lit-

rature. Finally, Section 6 presents conclusions as well as future work.

. Social network construction

In order to choose committee members, we propose to build a so-

ial network to calculate distances between candidates, and then ap-

ly a genetic algorithm to get potential committees with the greatest

istances between their members.

A social network is a set of individuals (actors) and relations (ties)

etween them; the social network analysis is used to study structures

reated by these relations and individuals.

We are particularly interested in the construction of a social net-

ork for its ability to represent analysis criteria based on ties. To clar-

fy this concept, we built a network of researchers related through co-

uthorship and workplace. In this network, actors are the researchers,

nd ties are the criteria for calculating distance between each pair of

esearchers.

As mentioned above, relations between actors define what can be

nalyzed in the network. The aim of this analysis is to calculate dis-

ances between a set of actors. In order to do this, we built a consol-

dated graph. This graph contains every kind of relation proposed as

nalysis criterion. Fig. 3 shows a unified graph from two kinds of re-

ations (coauthor and same workplace) of five researchers (A, B, C, D,

nd E) where relations are binary (relation is present or not), undi-

ected (direction is meaningless), and irreflexive (a researcher does

ot publish with himself or does not work with himself).

Our proposal is to establish the greatest independence between

ommittee members based on their distances. Thus, we need to cal-

ulate distances between committee members, for which we use

he shortest path and geodesic distance (length of the shortest path)

Freeman, 1977) over the unified graph.

The graph must be connected to apply this metrics, which means

hat every actor must be reachable from every other actor in the net-

ork. This can be determined through a reachability matrix, which

an be obtained through matrix multiplication (Wasserman & Faust,

994).

Distances between each pair of actors is represented by a

roximity matrix, obtained by applying power to the matrix
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Fig. 3. Unified graph representing two kinds of relationships (coauthor and same workplace).

Fig. 4. Flow chart of the proposed approach showing inputs, datasources production, and processes related to the social network construction and the genetic algorithm definition.
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1 = node (gene) inclusion in the committee

vector of nodes (chromosome)

vector of committee members

n-1 n1 2 3

1 01 0 0

Fig. 5. Representation of the genetic algorithm through a vector of nodes which con-

tains every node in the network under study, and a vector of committee members

which indicates the elements of the vector of nodes to be included in the committee.
epresentation of the unified graph. Proximity matrix contains input

ata for the algorithm whose aim is to choose a committee (a group

f actors) with the greatest independence between its members. In

his case, we work with a genetic algorithm which defines a function

o optimize this distance to the largest one.

Fig. 4 shows the proposed approach in a flow chart, in which in-

ividuals and independence criteria are the inputs. Then, we gener-

te the unified graph to determine relations between actors, and thus

o build the social network. Next, we build the proximity matrix by

alculating geodesic distances; then, the proximity matrix and the

etwork data are put together into the genetic algorithm to produce

ptimized solutions.

. Genetic algorithm definition

A genetic algorithm is a type of evolutionary algorithm that can be

onsidered as a function optimization method (Smith & Eiben, 2008).

ven though there is no definitive genetic algorithm, it is possible to

dapt one using representations and operators considered suitable to

he modeled problem. As an analogy of the biological model, chro-

osomes are the elements used in genetics algorithms to represent

onfigurations, which contain genetic information represented by lo-

ation and value of their genes. These chromosomes stand for solu-

ions to the modeled problem.

In order to choose a subset of actors from a social network, we

ave defined an ad-hoc function to calculate distances between com-

ittee members. Consequently, we have defined a genetic algorithm

o approximate solutions to an optimum by maximizing this function.

The development of a genetic algorithm requires defining repre-

entation, fitness function, parent selection and survivor selection

echanisms as well as mating and mutation operators. Next, we

resent selected configurations to the modeled problem.
.1. Representation

The problem requires defining a representation of the chromo-

ome. In this work, we do permutations of a vector of integers (chro-

osome), where each element references to only one node (gene). In

his vector, every node in the network under study is included. Thus,

chromosome has as many genes as a community has individuals.

lso, the participation in the committee is given by a vector with the

ame size as the vector of nodes, the vector of committee members,

n which every location is binary valued. Therefore, if value = 1, then

he node with same position in the vector of nodes must be included

n the committee, and if value = 0, then the node is excluded from the

ommittee. With this representation, a member appears only once in

given committee. It is important to note that in the modeled prob-

em the order of members is not relevant. Fig. 5 shows a graphical

epresentation of these vectors.
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3.2. Fitness function

The aim of the fitness function is to calculate the solution value.

In this work, we developed an ad-hoc fitness function to maximize

distances, represented by the cumulative sum of distances between

each pair of committee members. In order to get relative values, we

consider the size of the committee and the network diameter. To im-

prove results, we set a parameter to maximize minimum distances of

the committees, defined as follows:

f =

[(
k∑

i, j=0

d(i, j)

)/
k

]
+ m

2 ∗ D

Where d is the distance function between two members, ∀i, j/i �= j

and i, j ∈ S, S represents the whole nodes set, k is the number of com-

mittee members, m is the minimum distance between each pair of

members in the committee, and D is the network diameter. As previ-

ously established, it is necessary for the network to be connected.

3.3. Parent selection

The genetic information is obtained from the parents, which are

chromosomes (solutions) of the previous generation. To this end,

we need to define a strategy of parents selection by adopting one

of the mechanisms suitable to the modeled problem. In this work,

the mechanisms selected include Stochastic Universal Sampling (SUS)

since we need to choose several parents from a community; and Tour-

nament, since in both cases global fitness is unknown.

3.4. Crossover

Genetic information of new generations is determined by their

parents. This process called genetic recombination is produced

through crossover mechanisms. For instance, having two chromo-

somes representing distinct solutions, crossover implies that the new

generation inherit genetic information from both parents.

To keep a valid permutation we have chosen recombination op-

erators Partially Mapped Crossover (PMX) and Order Crossover (OX).

Since the former is an algorithm designed for adjacency problems it

is suitable to the modeled problem, and even though the latter is de-

signed for order problems, the order in the second parent could be

beneficial in new chromosome production.

3.5. Mutation

The other mechanism used in this work for genetic recombination

is mutation, which implies to alter the genes within a chromosome.

In permutations, mutation alters location of the values in the solution

vector of the new generation.

We have selected Swap Mutation and Insert Mutation, since both

operators are accepted to keep a valid permutation.

3.6. Survivor selection

Once a new generation is produced, the survivors must be selected

in order to keep the number of solutions in every generation.

We have selected Steady-state and Generational mechanisms to

keep solutions with the best fitness in the succeeding generations.

4. Case study

To evaluate the proposed approach, we decided to build a social

network based on public information about researchers published by

the National Council of Technical and Scientific Research (CONICET).
his organization establishes committees for specific areas with dif-

erent responsibilities. For instance, in the Informatics and Commu-

ications area there are 3 committees to evaluate Admissions, Reports,

nd Fellowship awards.

The prospective committee members are chosen from a set of ex-

erts in the field that could be internal or external to the organization.

We calculated fitness for distinct configurations of the genetic al-

orithm to propose committees based on the greatest distances. With

he same criteria, we calculated fitness for existing committees.

.1. Dataset

The dataset used here to produce the social network based on re-

earchers (actors) information was built by applying web crawling,

hich consists in gathering information from web pages. In this case,

e used basic information to characterize actors and their informa-

ion about contributions and workplaces in order to discover ties be-

ween those actors. This process required disambiguation of actors

nd ties, since most of the information presented for every researcher

s produced by themselves, particularly contribution data.

In addition, not every actor in the network is considered as can-

idate. For the Informatics and Communication area there is a list of

ualified specialists that fulfill some requirements (i.e., to have a hier-

rchical degree), which means that only a limited set of actors qualify

s committee members.

Thus, the social network in the case study is composed by 1293

odes and 4322 ties, which produces 74 components (subgroups of

ctors disconnected from the rest of the network). From those com-

onents, the bigger one has 1058 (≈82%) actors (75 of them are qual-

fied specialist), and 3878 (≈90%) ties.

.2. Configuration

Having established the social network, we set up the genetic algo-

ithm to evaluate groups of actors with the largest distances between

hem, which we assume as an independence criterion. This configu-

ation has the following parameters:

• Community size: The number of solutions in every moment was

given by P/n, where P is the set of all researchers, and n the size of

the committees.
• Crossover probability: A generational parameter, selected from

range [0.6; 0.9].
• Mutation probability: A mutation operator parameter, selected

from range [0.01; 0.15].
• Stop condition: A generational parameter, set in 25 generations.
• Configurations: Sixteen different configurations emerged from

the combination of the selected mechanisms in this approach (se-

lection, mutation, and crossover). In addition, we use Steady-state

and Generational as selection mechanisms. Table 1 shows these

configurations.
• Runs: 40 runs produced by 5 runs per configuration. Average val-

ues and standard deviation (σ ) were calculated.

.3. Results

Here we show a fitness evaluation and social network centrality

etric values for current committees of the Informatics and Com-

unications area, and then we show results of the genetic algorithm

uns.

.3.1. Fitness of current committees

The current committees of the Informatics and Communications

rea had 6 members in 2014. In order to evaluate committee fitness

e initially decided to apply the fitness function to committee mem-

ers. This approach was modified since some members of the current
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Table 1

16 proposed configurations for the genetic algorithm describing operators and selection mechanisms.

Configuration Crossover Mutation Parent selection Survivor selection

PMX OX Swap Insert SUS Tournament Steady-state Generational

1 X X X X

2 X X X X

3 X X X X

4 X X X X

5 X X X X

6 X X X X

7 X X X X

8 X X X X

9 X X X X

10 X X X X

11 X X X X

12 X X X X

13 X X X X

14 X X X X

15 X X X X

16 X X X X
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Table 2

Current Admissions, Reports, and Fellowship awardscommittees with each de-

gree, betweenness and closeness (last two metrics expressed in relative val-

ues).

Committee Node Degree Betweenness Closeness

Admissions A1 49 0.05293 0.22404

(fitness = 0.65152) A2 21 0.02593 0.17283

A3 5 0.00001 0.15606
3A4 – – –
2A5 – – –
2A6 – – –

Reports R1 35 0.11858 0.20596

(fitness = 0.36364) R2 51 0.11909 0.25101

R3 37 0.03512 0.19495

R4 34 0.14864 0.20989
1R5 – – –
2R6 – – –

Fellowship awards F1 22 0.01246 0.15696

(fitness = 0.38636) F2 6 0.00001 0.16307

F3 19 0.00595 0.19317

F4 42 0.07272 0.22751

F5 46 0.06920 0.23731
1F6 – – –

1 Does not belong to CONICET.
2 Not marked as specialist.
3 Present in another component.

Table 3

Fitness of proposed configurations with average fitness, standard deviation, and max-

imal fitness for 3-member committees in 5 runs (best values in bold).

Configuration Average

fitness

(runs = 5)

σ Maximal fitness

(with the shortest

time in seconds)

1 0.58788 0.01134 0.59091 1.548 s.

2 0.57879 0.01134 0.59091 1.510 s.

3 0.60303 0.02607 0.65152 1.563 s.

4 0.60909 0.02938 0.66667 1.537 s.

5 0.61818 0.02938 0.65152 1.625 s.

6 0.62424 0.03090 0.66667 1.468 s.

7 0.62121 0.02710 0.65152 1.544 s.

8 0.62121 0.03711 0.66667 1.504 s.

9 0.72727 0.00000 0.72727 31.135 s.

10 0.64545 0.00742 0.65152 31.493 s.

11 0.72727 0.00000 0.72727 30.744 s.

12 0.67879 0.02607 0.72727 31.325 s.

13 0.70606 0.02642 0.72727 31.024 s.

14 0.63939 0.02607 0.66667 32.174 s.

15 0.67879 0.00606 0.68182 33.181 s.

16 0.61515 0.02642 0.65152 38.198 s.
ommittees were not present in the dataset. This situation occurs be-

ause of the low number of specialists in the area belonging to CON-

CET (actually there are 87 specialists in the Informatics and Com-

unications area), which means that committees usually incorporate

xternal researchers from other areas. Therefore, we have identified

he current committees members present in the largest component

f the proposed social network. In the Admissions committee, only

/6 members are present in the social network; in the Reports com-

ittee, only 4/6 members are present in the social network; and in

he Fellowship awards committee, only 5/6 members are present in

he social network. Since names of the committee members are not

elevant in this study, we enumerated members from 1 to 6 for each

ommittee.

The Admissions committee of the Informatics and Communication

rea has fitness =0.65152 for members A1–A3, since A4 is present in

nother component and A5 and A6 are not classified as specialists.

he other 2 committees are in similar situation. The Reports commit-

ee has fitness =0.36364 for members R1–R4, since the other mem-

ers of the committee do not belong to CONICET (R5) or are not clas-

ified as specialists in the area (R6). And the Fellowship awards has

tness =0.38636 for members F1–F5, since F6 does not belong to

ONICET. Table 2 shows current committee members with centrality

etric values for those members present in the largest component of

he social network.

.3.2. Social network metrics

The social network metrics for current committees shown in

able 2 can be compared with metrics of the whole component,

hich average degree =7.316, network diameter =11, and average

ath length =5.76. This indicates that almost every member (except

or F2) of current committees has degree over the average component

egree, but far away from the highest degree (80) in the component.

ome committee members (A3 and F2) show very low betweenness,

ut their closeness is more balanced between each other.

.3.3. Genetic algorithm runs

In order to compare the fitness of current committees with the fit-

ess of the members proposed by the genetic algorithm, we decided

o modify the genetic algorithm to generate committees of 3, 4, and 5

embers.

For the Admissions committee, we set up the genetic algorithm in

rder to produce committees with 3 members. Table 3 shows results

here maximal average fitness ≈0.72727 and minimal σ = 0 for con-

gurations 9 and 11. Maximal fitness ≈0.72727 was reached by con-

gurations 9, 11, 12, and 13, from which we infer that a local optimum

s reached in these cases.
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Fig. 6. Average fitnesses of 3-member, 4-member, and 5-member committees for the 16 configurations.

4

e

2

o

9

fi

w

w

o

p

n

i

s

t

3

w

3

c

m

s

c

Compared with current committee fitness ≈0.65152, maximal av-

erage fitness shows a fitness improvement of ≈8 points.

For the Reports committee, we set up the genetic algorithm in

order to produce committees with 4 members. Results show maxi-

mal average fitness ≈0.60606 and minimal σ = 0 for configuration

11. Maximal fitness ≈0.60606 was reached by configurations 9, 11,

and 15, from which we infer that a local optimum is reached in these

cases.

Compared with the current committee fitness ≈0.36364, maximal

average fitness shows a fitness improvement of ≈24 points.

For the Fellowship awards committee, we set up the genetic al-

gorithm in order to produce committees with 5 members. Results

show maximal average fitness ≈0.57091 for configuration 9, minimal

σ ≈0.00530 for configuration 4, and maximal fitness ≈0.59091 for

configurations 9 and 11.

Compared with current committee fitness ≈0.38636, maximal av-

erage fitness shows a fitness improvement of ≈20 points.

As shown in Fig. 6, Generational (configurations 9–16) selec-

tion mechanism produced better results than Steady-state (config-

urations 1–8), but Fig. 7 shows that Generational required more

time than other configurations. For instance, in 5-member commit-

tees, the minimal time for Steady-state =4.73 s. (seconds) and for

Generational =67.049 s. This situation is similar for 3-member and
Fig. 7. Shortest times of 3-member, 4-member, and 5-
-member committees. In order to reach the time required by Gen-

rational configurations, we extended Steady-state stop condition to

5, 000 generations, resulting always in lower fitnesses than those

btained with Generational mechanism configurations.

For 3-member and 5-member committees, configuration

presents the fullest average fitness, and for all committees, con-

gurations 9 and 11 show the highest maximal fitness values, from

hich we infer that in searching for optimal values in similar studies

e should prefer the Generational selection mechanism and the PMX

perator. In addition, in this case the mutation operator does not

roduce relevant differences. However, in bigger or more complex

etworks, computational cost improvement may be a requirement,

n which cases we should prefer Steady-state selection mechanism in-

tead of Generational selection mechanism. In addition, Fig. 8 shows

hat 3-member configurations 9 and 11 reached σ = 0, and that

-member and 4-member configuration 9 reached σ = 0, from

hich we infer the stability of these configurations, at least for

-member and 4-member committees.

Fig. 9 shows the social network built for the case study, in which

urrent committee members are closer than the best fitness com-

ittee members obtained in experimentation. This representation

hows a balance improvement of distances between the best fitness

ommittee members compared to current committee members.
member committees for the 16 configurations.
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Fig. 8. Standard deviations of 3-member, 4-member, and 5-member committees for the 16 configurations.

Fig. 9. Current committees members (big gray nodes) versus the best fitness committees members (big black nodes) for 3-member (a), 4-member (b), and 5-member

(c) committees.
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4.4. Discussion

The proposed social network is intentionally simple about tie

complexity and node complexity. Here, ties are binary edges, and

nodes do not have attributes considered in the committee setup. On

real scenarios, other criteria could be taken into account, such as

node prominence, related topic, or skill, in searching to fulfill certain

requirements.

To test this approach, we used a new dataset based on public on-

line available data. For simplicity, we built the social network starting

from a set of specialists (those in the Informatics and Communication

area), and then we created nodes and ties based on co-authorship

and workplace information. To analyze other kind of specialists, social

network should be built from all actors in the community or a new

social network should be built starting from a new set of specialists

from the area for which the committee is needed.

5. Related work

Previous work have contributed in the field of creating people

committees applied to different areas, such as audit (Abbott & Parker,

2000), board directors (Shivdasani & Yermack, 1999; Westphal &

Zajac, 1995), or public agencies (Loewenberg, Patterson, & Jewell,

1985). Some approaches have been focused on the diversity of the

members (Aksela & Laaksonen, 2006; Hadjitodorov, Kuncheva, &

Todorova, 2006; Kuncheva, 2005; Kuncheva & Whitaker, 2003; Shin

& Sohn, 2005; Zouari, Heutte, & Lecourtier, 2005), while other ap-

proaches have been based different voting techniques (Bock, Day, &

McMorris, 1998; Fishburn, 1981; Gehrlein, 1985). However, to the

best of our knowledge there are no precedents in committee selec-

tions with independent members by using social networks.

Choosing committees with independent members in social net-

works can be regarded a group selection problem. Generally, this

problem includes node group selection, structural consideration such

as cohesion or centrality measures, and some optimization strategy

since most of them are classified as NP problems.

Two well-known group selection problems in social networks are

the target set selection problem and the community detection prob-

lem, however these problems present some differences with com-

mittee selection problem. The target set selection problem aims to

select nodes that maximize influence in order to spread something

in a network, such as information. Here, the focus is on the net-

work, since the problem is determined by which set of nodes in-

crease the influence. The community detection problem aims to dis-

cover node sets based on node relations or structural properties.

Here, the focus is on the set and its internal structural properties,

since the problem is determined by which nodes belong to a group or

community.

However, committee member selection problem focuses on the

group and the network, since the group considers relations be-

tween committee members and the group independence considers

the whole network.

Current literature about target set selection problem shares some

elements with this work. Wang, Deng, Zhou, and Jiang (2014) develop

a set-based coding genetic algorithm (SGA) that converges in proba-

bility to the problem optimal solution. Here, the authors code chro-

mosomes as sets, and choose operators based on the chromosome

representation. However, SGA mainly differs with this work in the use

of diffusion dynamics to measure performance. Cao, Wu, Wang, and

Hu (2011) propose a transformation of the target selection problem

into an optimal resource allocation problem. Here, the authors make

use of the modular structural property of social networks, and pro-

pose a dynamic programming algorithm to solve the problem, which

was proved to be NP-hard.

Similar to the target set selection problem is the key player prob-

lem (KPP) (Ballester, Calvó-Armengol, & Zenou, 2006; Borgatti, 2006;
verett & Borgatti, 2010). KPP identifies key player sets with two

ifferent approaches, KPP-Neg and KPP-Pos. KPP-Neg searches for

ey players sets that if removed will disrupt the network. KPP-Pos

earches for key players sets optimally connected to all other nodes

n a network. The main difference with this work is on the structural

roperty, since KPP-Pos uses set cohesion and KPP-Neg uses closeness

entrality. Also, the authors suggest some evolutionary strategies for

unction optimization.

An early effort on maximizing the impact in social networks is

resented in Liberman and Wolf (1997) that proposes a strategy to

ncrease impact of information flow on scientific communities. This

ork has historical value, but it shows that similar problems in social

etworks have had different names over time.

Current literature about community detection problem shows a

rowing interest in topics such as social circles, topic models, or

omplex networks. However, there still are community detection

pproaches mainly based on structural properties. Bhattacharyya

nd Bickel (2014) use graph distances to detect communities in

raphs by using a block model approach. The authors use geodesic

istances which have underlying problems, such as the impossi-

ility to measure geodesic distances in unconnected graphs. The

uthors solve this constraint by replacing distances of discon-

ected pair of nodes with the largest geodesic distance in the

raph.

About the use of genetic algorithms as an optimization strat-

gy for community detection, Freeman (1993) presents a review of

he group selection problem and recognizes the computation con-

traint of uncovering groups based on proximity matrix representa-

ion. He also recognizes the need for a search strategy, therefore he

roposes a simple genetic algorithm. The main differences with our

ork are in the chromosome representation and in the fitness func-

ion, which uses the proximity matrix information and a binary node

lassification.

As a precedent on using a structural approach to select people

roups, Burt (1978) proposes a process that uses sociometric mea-

ures for sampling firm representatives of interlocking directorates

o overcome profit constraints of an industry.

We found other areas that use distance as social network struc-

ural property for group selection. For instance, in the recommen-

ation area, Hwang, Wei, and Liao (2010) suggest articles based

n a co-authorship network and different schemes to measure the

loseness of author sets. Here, the social network graph representa-

ion includes directed and valued ties which affect closeness mea-

ure implementation. In the social network analysis homophily area,

reciado, Snijders, Burk, Stattin, and Kerr (2012) take geographical

roximity as distance in order to analyze likelihood of friendship ex-

stence and dynamics within social networks. A related approach is

resented by Morgan and Carley (2011, 2014) which uses social dis-

ance as part of an impact factor set to candidate selection for hiring

rocesses.

As another group selection approach, Wi, Mun, Oh, and Jung

2009a, 2009b) use social network structural properties along with

enetic algorithms. The authors propose a quantitative method for

he team member selection problem based on knowledge and col-

aboration of candidates. This problem aims to select teams based on

bilities of candidates to fulfill project requirements and to predict

eam performance. Network structural properties are used to mea-

ure familiarity between candidates which is translated in what they

all knowledge competence. Also, they use structural properties to

elect project managers from teams.

A previous work that uses geodesic paths as structural property

or group selection (Kolaczyk, Chua, & Barthélemy, 2009) proposes a

etric called co-betweenness, which extends betweenness centrality

o sets of nodes in order to measure the information flow of the set.

o-betweenness considers the geodesic paths that pass through all

odes in the set.



E. Zamudio et al. / Expert Systems With Applications 43 (2016) 261–270 269

g

s

1

o

6

t

a

p

i

i

t

n

t

f

fi

t

a

r

R

t

t

p

p

s

b

M

t

w

t

c

i

t

p

t

g

c

l

g

t

l

p

a

p

a

u

n

t

a

s

p

g

t

s

t

d

R

A

A

A

A

B

B

B

B

B

C

E

F

F

F

G

H

H

K

K

K

L

L

L

M

M

P

S

S

S

T

W

W

Out of the social network scope, some works in artificial intelli-

ence use a committee based concept to select other kinds of groups,

uch as classification (Aksela, 2003; Argamon-Engelson & Dagan,

999; Li, Zou, Hu, Wu, & Yu, 2013; Wang & Wang, 2006; Zheng, 1998)

r clustering (Hadjitodorov et al., 2006; Tao, Ma, & Qiao, 2013).

. Conclusions

A novel social network approach to the committee member selec-

ion problem has been proposed. This approach consists in a mech-

nism that models the problem as a social network group selection

roblem.

In this group selection problem for committee member selection,

ndependence is the main selection criterion, for which a novel group

ndependence function is defined. This group independence func-

ion uses geodesic distances to measure social distances between all

ode pairs in the social network. Also, a genetic algorithm is defined

o generate committee candidates. Then, the group independence

unction is maximized to choose candidate groups with the best

tness.

A case study is presented where the proposed approach is applied

o a real social network. The social network was built with on-line

vailable data extracted from a public R&D funding agency. Further,

esults were compared with current committees of the same agency.

esults show that the proposed approach can generate committees

hat improve group independence compared to the current commit-

ee performances.

Assisting committee selection processes may be the greatest com-

etitive advantage offered by the proposed approach, since we have

roved that the best performance groups can be selected within

econds for a real scenario. Also, alternative group selections can

e preferred by experts in charge for committee appointments.

oreover, this work is built upon a simple infrastructure because

here are many genetic algorithm implementations, and social net-

ork manipulation software, that allow the implementation and

he execution of the approach in standard hardware and software

onfigurations. As practical usage, this approach can be implemented

n recommendation processes to propose alternative group selec-

ions, or even group member replacements in order to improve group

erformances. Also, this approach can be used in opinion polls where

here is a need to select less related respondents, such as focus

roups.

Although this approach is presented as a simple alternative to the

ommittee selection problem, there still are some limitations. These

imitations include an underlying problem, which implies that the

eodesic distances must be calculated between every node pair in

he network. Another limitation of the geodesic distance as under-

ying measure is that distance between nodes from different com-

onents cannot be determined. Also, despite the proposed genetic

lgorithm returns the best performance solutions, it is still an ap-

roximation strategy to the global optimum. Finally, the proposed

pproach is intentionally designed for simple social networks with

ndirected and unvalued ties, therefore its application in other sce-

arios, such as complex networks, may require some modifications.

Future works aim to test the proposed approach in other domains

hat require committee member selection. Despite this approach uses

simple network representation, more complex committee member

election processes may include criteria other than the group inde-

endence, therefore future works may include multiple criteria in

roup selection for the committee member selection problem. Fur-

her, other optimization strategies could be evaluated, particularly for

calability scenarios. Moreover, a complex social network representa-

ion will allow to include other kinds of network properties, such as

irected ties or node attributes.
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