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a b s t r a c t

Simultaneous reductions in inventory of raw materials, work-in-process, and finished items have recently
become a major focus in supply chain management. Vendor-managed inventory is a well-known practice
in supply chain collaborations, in which manufacturer manages inventory at the retailer and decides
about the time and replenishment. In this paper, an integrated vendor-managed inventory model is pre-
sented for a two-level supply chain structured as a single capacitated manufacturer at the first level and
multiple retailers at the second level. Manufacturer produces different products where demands are
assumed decreasing functions of retail prices. In this chain, both the manufacturer and retailers contrib-
ute to determine their own decision variables in order to maximize their benefits. While previous
research on this topic mainly included a single objective optimization model where the objective was
either to minimize total supply chain costs or to maximize total supply chain benefits, in this research
a fair profit contract is designed for the manufacturer and the retailers. The problem is first formulated
into a bi-objective non-linear mathematical model and then the lexicographic max–min approach is uti-
lized to obtain a fair non-dominated solution. Finally, different test problems are investigated in order to
demonstrate the applicability of the proposed methodology and to evaluate the solution obtained.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Vendor-managed inventory (VMI) is a well-known practice for
supply chain collaboration, in which manufacturer manages inven-
tory at the retailer and decides when and how much to replenish.
In recent years, there has been an increasing interest in cooperative
and non-cooperative relationship between both manufacturer and
retailers in the VMI program. For instance, VMI has been adapted
to the lean production requirements of manufacturers in automo-
bile manufacturing supply chain management based on informa-
tion system integration [14]. In order to analyze the supply chain
performance improvement, Xu et al. [25] presented a real case
study in a Chinese medium-sized aluminum manufacturing com-
pany. They showed the VMI strategy could significantly improve
the supply chain performance such as reducing customer order
cycle time and reducing safety inventory costs.
Although the benefits of VMI to the retailer include reduction of
overhead costs and, if consignment stock is adopted, transfer of
inventory costs to the manufacturer, the benefits of VMI to manu-
facturer are not very straightforward [11]. Meanwhile, research
works mainly focus on the following three aspects of VMI pro-
grams [7]:

1. Investigating the benefits of VMI programs compared with nor-
mal supply modes without VMI.

2. Operational decisions in VMI programs.
3. Designing contracts for VMI programs.

The literature related to this paper can be classified into those of
the second category.

Yao et al. [27] introduced a model to explore the effects of
cooperative supply chain initiatives such as VMI, first developed
by Vlist et al. [23]. In this issue, the authors showed that when
the shipment sizes from a supplier to a buyer increase, inventory
at the supplier goes down and inventory at the buyer goes up.
Zhang et al. [33] presented an integrated VMI model for a single-
vendor multiple-buyer supply chain problem, where the vendor
first purchases and processes raw materials and then delivers
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finished items to multiple buyers. Investment decision, constant
production, and demand were considered where the buyers’
ordering cycles might be different and that each buyer could
replenish more than once in one production cycle.

Impact of the consignment inventory (CI) and VMI policies was
studied by Gümüs� et al. [8]. The goal was to analyze CI in a two-
party supply chain under deterministic demand and to provide
some general conditions under which CI creates benefits for the
vendor, for the customer, and for the two parties together. Sari
[20] presented a comprehensive simulation model representing
two popular supply chain initiatives, collaborative planning fore-
casting replenishment (CPFR) and VMI, in order to select an appro-
priate collaboration mode in business conditions. Their results
showed that benefits of CPFR are always higher than VMI. Besides,
an integrated production–inventory model was developed by Zav-
anella and Zanoni [32], in which a particular VMI policy known as
consignment stock (CS) for both the buyer and the supplier was
investigated. Yu et al. [29,30] showed how the vendor can take into
account the advantage of his information for increasing his own
profit by using a Stackelberg game in a VMI system. Yu et al. [28]
showed how to analyze the intrinsic evolutionary mechanism of
the VMI supply chains by applying the evolutionary game theories.
Darwish and Odah [3] developed a model for a supply chain with
single vendor and multiple retailers based on VMI, considering
capacity constraints by selecting high penalty cost. Almehdawe
and Mantin [1] studied supply chains composed of a single capac-
itated manufacturer and multiple retailers. They formulated a Stac-
kelberg game VMI framework under two scenarios: in the first, the
manufacturer is the leader; in the second, one of the retailers acts
as the dominant player of the supply chain. In addition, market de-
mand was considered a function of retail price. This model was also
extended by Yu et al. [29,30] when advertising investment and
pricing come to the picture.

The quaternary policy towards integrated logistics and inven-
tory aspect of the supply chain was proposed by Arora et al. [2].
They considered a supply chain with multiple retailers and distrib-
utors, in which all distributors follow a unique policy and the VMI
system is used for updating the inventory of the retailers. Yang
et al. [26] studied the effects of the distribution centre (DC) in a
VMI system comprising one manufacturer, one DC, and n retailers
where the system aims to maximize the overall system profit.
While Lee and Ren [11] showed the supply chain total cost de-
creases under VMI, the reduction is larger when there is exchange
rate uncertainty compared with the case of no exchange rate
uncertainty. They considered a state-dependent (s, S) policy for
the supplier. Pasandideh et al. [18] presented a multi-product mul-
ti-constraint economic order quantity (EOQ) model under the VMI
policy for a supply chain. They developed a genetic algorithm to
find the best order quantities and the maximum backorder levels
such that the total inventory cost of the supply chain is minimized.

A logistics network design under VMI by considering location,
transportation, pricing, and warehouse–retailer inventory replen-
ishment decisions was presented by Shu et al. [22]. Zanoni et al.
[31] provided a two-level supply chain model for a single-vendor
single-buyer at each level and compared different policies that
the vendor might adopt to exploit the advantages offered by the
VMI with consignment agreement when the vendor’s production
process is subject to learning effects.

To summarize, many research works in supply chain environ-
ment assume a non-cooperative relation (such as the one in the
Stackelberg game) between the manufacturer and the retailers
with the manufacturer acting as the leader and the retailers as
the followers [1]. In addition, most of the literature on the VMI
problem only aim to optimize manufacturer’s objectives and do
not pay attention to retailers’ objectives [29,30,1]. Moreover, there
has been little discussion about designing fair contracts in VMI
problems so far. Besides, previous research works on this topic
mainly included a single objective optimization model where the
objective was either to minimize the total cost or to maximize
the total benefit. However, this paper presents a two-level supply
chain model by assuming a single capacitated manufacturer at
the first level and multiple retailers at the second level. This chain
is considered integration between the manufacturer and retailers
where the manufacturer (vendor) produces multiple products, sells
to retailers, and manages the retailers’ inventories under VMI. A
fair profit contract between the manufacturer and his retailers is
adopted in this research. Our motivation of defining a fair profit
contract is that both the manufacturer and retailers are able to
contribute to determine their optimal decision variables in order
to maximize their benefits. In other words, the manufacturer and
his retailers maximize their benefits as close to one another as pos-
sible. Besides, the demand rate for each product in each local retail
market is assumed a decreasing function of the retail price called
the Cobb–Douglas demand function. Finally, this paper formulates
the problem into a non-linear mathematical model with two-
objectives in order to maximize both the manufacturer and retail-
ers’ benefit. It is assumed that both the objectives are equally
important, and it is needed to find a ‘‘fair’’ non-dominated solution
by the lexicographic max–min approach. A fair non-dominated
solution is a solution with all normalized objective function values
as equal as possible. Following Erkut et al. [6], we discuss the con-
version of the original lexicographic max–min problem to a lexico-
graphic maximization problem without using the dual formulation
of the LP problem.

The reminder of this paper is organized as follows. Section 2
contains problem description. The mathematical formulation of
the problem is given in Section 3. Section 4 discusses the lexico-
graphic max–min approach to solve the problem. The applicability
and the performances of the proposed method are demonstrated in
Section 5 using some numerical examples. Moreover, sensitivity
analyses on the effects of some input parameters on the objective
functions are performed in this section. Finally, we conclude the
paper with a discussion of possible further research in Section 6.
2. Problem description

Consider a two-level supply chain consisting of a single manu-
facturer at the first level and multiple retailers at the second. The
manufacturer’s capacity is finite in producing different products
with a fixed production rate. He sells the products to its retailers
with a common replenishment cycle. A common replenishment cy-
cle eliminates the influence of the variation of the replenishment
cycle as well as backorder rate of every retailer. The manufacturer
must sell the products to his retailers at different wholesale prices.
Besides, the manufacturer and retailers are operating in distinctive
markets with no conflict of interests. Integration is established be-
tween the manufacturer and all retailers, in which manufacturer
manages inventory at all levels by having access to retailers’ inven-
tory as well as his own (i.e. VMI). Moreover, each retailer pays to
the manufacturer a cost of nic per unit consumed per time unit to
have his inventory managed by the manufacturer. The manufac-
turer decides on his replenishment cycle of the finished products,
wholesale prices, and fraction of backlogging. Retailers’ decisions
include their retail prices.

2.1. Assumptions

The followings are assumed in this paper:

1. The demand for every retailer and every product is constant
over time.
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2. The demand function for all retailers and all products is a con-
vex function with respect to its retail price (see the paragraph
before Eq. (1) for more details)

3. Lead-time of each product at each level of the supply chain is
assumed negligible compared to the common replenishment
cycle time.

4. The production setup cost occurs at the beginning of each com-
mon replenishment cycle.

5. The setup cost is realized once in every replenishment cycle.
6. Planning horizon is infinite.

2.2. Indices, parameters, and decision variables

The following indices, parameters, and decision variables are
used throughout the paper:

Indices

c
 Index for retailers (c = 1,2, . . . ,n)

i
 Index for product types (i = 1,2, . . . , I)
Input parameters

Dic
 Retailer c’s demand for finished product i

nic
 Inventory management cost of the finished product i for

retailer c ($/unit/time)

cm
 Production cost per unit for finished product ($/unit)

Uic
 Transportation cost per unit of finished product i shipped

from the manufacturer to retailer c ($/unit)

r
 Production rate of finished products

Si
 Setup cost for the common cycle time for product i ($)

SRC
 Fixed order cost paid by the manufacturer to retailer c ($)

pic
 Backorder cost paid by the manufacturer to retailer c for

product i ($/unit/time)

Hi
 Holding cost at the manufacturer’s side ($/unit/time)

hic
 Holding cost paid by the manufacturer at retailer c’s side

for product i ($/unit/time)
Decision variables

wic
 Wholesale price of the finished product i, provided by

the manufacturer to retailer c ($/unit)

pic
 Retail price charged by retailer c for product i ($/unit)

bic
 Fraction of backlogging time of finished product i for

retailer c in the common replenishment cycle

Ci
 Common replenishment cycle time for the finished

product i
About the second assumption stated in Section 2.1, the demand
faced by each retailer for each product is assumed to follow the
Cobb–Douglas demand function characterized by a constant elas-
ticity demand function of the form given in Eq. (1).

Dic ¼ kcp�ec
ic : 8i ¼ 1; . . . ; I; c ¼ 1; . . . ;n: ð1Þ

In which kc and ec > 1 represent the market scale of retailer c and
the demand elasticity of retailer c with respect to its retail price,
respectively [1].
Fig. 1. Inventory level of retailer c for product i per common replenishment cycle.
3. Mathematical model

The integrated manufacturer–retailers model can be formulated
as follows:
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pic > wic þ nic; 8i ¼ 1; . . . ; I; c ¼ 1; . . . ;n; ð6Þ
0 6 bic 6 1; 8i ¼ 1; . . . ; I; c ¼ 1; . . . ;n; ð7Þ
Ci;wic;pic P 0; 8i ¼ 1; . . . ; I; c ¼ 1; . . . ;n; ð8Þ

It is clear that the above formulation is non-linear with two
conflicting objective functions. The first objective function (z1) that
is given in Eq. (2) is the net profit of the manufacturer obtained by
the revenue from sale of finished products to retailers at wholesale
prices minus the costs including production, transportation, setup,
holding, and TCVMI. The second objective function (z2) that is given
in Eq. (3) shows the net profit of all retailers. Eq. (4) represents
TCVMI that is defined as the total inventory cost incurred by the
manufacturer to manage all retailers’ inventory. The inventory
costs at each retailer’s side are the fixed inventory costs, variable
inventory costs, and back-ordering costs. Inequality (5) insures
that total demand faced by the manufacturer does not exceed his
production capacity. Inequalities (6) show the least acceptable
prices in order to assure positive net profits for all retailers.
Inequalities (7) are to set limits for the fraction of backlogging rates
and inequalities (8) guarantee non-negative values for all decision
variables. Fig. 1 shows how one can obtain average inventories in
order to derive holding and backorder costs of retailers. Besides,
Fig. 2 shows the total inventory of the manufacturer for product i
in a common replenishment cycle [29,30].

This model was originally presented by Almehdawe and Mantin
[1], where they formulated a Stackelberg game VMI framework
with a single objective and only one product. However, a bi-objec-
tive optimization model is derived in the current model for several
products, in which TCVMI represents the total cost paid by the man-
ufacturer to manage all retailers’ inventory. It consists of the differ-
ence between all the inventory costs he realizes and the revenue he
receives from the retailers to manage their inventory.
4. The lexicographic max–min approach

A brief discussion on the lexicographic max–min (LMM) as a
refinement of the standard max–min approach along with the
rationale behind its use for the integrated vendor managed inven-
tory problem at hand is presented in this section. This approach
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can be utilized to simultaneously maximize the smallest manufac-
turer’s profit and the smallest retailers’ profit as close to one an-
other as possible. Taking advantage of this approach enables one
to design a fair profit contract between the manufacturer and the
retailers, i.e., this approach can create a good win–win scenario
for both the manufacture and its retailers in the supply chain.
LMM is adopted in this research because it provides solutions sat-
isfying fairness and efficiency properties [19]. Another advantage
of the LMM approach is that it usually works on a lower dimension
than the domain set, which may simplify the analysis [19].

The lexicographic max–min method that first was introduced
by Dresher [4] was later refined to the formal nucleolus definition
by Schmeidler [21]. It has been applied for multi-period resource
allocation [9], linear multiple criteria problems [12], fair band-
width allocation in computer networks [19], water resource alloca-
tion [24], and waste management [6]. Moreover, the LMM solution
is known in the game theory as the nucleolus of a matrix game
[12]. It is also called lexicographic max-ordering [5] and lexico-
graphic centers in location [16].

The standard lexicographic approach to find max–min solutions
selects a unique set of outcomes which may be a non-unique solu-
tion in the decision space but all the solutions have exactly the
same distribution of outcomes [15]. Although the lexicographic
leads to a Pareto efficient solution [13], this solution is not fair
since it is first necessary to establish a strict precedence among
all utility functions [19]. Therefore, this simple lexicographic
approach is not applicable to our research. That is why the LMM
approach is taken in this research to find a fair solution for the
integrated manufacturer–retailers problem modeled in Section 3.

Let fi(x) (i = 1,2, . . . ,P): D ? R be an objective function to be opti-
mized, where x is a feasible solution and D is a set of feasible solu-
tions. A multi-objective optimization (maximization for instance)
problem, is formulated as follows:

Max f 1ðxÞ; f2ðxÞ; . . . ; fPðxÞ;
s:t: : x 2 D:

ð9Þ

In these problems, a set of solutions called Pareto optimal is desired.
To find the Pareto optimal solution the following order relation is
first defined:

x � y() fiðxÞP fiðyÞ; ð8i ¼ 1;2; . . . ; PÞ ^ fiðxÞ > fiðyÞ;
ð9i ¼ 1;2; . . . ; PÞ: ð10Þ

If the above relation holds between x and y, the solution x is said to
dominate y. Then, the Pareto optimal solution is defined as follows:
A solution x⁄ 2 D is said to be a Pareto optimal solution if there is no
solution x 2 D such that x⁄ � x [10]. The concept of a ‘‘fair’’ efficient
solution is a refinement of the Pareto optimality. The fair solution is
a solution with all normalized objective function values as close to
one another as possible [15]. An alternative approach depends on
the so-called the max–min solution concept, where the worst per-
formance is maximized:

Max min
i¼1;2;...;P

fiðxÞ : x 2 Q
� �

: ð11Þ

It should be noted that the optimal solution set of the max–min
problem (11) always contains an efficient solution of the original
multi-objective problem given in (9). The max–min solution con-
cept depends on optimization of the worst outcome, and it is re-
garded as maintaining equity as described by the following
theorem [17].

Theorem 1. If exists a non-dominated outcome vector �y 2 Y with
perfect equity �y1 ¼ �y2 ¼ � � � ¼ �yP then �y is the unique optimal fair
solution of the max–min problem.

Max min
i¼1;2;...;P

yi : y 2 Y
� �

: ð12Þ

Note that the standard max–min approach depends on minimi-
zation of �y1 and it ignores �yj for j P 2. It is a reason why the Stan-
dard max–mix approach is, in general, too crude to satisfy the
Pareto optimality principle [15]. Therefore, we solve a LMM prob-
lem as a refinement of this max–min problem.

Let H(a) = (ah1i,ah2i, . . . ,ahPi) be a vector obtained from a by
rearranging its components in non-decreasing order and
H: RP ? RP a map, which orders the components of vectors in a
non-decreasing order. That means ah1i 6 ah2i 6 � � � 6 ahPi where ai

is the ith component of H(a). Comparing lexicographically such
ordered vectors f one gets the so-called lex-max order. Therefore,
LMM problem is:

lex maxfHðf Þg ¼ lex maxfðfh1i; fh2i; . . . ; fhPhÞ : f 2 Ag; ð13Þ

where A = {f: f = f(x), x 2 D}.

Theorem 2. An optimal solution of the problem (13) is also the
optimal solution of the problem (12).

In problem (13), in addition to maximize the worst (smallest)
outcome, we also maximize the second smallest outcome (pro-
vided that the smallest one remains as large as possible), maximize
the third smallest (provided that the two smallest remain as large
as possible), and so on. The LMM solutions satisfy the principles of
Pareto-optimality (efficiency) and perfect equity as described by
the following theorem [6].

Theorem 3. x⁄ 2 D is Pareto-optimal with perfect equity
f1(x⁄) = f2(x⁄) = � � � = fP(x⁄), it is an optimal fair solution of the optimi-
zation problem (13).

However, problem (13) is not a standard mathematical
program. In following, we describe an approach to transfer
the LMM problem (13) to a lexicographic maximization
problem. Let giðyÞ ¼

Pi
j¼1 yhji be cumulated criteria expressing,

respectively the worst (smallest) outcome, the total of the
two worst outcomes, the total of the three worst outcomes,
etc. [17]. Therefore, for any given vector f, the cumulated ordered
value gi(f) can be found as the optimal value of the following LP
problem:

giðf Þ ¼max
XP

j¼1

fjaij; ð14Þ

s:t: :
XP

j¼1

aij ¼ i; 8j ¼ 1; . . . ; P; ð15Þ

aij 2 f0;1g; 8j ¼ 1; . . . ; P; ð16Þ
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where aij is a binary variable and can be relaxed to a continuous var-
iable, i.e., 0 6 aij 6 1. Therefore, by using the above model, lexico-
graphic max–min problem converts to a lexicographic
maximization problem. By solving the above model, one can find
a fair non-dominated solution for the integrated manufacturer–
retailers problem at hand. Numerical examples are provided in
the next section to demonstrate this approach.
5. Performance evaluation and comparison

The aim of this section is to demonstrate the applicability and to
assess the performances of the proposed model using hypothetical
examples having randomly generated data. These examples are
solved using GAMS 23.5 software and making use of the CONOPT3
solver on an Intel(R), core(TM) i7, 3.23 GHz lap top with 512 Mb
RAM.

The case study is adapted from Almehdawe and Mantin [1]and
Yu et al. [28–30] and is adjusted to suit this research. Consider a
supply chain consider a supply chain consisting of a single manu-
facturer and three retailers. The manufacturer produces two prod-
ucts. The retailers are different in terms of market size,
characterized by the market scale kc, and customer’s sensitivity
to price changes, characterized by the price elasticity ec. Random
examples are generated according to the information provided in
Table 1, where the term ‘‘U’’ implies a uniform distribution. Some
of these ranges are selected based on the work by Almehdawe
and Mantin [1].

For a randomly generated problem, the LMM approach is em-
ployed to determine which Pareto-optimal solution to be imple-
mented in order to get a fair trade-off between manufacturer and
retailers’ profits. Certainly, the lexicographic optimization may also
be treated as a sequential (hierarchical) optimization process
where first g1(x) is maximized on the entire feasible set, next
g2(x) is maximized on the optimal set, and so on. This may be
implemented as shown in the following standard sequential
algorithm with predefined objective functions (lex max{(g1(x), . . . ,
gm(x)): x 2 D}), in which gsðxÞ ¼

PP
j¼1 f jasj:

Step 0: Set s :¼ 1.
Step 1: Solve problem Qs defined as:
Max
x2D
f#s;#s 6 gsðxÞ; #0

j 6 gjðxÞ 8j < sg
and denote the optimal solution by (x0, #0)
Step 2: If s = m, then STOP (x0 is the optimal solution).

Otherwise, set s :¼ s + 1 and go the Step 1

For example, for s = 1, we build the first problem (Q1) with the
objective #1;#1 6

PP
j¼1 f ja1j being maximized and constraints

shown in Eqs. (15) and (16). For the next iterations (s > 1), the
problem Qs is built by adding new constraints #0

s�1 6
PP

j¼1 f jas�1;j
Table 1
Test problem generation.

Parameter Value

(k1,k2,k3) (3000,2000,2000)
(e1,e2,e3) (1.2,1.3,1.5)
nic �U(1.2,2.4)
cm 4
Uic 3
P 1000
Si �U(10,30)
SRC �U(20,40)
pic �U(150,200)
Hi �U(2,5)
hic �U(0.5,3)
where #0
s�1 is the optimal objective value of the problem Qs�1

and
PP

j¼1 as�1;j ¼ s� 1 and so on. For the integrated manufac-
turer–retailers problem at hand, inequalities (4)–(8) are considered
in each iteration. The objective values obtained by both the max–
min and the LMM methods along with their CPU times of reaching
the solutions are given in Table 2.

The results in Table 2 indicate the equality of both objectives in
all cases, which means they are close to their maximum values
equally. This is consistent with what was stated in Theorem 3. In
other words, fair non-dominated solutions with all normalized
objectives as equal as possible are obtained. Besides, LMM provides
better solutions with less CPU times compared to the ones of the
max–min method. In the next subsection, sensitivity analyses are
performed to investigate the effects of market scale and demand
elasticity on manufacturer and retailers’ profits.

5.1. Sensitivity analyses

Since kc and ec in the Cobb–Douglas demand function presented
in Eq. (1) represent market scale and demand elasticity of retailer c
with respect to retail price, respectively, an initial value and twelve
variations from the initial value are considered to observe the ef-
fects of these changes on manufacturer’s profit (z1) and all retailers’
profits (z2). The LMM solutions for wholesale prices, retail prices,
fraction backlogged, and replenishment cycles (the decision vari-
ables) based on the initial values is summarized in Table 3. The re-
sults in Table 3 show that retailer 1 with high market scale and low
demand elasticity earns high retail price and demand for the
products.

Furthermore, an instance in the sensitivity analyses shows that
when the market scale of retailer 1 (k1) increases from 3000 to
3500, z1 and z2 in the LMM and the max–min method increase
from $3755.520 to $4140.088 and $1864.479 to $2046.598, respec-
tively. Moreover, when this parameter decreases from 3000 to
2500, z1 and z2 in the LMM and the max–min method decrease
to $3371.065 and $1487.486, respectively. In addition, when the
demand elasticity faced by retailer 3 increases from 1.5, as its ini-
tial value, to 3, the LMM and the max–min solutions decrease from
$3755.520 to $2725.190 and $1864.479 to $968.174, respectively.
Based on the above sensitivity analyses (and the other sensitivity
analyses not shown here) it can be seen that while both methods
provide fair non-dominated solutions in all cases, LMM provides
better solutions in terms of the objective functions than the ones
of the max–min method with almost equal CPU times.

5.2. Comparison

In order to assess the performance of the proposed methodol-
ogy and compare it to the one of the max–min method, different
test problems with different numbers of retailers and finished
products are considered in this section, where in all problems
kc = 2000 and ec = 1.5. The results obtained using the max–min
and the LMM methods are summarized in Table 4. Besides, the val-
ues of z1 obtained by LMM and max–min methods for three, five,
and seven finished products are shown in Figs. 3–5, respectively.

Paired samples t-test is a useful tool to test the null hypothesis
that the mean of the values of z1 obtained by LMM in all test prob-
lems is greater the one obtained by the max–min method. The
paired samples t-test (one-tailed) succeeded to reveal a statisti-
cally significant difference between the means (LMM
Mean = 18,158, LMM Std = 9672, max–min mean = 7255, max–
min Std = 3753). In this case, the t-statistic is 8.167, which is far
greater than the upper 5% critical point of a t-student distribution
with 29 degrees of freedom (1.699). In other words, the LMM
method provides better quality solutions in terms of the first
objective function. Similarly, this test is implemented for the



Table 2
Solution comparisons of the max–min and the LMM methods.

Setting Max–min LMM

CPU time (s) z1 ($) z2 ($) CPU time (s) z1 ($) z2 ($)

Initial value 0.726 1846.479 1846.479 0.109 3755.520 3755.520
k1 = 3500 0.156 2046.598 2046.598 0.060 4140.088 4140.088
k1 = 2500 0.11 1487.486 1487.486 0.043 3371.065 3371.065
k2 = 4000 0.125 2156.573 2156.573 0.116 4802.181 4802.181
k2 = 1600 0.113 1622.343 1622.343 0.049 3547.036 3547.036
k3 = 1700 0.287 946.196 946.196 0.103 3674.720 3674.720
k3 = 3000 0.101 1503.574 1503.574 0.073 4025.292 4025.292
e1 = 1.7 0.173 892.094 892.094 0.046 1966.127 1966.127
e1 = 2.1 0.131 731.673 731.673 0.036 1559.012 1559.012
e2 = 2 0.161 1049.722 1049.722 0.098 2832.049 2832.049
e2 = 3 0.109 1164.608 1164.608 0.048 2725.190 2725.190
e3 = 3 0.193 968.174 968.174 0.104 3227.016 3227.016
e3 = 2.1 0.124 1530.647 1530.647 0.042 3310.163 3310.163

Table 3
Results of the LMM method based on the initial values.

Retailer Product 1 Product 2

w ($/unit) p ($/unit) b (rate) D (unit) w ($/unit) p ($/unit) b (rate) D (unit)

1 32.622 46.683 0.006 29.794 0.548 48.973 0.007 28.131
2 36.997 38.628 0.013 17.300 9.059 35.064 0.006 19.621
3 2.047 25.176 0.012 15.833 6.318 23.827 0.006 17.195

Replenishment cycle (time) 1.435 1.582

Table 4
Summary of test results.

# Of retailers # Of products Max–min LMM

CPU time (s) z1 ($) z2 ($) CPU time (s) z1 ($) z2 ($)

n = 5 3 0.431 1393.199 1393.199 0.157 3664.546 3664.546
5 0.719 3081.036 3081.036 0.268 6173.579 6173.579
7 1.229 4257.444 4257.444 0.689 8731.821 8731.821

n = 7 3 0.307 2544.350 2544.350 0.272 5158.398 5158.398
5 0.799 3839.617 3839.617 0.361 8717.870 8717.870
7 0.965 6014.480 6014.480 0.592 12186.242 12186.242

n = 9 3 0.749 3193.467 3193.467 0.129 6724.740 6724.740
5 0.951 5464.342 5464.342 0.548 11193.243 11193.243
7 1.720 7526.157 7526.157 0.865 15579.723 15579.723

n = 11 3 0.927 3460.369 3460.369 0.457 8207.984 8207.984
5 1.950 6558.041 6558.041 0.712 13726.278 13726.278
7 2.264 9069.026 9069.026 1.578 19001.325 19001.325

n = 15 3 1.027 5439.454 5439.454 0.623 11198.937 11198.937
5 2.138 6960.869 6960.869 1.003 18544.075 18544.075
7 3.294 11581.021 11581.021 2.559 25081.856 25081.856

n = 17 3 0.887 3864.780 3864.780 0.450 12732.243 12732.243
5 2.200 9622.528 9622.528 3.462 20941.679 20941.679
7 2.990 12486.476 12486.476 2.929 28029.860 28029.860

n = 19 3 3.213 6356.327 6356.327 2.914 14177.165 14177.165
5 2.704 10960.295 10960.295 2.215 22967.203 22967.203
7 2.244 9736.812 9736.812 3.544 30870.568 30870.568

n = 21 3 1.138 7775.415 7775.415 1.172 15619.549 15619.549
5 4.301 12314.367 12314.367 2.666 25077.977 25077.977
7 6.838 16459.280 16459.280 5.355 33463.904 33463.904

n = 23 3 3.045 6349.733 6349.733 1.887 17117.966 17117.966
5 2.518 9904.490 9904.490 3.723 27156.413 27156.413
7 7.139 14047.044 14047.044 9.62 36101.473 36101.473

n = 25 3 1.862 8470.457 8470.457 1.390 18564.017 18564.017
5 2.674 2799.373 2799.373 2.243 29352.424 29352.424
7 3.170 6126.508 6126.508 8.149 38686.014 38686.014
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means of z2 obtained by both methods and the same conclusion
has been made. Moreover, a paired samples t-test is designed to
determine if the mean CPU times are different. In this case, the
t-statistic based on (LMM mean = 2.08, LMM Std = 2.27, max–min
Mean = 2.21, max–min Std = 1.64) becomes 0.544 with a
p-value = 0.591 that shows no significant statistical difference. In
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Fig. 3. Values of z1 obtained by the two methods for three products.
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Fig. 4. Values of z1 obtained the methods for five products.
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Fig. 5. Values of z1 obtained by the methods for seven products.
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other words, the methods have the same required mean CPU time
statistically. In addition, the comparisons in terms of the objective
values and CPU times reveal that, increasing the number of
retailers, increases z1 and z2 and CPU times simultaneously.
Nevertheless, it can be seen that fair solutions that are obtained
by the LMM method provide better manufacturer and retailers’
benefits than the ones obtained by the max–min method.
6. Conclusion and future research

This paper proposed a bi-objective mathematical model for a
VMI supply chain problem with a single manufacturer and several
retailers. The formulation was shown to be a non-linear mathe-
matical model that would maximize both the manufacturer and
retailers’ profits. The application of the proposed model was spe-
cialized in a case with the Cobb–Douglas demand function. More-
over, a fair profit contract between the manufacturer and its
retailers was adopted. Our purpose of the fair profit contract was
based on the assumption that both the manufacturer and retailers
would contribute to determine their optimal decision variables in
order to maximize their benefits. Then, the bi-objective problem
was formulated as a lexicographic max–min problem in order to
find a fair non-dominated solution, a solution with all normalized
objectives as equal as possible. In addition, this paper discussed
how to replace the original lexicographic max–min problem with
the lexicographic maximum problem. Finally, the result obtained
using the lexicographic maximum problem was compared to the
one of the max–min method in terms of the objective functions
and the required CPU time. Based on some sensitivity analyses,
we showed that while both methods provide fair non-dominated
solutions for all cases, LMM provides better objective function val-
ues than the ones of the max–min method with almost equal CPU
times. This conclusion was made using paired samples t-tests to
compare equalities of the means of the objective functions and
CPU time. In other words, computational results showed that while
the two methods had no statistical significant difference in the
mean CPU time, the proposed method was superior to the max–
min method in terms of the two objective functions in 30 test
problems. For future work extensions, the followings are
recommended:

� Multi-period setting can be considered.
� Variation in the common replenishment cycle time can be

assumed.
� Competition among retailers can be modeled.
� A real-world application of the proposed approach is

recommended.
� It is worth utilizing simulation tools in the VMI problem with

regard to fair profit contract.
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