
Int. J. Production Economics 145 (2013) 547–560
Contents lists available at ScienceDirect
Int. J. Production Economics
0925-52
http://d

n Corr
E-m
journal homepage: www.elsevier.com/locate/ijpe
A genetic algorithm for two-dimensional bin packing with due dates

Julia A. Bennell a,n, Lai Soon Lee b, Chris N. Potts c

a School of Management, University of Southampton, Southampton SO17 1BJ, UK
b Department of Mathematics, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
c School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK
a r t i c l e i n f o

Article history:
Received 15 February 2012
Accepted 21 April 2013
Available online 2 May 2013

Keywords:
Cutting and packing
Two-dimensional bin packing
Due date
Scheduling
Genetic algorithms
73/$ - see front matter & 2013 Elsevier B.V. A
x.doi.org/10.1016/j.ijpe.2013.04.040

esponding author. Tel.: +44 2380595671.
ail address: J.A.Bennell@soton.ac.uk (J.A. Benn
a b s t r a c t

This paper considers a new variant of the two-dimensional bin packing problem where each rectangle is
assigned a due date and each bin has a fixed processing time. Hence the objective is not only to minimize
the number of bins, but also to minimize the maximum lateness of the rectangles. This problem is
motivated by the cutting of stock sheets and the potential increased efficiency that might be gained by
drawing on a larger pool of demand pieces by mixing orders, while also aiming to ensure a certain level
of customer service. We propose a genetic algorithm for searching the solution space, which uses a new
placement heuristic for decoding the gene based on the best fit heuristic designed for the strip packing
problems. The genetic algorithm employs an innovative crossover operator that considers several
different children from each pair of parents. Further, the dual objective is optimized hierarchically with
the primary objective periodically alternating between maximum lateness and number of bins. As a
result, the approach produces several non-dominated solutions with different trade-offs. Two further
approaches are implemented. One is based on a previous Unified Tabu Search, suitably modified to tackle
this revised problem. The other is randomized descent and serves as a benchmark for comparing the
results. Comprehensive computational results are presented, which show that the Unified Tabu Search
still works well in minimizing the bins, but the genetic algorithm performs slightly better. When also
considering maximum lateness, the genetic algorithm is considerably better.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Cutting and packing problems have been the subject of exten-
sive research over a number of years motivated by a wide range of
real world applications. A typology of the cutting and packing
literature can be found in Wäscher et al. (2007). This paper
focusses on two-dimensional packing in which rectangles of
specified dimensions are to be cut from identical stock sheets. It
is related to the “two-dimensional, rectangular single bin size, bin
packing problem”, which is known as 2DRSBSBPP in Wäscher et al.
(2007). For brevity, we use the term two-dimensional bin packing
problem, or 2DBPP, henceforth. However, rather than focussing
only on the packing problem alone, we also examine issues of
production planning and scheduling.

In a classic 2DBPP, time is not considered an issue, and it is
assumed that a rectangle can be allocated to any bin and the bins
can be processed in any order. This is acceptable provided all the
bins can be processed within a single production period. In this
paper, we consider the issue of supplying the rectangles in a
timely manner across multiple production periods, assuming that
ll rights reserved.

ell).
the capacity of the cutting process results in potential delays to the
times at which the rectangles become available to the customer.
More precisely, we assume that each stock sheet has a cutting
time, and that each rectangle has an associated due date that
specifies the time by which it should ideally be cut and available to
the customer. As a result, the goal in this problem is to minimize
the maximum lateness of the rectangles with respect to their due
dates (DD) while using as few stock sheets as possible. This
problem description captures the trade-off between using an ideal
cutting with small waste which may result in some rectangles
being delayed past their due dates, and using the due dates to
group the rectangles for cutting which may result in more stock
sheets being used than necessary.

There are few examples in the literature of implementations
that tackle both the packing problem and the production planning/
scheduling problem. These papers mainly focus on cutting-stock
problems and tend to separate the problem of determining the
cutting patterns and the scheduling of the parts. Gramani and
França (2006) examine a similar problem, which can be viewed as
one of the lot sizing, where pieces may be cut early and incur a
holding cost but are not permitted to be late. They use a network
shortest path model to generate a solution and deal with the
packing element by selecting from available patterns. Nonas and
Thorstenson (2000) also tackle the combined cutting-stock and

www.elsevier.com/locate/ijpe
www.elsevier.com/locate/ijpe
http://dx.doi.org/10.1016/j.ijpe.2013.04.040
http://dx.doi.org/10.1016/j.ijpe.2013.04.040
http://dx.doi.org/10.1016/j.ijpe.2013.04.040
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ijpe.2013.04.040&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ijpe.2013.04.040&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.ijpe.2013.04.040&domain=pdf
mailto:J.A.Bennell@soton.ac.uk
http://dx.doi.org/10.1016/j.ijpe.2013.04.040


J.A. Bennell et al. / Int. J. Production Economics 145 (2013) 547–560548
lot-sizing problem, and additionally include setup times. They
specifically look at steel parts for the production of trucks, which
involves cutting irregular shapes. Hendry et al. (1996) combine the
one-dimensional cutting-stock problem with production schedul-
ing in the copper industry. They implement a two-stage proce-
dure, where the first stage determines the number of logs to be
produced and how they should be cut to minimize trim loss. The
second stage determines a daily production schedule. Reinertsen
and Vossen (2010) also consider the one-dimensional cutting stock
problem with due dates where they seek to minimize tardiness.
They identify a number of industries where this problem is
important and assert that this combined problem is why manual
scheduling is still wide spread. Their integer programming for-
mulation considers production periods where the sequence of
patterns within each period is arbitrary. For glass cutting,
Puchinger et al. (2004) combine the optimization of the cutting
pattern with the scheduling of loading the wagons with the cut
pieces. Only three wagons are open at any one time and only
pieces intended for the same customer may be loaded onto the
same wagon. They implement two branch and bound approaches
for optimizing the strip and bin subproblems, and compare these
approaches with evolutionary algorithms. Arbib et al. (2012)
consider a similar problem. They use a tabu search implementa-
tion to minimize the number of stock sheets required to cut a
given set of pieces, while constraining the maximum number of
open stacks allowed by the downstream buffers. They test their
approach on the one dimensional stock cutting problem and claim
that their approach is valid for the two dimensional case. Zheng
et al. (2012) consider a cutting stock problem where the cutting
pattern significantly impacts the production process efficiency.
Large steel coils are cut into smaller rectangle pieces using
horizontal and vertical cuts, transferring between the direction
of cut has a significant overhead. Their heuristic seeks to maximize
the weighted sum of material usage and processing efficiency. Li
(1996) also considers a two-dimensional cutting stock problem for
the manufacture of laboratory table tops. The mixed integer
programming formulation assumes a finite set of known cutting
patterns and schedules the patterns in earliest due date
(EDD) order.

This paper proposes a genetic algorithm for solving the
problem of cutting rectangles that have due dates, with the goal
of minimizing the maximum lateness, while using as few bins as
possible (henceforth, we refer to bins rather than stock sheets).
We refer to this problem as the two-dimensional bin packing with
due dates (2DBPP with DD). One contribution of this paper is
addressing a problem that integrates the cutting and packing
aspect with scheduling, hence taking account of how they impact
on each other. For placing the rectangles in the bins, our genetic
algorithm uses an adaptation of the best fit heuristic of Burke et al.
(2004) for strip packing. This adaptation is our second contribu-
tion, where we show that the time complexity of Best Fit for Bin
(BFB) packing is Oðn2Þ, where n is the number of rectangles, and
compare its performance to recognized bin packing placement
heuristics. BFB is sufficiently fast to be used repeatedly within a
genetic algorithm, and is comparable in performance with existing
heuristics that are computationally more expensive. The third
contribution is an investigation into the use of a multicrossover
approach within the genetic algorithm for bin packing. The multi-
crossover operator generates several candidate offspring before
selecting two that are to be retained. Further investigation of this
technique and comprehensive computational results that show
the benefit of adopting the multicrossover approach which are
provided by Lee (2006).

The remainder of this paper is organized as follows. In Section 2,
we provide a formal description of the two-dimensional bin
packing problem with rectangle due dates, and derive a lower
bound on the maximum lateness. We review the relevant litera-
ture on two-dimensional bin packing in Section 3, including
heuristic placement routines and local search methods. Sections 4
and 5 describe our placement heuristic, called the Best Fit Bin and
the multicrossover genetic algorithm, respectively, for the 2DBPP
with DD. In Section 6, we describe two neighbourhood search
algorithms that are adapted from the Unified Tabu Search
approach of Lodi et al. (1999a, 1999b, 2004) which are used to
help benchmark the performance of our approach. We present
our comprehensive computational results in Section 7, and some
concluding remarks in Section 8.
2. Preliminaries

2.1. Problem definition

The problem we consider is most closely related to the non-
orientated, two-dimensional, rectangular single bin size, bin
packing problem. This problem can be defined as that of packing
n rectangles into identical bins, each with height H and width W.
Each rectangle j is defined by a width wj and a height hj, where
wj ≤W and hj ≤H, for j¼1,…,n. All rectangles must be packed so
that their edges are parallel to the edges of the bins, although any
rectangle j with wj ≤H and hj ≤W may be rotated by 901 before
being packed into a bin. In a feasible packing, no rectangles should
overlap with other rectangles, and all rectangles must be entirely
contained within the bin. The goal is to minimize the number of
bins used for the packing.

In our extended version of the problem, namely 2DBPP with
DD, each rectangle j has a due date dj, for j¼1,…,n, that defines the
time by which the cutting of rectangle j should ideally be
completed. Further, we assume that the cutting corresponding to
any bin takes a constant time P. Thus, each rectangle j assigned to
bin b has a completion time Cj ¼ bP. The goal in this problem is to
minimize the maximum lateness, Lmax. In order to calculate Lmax,
we first calculate the due date of each bin as follows.

Let B be the number of bins used, and Qb be the set of
rectangles packed in bin b, for b¼1,…,B. Then the bin due date of
bin b is defined by

δb ¼min
j∈Qb

dj: ð1Þ

We re-index the bins in a non-decreasing order of their bin due
dates, so that δ1 ≤⋯≤δB. Thus, the maximum lateness of the
rectangles packed is

Lmax ¼ max
b ¼ 1;…;B

fbP−δbg: ð2Þ

However, we view the problem as a bicriteria optimization
problem where the objective functions are to minimize the
maximum lateness of the rectangles, and to minimize the number
of bins used. The problem is NP-hard since the bin packing
problem is NP-hard (Garey and Johnson, 1979), even with a
common due date for all rectangles.

The motivation of this extension arises from the dilemma faced
in the industrial manufacturing applications which involved the
trade-off between the customers' satisfaction (meeting customers'
due date on the order placed) and the manufacturer's efficiency
(minimizing the wastage of material used).

When time is not considered as part of the packing problem,
rectangles would typically be grouped into batches according to
the date by which they must be cut followed by determining the
cutting patterns while respecting the order of the batches. It is
clear that in our approach by relaxing the due date constraint and
including it within the objective function, removes the need for
the initial grouping and allows the rectangles to be cut in any



J.A. Bennell et al. / Int. J. Production Economics 145 (2013) 547–560 549
order. Better packing arrangements may be found as a result of
being able to select from a wider variety of rectangles when
packing each bin. This clearly comes at the cost of potentially
missing customer deadlines. However, depending on the perceived
cost of disappointing a customer versus the cost of material, this
option may be desirable. Further, this problem extension is of
benefit when the capacity of the cutting process does not permit
all due dates to be met and the manufacturer wishes to improve
customer service by minimizing lateness.

The objectives of minimizing lateness and maximizing packing
efficiency do not necessarily conflict. If mixing customer orders
with different due dates provide better packing efficiency, which
results in a reduction in the number of bins needed, then some
orders are completed earlier (assuming a fixed bin processing
time), albeit to the detriment of other orders that are completed
later to facilitate the more efficient packing. Nevertheless, it is
often possible to achieve a gain in packing efficiency so that some
orders have a reduced lateness that more than compensates for
other orders experiencing an increase in lateness.

2.2. Lower bound

In this section, we derive a simple lower bound on the
maximum lateness for the 2DBPP with DD. The lower bound (for
the number of bins used in non-oriented 2DBPP) proposed by
Dell'Amico et al. (2002) is used in the derivation of this
lower bound.

We first sort the n rectangles in earliest due date (EDD) order,
so that d1 ≤⋯≤dn, and let Sj ¼ f1;…; jg denote the subset of j
rectangles with the smallest due dates. We compute a lower
bound on the maximum lateness for the subset of rectangles Sj,
which we denote by LBLmax ðSjÞ, for j¼1,…,n.

To compute LBLmax ðSjÞ, we first evaluate the lower bound of
Dell'Amico et al. (2002), which we denote by LBBinðSjÞ, on the
number of bins required to pack the rectangles of Sj. Thus, some
rectangle must complete at time LBBinðSjÞP or later, and therefore
has a lateness of at least LBLmax ðSjÞ¼LBBinðSjÞP−dj. Thus, our overall
lower bound on the maximum lateness of the rectangles is given
by

LBLmax ¼ max
j ¼ 1;…;n

LBLmax ðSjÞ ¼ max
j ¼ 1;…;n

fLBBinðSjÞP−djg: ð3Þ
3. Literature

Our review of the literature largely focusses on placement
heuristics and local search methods for the two-dimensional bin
packing problem. We exclude exact enumerative approaches and
the worst-case analysis of approximation algorithms since such
studies are not directly relevant to our work. Also, excellent and
comprehensive reviews are provided by Dowsland and Dowsland
(1992), Dyckhoff and Finke (1992), Lodi et al. (2002a, 2002b),
and Hopper and Turton (2001a). Here we will discuss two key
aspects of the bin packing literature: heuristic placement routines
and local search approaches.

3.1. Heuristic placement routines

Classical placement heuristics work on levels, where the first
level is at the bottom of the bin packed from left to right, and a
new level is started at the top of the highest rectangle packed at
the current level. Coffman et al. (1984) suggest three strategies;
next-fit: pack the next rectangle on the current level if it fits,
otherwise closing the level and packing on a new level; first-fit:
pack the next rectangle on the first level where it fits, opening a
new level when required; best-fit: pack the next rectangle on the
level where it leaves minimum remaining horizontal space, opening a
new level when required.

These level heuristics can be used for bin packing in two ways:
either directly packing levels into a number of finite bins (one-
phase), or packing levels onto a single bin of unbounded height (a
strip) and then dividing the strip into finite bins (two-phase). The
second strategy transforms the strip into a one-dimensional bin
packing problem thereby allowing various classical heuristics to be
applied.

Berkey and Wang (1987) compare the performance of the one-
and two-phase approaches. For the level packing strategies, they
implement next-fit and first-fit one-phase approaches, and first-fit
and best-fit two-phase approaches. In all cases, the pieces are
sorted in non-increasing height order. A comparison of the one-
and two-phase versions of first-fit shows that the two-phase
approach performs marginally better.

Lodi et al. (1999b) modify the level packing heuristics for both
one- and two-phase approaches. For one-phase approach, instead
of starting the next level on the left they alternate between left
and right. Since the rectangles are ordered according to non-
increasing height, this method of creating levels allows them to
place the rectangles as low as possible. For the two-phase
approach, referred to as Floor-Ceiling (FC) each level has a floor
and ceiling defined by the bottom and top edge of the tallest
rectangle packed on the level. Rectangles are then placed accord-
ing to the priority list: (a) place on floor; (b) place on ceiling; and
(c) open new level.

In the same study, Lodi et al. (1999b) describe a third approach
called Touching Perimeter (TP). First LBBin bins are opened where
LBBin is a lower bound. Each feasible packing position for the next
rectangle is evaluated and the one with the largest percentage of
the rectangle perimeter which touches either the bin or other
rectangles is selected. If no feasible positions exist, then a new bin
is opened. These three approaches are compared to the one-phase
first-fit and two-phase best-fit methods of Berkey and Wang
(1987). In most cases, all three routines outperform those of
Berkey and Wang, with Touching Perimeter performing the best.

Bottom-Left (BL), introduced by Baker et al. (1980) and Jakobs
(1996), is one of the best known placement heuristics across many
different two-dimensional packing problem variants. The basic
idea is to start from the top right corner of the bin, with each
rectangle making successive moves of sliding as far as possible
downwards and then as far as possible to the left until the
rectangle is placed in a stable position. Liu and Teng (1999) modify
this approach to generate the improved Bottom-Left approach.
Instead of moving the rectangle the complete distance to the left,
it moves the rectangle along the partial layout by giving down-
ward movement priority. Bottom-Left Fill (BLF) proposed by
Chazelle (1983) places rectangles by searching a list of location
points that indicate potential positions where rectangles may be
placed. Since the partial layout is based on the allocation of the
lowest sufficiently large area, rather than on a series of bottom left
moves, it is capable of filling existing gaps in the packing pattern.
Compared to BL and improved BL, this method produces a denser
packing. Finally, Best Fit (BF) by Burke et al. (2004) explicitly aims
the fill the lowest gap in the layout prioritizing the tightest fit.
Section 4 provides more details of the BF approach.
3.2. Local search methods

Local search methods provide a natural approach for instances
where exact methods cannot solve the problem using reasonable
computational resources. Genetic algorithms and tabu search
appear to be the two most popular choices of local search
techniques.



xrx3 Wxr-1x4 …x2x1

y4
y3

y2
y1

yr –1
yr

H

Fig. 1. Example of a profile defined by the coordinate system.

J.A. Bennell et al. / Int. J. Production Economics 145 (2013) 547–560550
A common feature found in most genetic algorithms (GAs)
developed for the 2DBPP is the use of the GA in combination with
a heuristic placement routine. In the resulting two-stage approach,
the GA manipulates the encoded solutions, which are then
evaluated by a decoding algorithm that transforms a sequence of
rectangles to be packed into the corresponding physical layout.
The first researcher to use this approach was Smith (1985). He
applies a GA to a two-dimensional rectangular packing problem
with fixed orientation. The objective of his GA is to place as many
rectangles as possible into a single rectangular bin. He uses
permutations of rectangles to encode the solutions. Thus, the
original problem becomes a sequencing problem, and heuristics
are used to transform permutations into packing schemes. Com-
putational results show that his GA can produce the same packing
density 300 times faster than a dynamic program.

Jakobs' (1996) implementation for the strip packing problem
uses a permutation chromosome that represents the packing
sequence of the pieces, which is decoded using the BL placement
heuristic. Crossover creates the first part of the child chromosome
by replicating a portion of one parent chromosome, identified by a
starting point and number of genes, and completes the chromo-
some by inserting the unrepresented genes in the order they
appear in the second parent. Leung et al. (2001) use the same idea
to tackle the cutting stock problem. They try a second placement
heuristic called difference procedure and compare with a simu-
lated annealing (SA) implementation. Their findings favor GAs.
They make further developments of their GA in Leung et al. (2003)
where the replacement strategy uses SA acceptance criteria to
determine whether the child chromosome will enter the popula-
tion, with the aim of avoiding premature convergence. Results
show that this strategy only improved performance over a large
number of generations.

Similar permutation representations are used by Hwang et al.
(1994) and Hopper and Turton (1999) in their GA. However, they
implement different decoding placement heuristics. Hopper and
Turton (2001b) also compare a GA with simulated annealing (SA),
naïve evolution (NE), hill climbing, and random search. Their
computational results show that when BLF is used to decode the
solution, GA, SA, and NE give similar quality solutions.

Lodi et al. (1999a, 1999b, 2004) develop a Unified Tabu Search
(UTS) code for multi-dimensional bin packing problems. Their
algorithmworks directly with the constructed solution rather than
with a representation. A target bin is identified, and at each
iteration the algorithm attempts to move a rectangle j out of the
target bin. There are two possible neighbourhood moves, with the
first attempting to directly pack j into a different bin, and the
second attempting to recombine the rectangles of two different
bins so that one of them can accommodate j.

There are many interesting examples of GA implementations
for other types of two-dimensional rectangular packing problems.
Kroger (1995) included guillotine constraints directly in the
encoding of the chromosome. The author describes a slicing tree
representation of a guillotine layout where the leaf nodes are the
pieces and the other nodes define the guillotine cuts, either
horizontal or vertical. The chromosome replicates the slicing tree
depth first, listing the hierarchy of cuts and pieces, backtracking
once a leaf node is reached. Crossover and mutation operate on
subtrees in the chromosome. Beasley (2004) and Gonçalves and
Resende (2011) both look at output maximization problems. In
both cases their chromosomes have two parts. In the case of
Beasley (2004), the first part is a binary encoding and identifies
whether a piece is placed or not, the second part is the co-ordinate
position of the piece in the layout. Infeasibility is permitted and
penalized in the fitness function. Gonçalves and Resende (2011)
adopt the packing sequence strategy represented in the first part
of the chromosome, which is decoded by a sequence of placement
rules, held in the second part of the chromosome. Rather than
directly working on a permutation, they use a random key
encoding that ensures that any crossover is feasible.
4. Best Fit Bin

As in previous genetic algorithm implementations, we will use
a placement heuristic to decode the gene. We adopt the BF
heuristic placement routine developed by Burke et al. (2004).
Since this heuristic was designed for the strip packing problem
and we are solving the bin packing problem, we have made some
adaptations. We call the placement heuristic Best Fit Bin (BFB).

BF aims to fill the available gaps in the partial layout by
dynamically selecting the best rectangle for placement during
the packing stage. Unlike the Bottom-Left (BL) and BLF approaches
that place the rectangles based on the sequence of rectangles
supplied, BF makes informed decisions about which rectangle to
pack next and where it should be placed. Extensive computational
results of Burke et al. (2004) indicate that high-quality packings
are generated by BF.

Based on the ideas in BF, we propose the BFB placement routine
for the two-dimensional bin packing problem. This placement
routine consists of two stages: preprocessing stage and packing
stage. As in BF, the preprocessing stage arranges each rectangle in
a horizontal orientation where its longest edge is parallel to the
bottom of the bin, and sorts the rectangles in non-increasing order
of their width (breaking ties by non-increasing height). The
packing stage follows the same principle as BF for identifying
the lowest gap where a piece might be placed. BF also includes a
postprocessing phase that is not appropriate for the BPP.

Unlike the BL and BLF approaches, BFB packs the bins one at a
time, closing the current bin and initializing a new bin whenever
none of the remaining rectangles will fit within any of the
available gaps in the current bin. The packing stage employs a
best-fit type strategy by examining the lowest available gap in the
current bin and then placing the rectangle that best fits the gap
available. This placement routine not only keeps track of the free
positions in the layout, but also of the dimensions of the available
gap at the respective positions.

We use a coordinate system to describe the profile of available
gaps in the current bin (Burke et al., 2009). The bottom left of the
bin has a coordinate (0,0) and the top right of the bin has a
coordinate (W,H). Let ðx1; y1Þ;…; ðxr ; yrÞ be coordinates which
define the profile of packed and wasted space and potentially
usable space, where 0¼ x1o⋯oxroW and 0≤yq ≤H for q¼1,…,r.
Specifically, the profile is defined by lines joining the points ðx1; y1Þ
and ðx2; y1Þ, ðx2; y2Þ and ðx3; y2Þ;…; ðxr−1; yr−1Þ and ðxr ; yr−1Þ, and
ðxr ; yrÞ and ðW ; yrÞ. An example of the coordinate system is illustrated
in Fig. 1. All space in the bin below these lines is either packed with



J.A. Bennell et al. / Int. J. Production Economics 145 (2013) 547–560 551
rectangles or is wasted space because the rectangles are too large to fit,
while the space above the lines is available to be used for further
packing.

Using the profile, the value yq ¼minp ¼ 1;…;ryp defines the low-
est gap, and we can compute its width as gw ¼ xqþ1−xq, where
xrþ1 ¼W , and its height as gh ¼H−yq. For a rectangle j with wj ≤gw
and hj ≤gh, its fill is defined by fj¼wj. Similarly, by considering a
rotation of rectangle j, if hj ≤gwowj and wj ≤gh, its fill is fj¼hj. The
Best Fit Bin strategy selects a candidate rectangle j with the largest
fj, breaking ties by selecting a rectangle with the largest area. If
there are no candidates for the gap, a dummy rectangle corre-
sponding to wasted space is inserted into the gap.

A formal description of Algorithm BFB is given below.

Algorithm BFB.
Step 1.
 Orient the rectangles so that wi≥hi, and index so that
w1≥⋯≥wn, and hi≥hiþ1 if wi ¼wiþ1 for i¼ 1;…;n−1.
Step 2.
 Initialize a bin and assign the first rectangle, j, in the list to
that bin. Define the profile: ðx1; y1Þ ¼ ð0;hjÞ. If wjoW , then
ðx2; y2Þ ¼ ðwj;0Þ.
Remove j from the list of rectangles.
Step 3.
 Choose the smallest index q such that yq ¼minp ¼ 1;…;ryp.

�
 If yq ¼H, then close the current bin and go to Step 2.

�
 Otherwise, compute the gap width gw and the gap height
gh.
Step 4.
 Scan the list of rectangle to find the best fit.

�
 For the current rectangle i, set fi¼0 if wi4maxfgw; ghg or if
hi4minfgw; ghg and then proceed to the next rectangle.
�
 If wi4gw, then set fi¼hi; otherwise, set fi¼wi
�
 If all rectangles are scanned and maxif i ¼ 0, go to Step 6;
otherwise, choose j such that f j ¼maxif i (breaking ties by
area), and go to Step 5.
Step 5. If wj4gw, then interchange wj and hj to change the
orientation of rectangle j.
Place rectangle j with its bottom left corner at the
coordinate ðxq; yqÞ.
Remove j from the list of rectangles, Go to Step 7.

Step 6. Create a dummy rectangle 0 with width w0 ¼ gw, and
height given by the minimum height of the adjacent
rectangles, or the remaining height of the bin when
gw ¼W .
Insert waste by placing rectangle 0 with its bottom left
corner at the coordinate ðxq; yqÞ, and go to Step 7.

Step 7. Update the profile.
If not all rectangles are packed, go to Step 3; otherwise
terminate.

Step 1 is a preprocessing step that facilitates efficient subse-
quent searches for a rectangle with the largest fill. Step 2 initiates a
new bin, and places the first rectangle on the list in the bottom left
of the bin in accordance with the Best Fit Bin strategy. The lowest
gap is identified in Step 3, and its width and height are computed.
Step 4 executes the search for a candidate rectangle j with the
largest fj. Since the rectangles are searched in list order, a key
observation is that when a rectangle fits within the gap without
reorientation, then the search stops, since any other rectangle
cannot produce a larger fill (or the same fill and have a larger
area). When there is a candidate rectangle that can only be placed
by reorienting it, then it is worthwhile for the search to continue.
Any rectangle that exactly fills the gap is immediately placed. On
finding a rectangle that fits within the gap without reorientation,
the search can stop and the rectangle with the higher fill is
immediately placed. Step 5 is executed when a suitable candidate
rectangle for the gap is found. On the other hand, when there is no
candidate, Step 6 creates a dummy rectangle that corresponds to
wasted space. Finally, Step 7 updates the profile that results from
placing the candidate rectangle j or the dummy rectangle.

We now analyze the time complexity of Algorithm BFB.

Theorem 1. Algorithm BFB requires Oðn2Þ time.

Proof. Step 1 of Algorithm BFB requires Oðnlog nÞ time to orient
and order the rectangles. To analyze the remaining steps, suppose
that the final packing uses B bins to pack all of the rectangles,
where B≤n, and thatmb rectangles are packed into bin b, for b¼1,…,B,
where ∑B

b ¼ 1mb ¼ n. Step 2 is executed B times and therefore requires
O(n) time.
Next we analyze how many times Step 3 is executed. Note that

packing a gap with an actual rectangle adds at most one coordi-
nate to the profile, while packing a gap with a dummy rectangle
removes at least one coordinate from the profile. Therefore, for bin b in
which mb actual rectangles are packed, there are at most mb þ 1
dummy rectangles. Since the first rectangle of a bin is placed
immediately in Step 2, it follows that Step 3, and consequently Steps
4, 5, 6 and 7 are executed at most 2mb times for bin b, and at most 2n
times in total. Further, Steps 3 and 4 require at most O(n) time per
execution, while Steps 5, 6 and 7 require constant time per execution.
Thus, Steps 3 through 7 require Oðn2Þ time overall.
Combining the above, we obtain a time complexity of Oðn2Þ for

Algorithm BFB. □
5. Multicrossover genetic algorithms

In this section, we describe our proposed genetic algorithm
(GA) implementation. For a comprehensive discussion of GAs see
Goldberg (1989). A key feature of our approach is that we apply
the crossover multiple times to each set of parents in order to
optimize the quality of the child chromosomes. We call this
approach as the multicrossover genetic algorithm (MXGA). Exam-
ples of this approach can be found in the computer science
literature. Esquivel et al. (1997) present an empirical investigation
of generating up to six offspring from two parent solutions. All
offspring enter the next generation. Herrera et al. (2002) investi-
gate a much larger number of offspring per mating pair and select
the best two for the next generation. Both papers use benchmark
test functions and both reports improved performance with the
multiple crossover GA along with diminishing returns for increas-
ing the number of offspring. The general framework of the MXGA
is explained below with specific reference to the 2DBPP. A more
detailed discussion of this approach is given by Lee (2006)
5.1. Representation

In our proposed MXGA, each chromosome is of length n and
corresponds to the rectangles. The genes are integers from the set
f1;…; LBBing with each gene indicating the bin into which the
corresponding rectangle is to be packed, where LBBin is the lower
bound of Dell'Amico et al. (2002). A solution to the packing
problem is therefore represented by a sequence of positive
integers indicating the bin numbers for the rectangles, where
the exact location in the layout is then determined by applying our
decoding scheme that utilizes BFB as described in Section 4.

Fig. 2 shows an example of the gene representation for an
individual, defining an attempt to pack 8 rectangles into 3 bins
(n¼8 and LBBin ¼ 3). An attempt is made to pack rectangles {3,5,7}
into bin 1, rectangles {1,4} into bin 2, and rectangles {2,6,8} into
bin 3. Any rectangle that cannot be feasibly packed into their
assigned bins is dealt with a repack strategy to be explained later.



1 2 3 4 5 6 7 8

2 3 1 2 1 3 1 3

item’s no.

bin’s no.

Fig. 2. An example of an individual (chromosome)

J.A. Bennell et al. / Int. J. Production Economics 145 (2013) 547–560552
5.2. Decoding

The BFB Algorithm for placing the rectangles is used to decode
the genotype of an individual into a phenotype (packing layout).
BFB produces a valid packing, but there may be rectangles that
remain unpacked.

During the process of packing the rectangles into a bin, any
rectangle that cannot be feasibly packed will be regarded as an
unassigned rectangle and kept in a list. After BFB has been applied
to all of the bins 1;…; LBBin, a repack strategy is employed to pack
any rectangles in the unassigned rectangle list into the bins
already used or into new bins, so all rectangles are feasibly packed.
After repacking, the genotype of the individual is updated so that
it corresponds to the new packing layout.

The utilization of a bin is defined as the total area of rectangles
packed into the bin divided by the total area WH of the bin. We
now present our repacking algorithm.

Algorithm Repack.
Step1.
 Form a list of bins ordered in non-decreasing order of
utilization.
Form a list of the unassigned rectangles ordered in non-
increasing area.
Step2.
 Consider the next bin in the list.

Step3.
 Attempt to repack the selected bin using Algorithm BFB

considering all of its rectangles plus the next rectangle in
the unassigned list. Any rectangle not packed becomes
unassigned at this stage. Compute the new bin utilization.
(a) If the bin utilization has increased, accept the new

packing layout and update the unassigned rectangle
list. If the unassigned rectangle list is empty, then stop;
otherwise, go to Step 1.

(b) Otherwise, the new packing layout is rejected.
� If not all rectangles are considered, then proceed to
the next rectangle.

� If all rectangles in the unassigned list are considered
and the selected bin is not last, then go to Step 2.

� If all rectangles in the unassigned list are considered
and the selected bin is last, then go to Step 4.
Step4.
 Pack any unassigned rectangle in the list into one or more
new bins using Algorithm BFB until all rectangles are
packed.
5.3. Initial population

The initial population is generated by randomly choosing each
gene from the set f1;…;LBBing, where LBBin is the lower bound of
Dell'Amico et al. (2002). The population size remains constant
throughout the algorithm.

5.4. Selection mechanism

We use a probabilistic binary tournament selection scheme as
the selection mechanism of each parent in the MXGA. As the name
suggests, two individuals are chosen at random from the popula-
tion, and then a random number r is generated from the uniform
distribution defined on the interval ½0;1�. If ros, where s is a
parameter, the fitter of the two individuals is selected to be the
parent; otherwise, the less fit individual is selected. The two
individuals are then returned to the original population and can
be selected again.

5.5. Multicrossover operator

The multicrossover operator in MXGA has the simple 1-point or
2-point crossover at its core. Instead of performing a single 1-point
or 2-point crossover with each pair of parents, the crossover
process is repeated t times, to produce 2t temporary offspring.
Each offspring is then decoded using BFB. In order to reduce
computational time in this stage, the unallocated list of rectangles
are packed into new bins rather than using the more expensive
Repack procedure. Two temporary offspring are selected; the best
and one other chosen through a probabilistic binary tournament.
Note that the crossover operator is only applied to the selected
parents with a given crossover probability pc. When crossover is
not applied, we apply the swap operation that is described below.

5.6. Swap operator

The use of a crossover probability pc dictates that multicross-
over may not be applied to the selected parents. Since we use an
elitist replacement strategy where all parents and children com-
pete for a place in the next generation, there is no value in making
an exact duplicate of the parents. As a result, a new operator called
swap is used in the MXGA to produce two offspring that are
different from their parents. By doing this, we introduce more
diversity to the search space. The basic step of this operator is to
randomly select a swap point in a parent, and then swap the
substrings separated by the swap point to form an offspring.

5.7. Mutation operator

We apply the mutation operator in the MXGA in two stages.
First, a subset of individuals is selected from the new offspring
population with a given individual mutation probability pM. Then
each gene in the selected offspring is considered in turn, and the
bin number is randomly changed to an element of the set
f1;…;LBBing according to the gene mutation probability pm.

5.8. Fitness evaluation

As described earlier, our problem has two objectives: minimiz-
ing number of bins used to pack the complete set of rectangles,
and minimizing the maximum lateness. Next, we discuss each
objective separately.

The number of bins used to pack the complete set of rectangles
is straightforward. However, by itself minimizing this value is not
sufficient to guide the search process since a large number of
solutions use the same total number of bins but may be of very
different quality with respect to the evolution of the search. This
suggests the use of a secondary fitness function to break ties.
Based on the observation that the quality of a packing pattern can
also be evaluated by the utilization of the bin, Falkenauer and
Delchambre (1992) suggest a fitness function: F ¼∑B

b ¼ 1U
v
b=B,

where B is the total number of bins used, Ub is the utilization of
bin b for b¼1,…,B, and v is a parameter with value v41. They
experimented with several values for v and suggest that v¼2 is an
appropriate value. The exponent means that a combination of high
and low utilization bins is preferred to evenly distributed utiliza-
tion. Since we are seeking to minimize the number of bins, and so
need to empty existing bins, this fitness function is useful. In order
to give greater preference to a single weak bin, we modify the
(secondary) fitness function by first re-indexing the bins so that
U1≥⋯≥UB, and then computing the fitness in the same way as
Falkenauer and Delchambre (1992), while ignoring the last bin.



J.A. Bennell et al. / Int. J. Production Economics 145 (2013) 547–560 553
For the maximum lateness objective function, recall that the
maximum lateness is computed using (1) and (2). We use the
value of Lmax as our fitness function for the maximum lateness
objective.

In order to deal with the two objectives defined for the 2DBPP
with DD, we use the lexicographical ordering approach and use
both possible orderings. Lexicographic preferences give an ordered
value of each objective. The search will seek to optimize the
objective function appearing first, and then the objective function
appearing second is optimized subject to the additional constraint
that the solution value of the first objective does not deteriorate.
Lexicographic ordering of objectives where preferences can be
articulated prior to the optimization is a well known approach
(Evans, 1984). Since we do not have a known preference we
alternate between the two possible orderings: minimize the
maximum lateness of the rectangles and then the number of bins
(ideal for customers' satisfaction), minimize the number of bins
and then the maximum lateness (ideal for manufacturer's effi-
ciency). Every G generations we exchange the order of the
objectives and continue the search keeping track of all the non-
dominated solutions. In most cases this will include a solution that
has the lowest Lmax for each value of B between the smallest B
found and the value of B for the solution with lowest Lmax. With
this approach we aim to find good solutions that represent the
trade-off between the customers' satisfaction and manufacturer's
efficiency.
5.9. Replacement and filtration strategies

Our proposed MXGA uses the elitism replacement scheme
whereby the offspring have to compete with their parents to gain
admission to the new population. In the elitism replacement stage,
combine both parent and offspring population into a single
population of size 2npop, which are sorted in a non-increasing
order of their associated fitness. Select the first half for the next
generation. Since we alternate between different fitness functions
every G iterations, we also store the best solutions found for each
objective so far in a separate archive.

After npop individuals have been selected, a process called
filtration is used to identify the identical individuals from the
new population. Any duplicate individuals are removed and
replaced by uniformly randomly generated new individuals to
avoid premature convergence and to add diversity to the new
population. Because of the computational cost of the filtration
procedure, we invoke this procedure every R generations.
6. Neighbourhood search algorithms

Since we are tackling a new variant of the 2DBPP, it is useful to
develop competing algorithms to act as a benchmark to evaluate
MXGA. This section describes two competitors, one based on the
Unified Tabu Search (UTS) of Lodi et al. (1999a, 1999b, 2004), and a
Randomized Descent Method (RDM) that adopts many of the
features of the UTS. Modifying the UTS approach to include due
dates is a natural choice for a tabu search algorithm since UTS
generates some of the best solutions for the 2DBPP. For more
details about the framework of UTS, we refer to Lodi et al. (1999a,
1999b, 2002a, 2004). For the 2DBPP with DD, we alternate the
objective functions (as discussed in Section 5.8) every I iterations,
and employ first improve strategy for RDM. Two neighbourhoods
are used depending on which objective function is currently under
consideration.
6.1. Unified Tabu Search

The Unified Tabu Search (UTS) algorithm of Lodi et al. (1999a,
1999b, 2004), which we refer to as UTSTP, uses TP as a heuristic
placement routine. In order to make a clear comparison between
UTS and MXGA, our version of UTS uses the BFB placement
method, and is denoted by UTSBFB. We describe below the two
alternative versions of UTSBFB depending on whether the main
objective is to minimize the number of bins or the maximum
lateness. In both versions we attempt to follow the methodology
of Lodi et al. (1999b) as closely as possible.

We first describe the version of UTSBFB for minimizing the
number of bins. For a given solution, the search identifies a target
with the aim of emptying this bin. The target bin is selected
according to the number and value of the rectangles it contains,
which is quantified by a filling function. The neighbourhood is
defined by the removal of a rectangle j contained in the target bin,
and the repacking of j together with contents of k other bins. More
precisely, k bins are emptied and the removed rectangles along
with j are repacked. The neighbourhood considers each rectangle j
in the target bin and each k-tuple of bins. There are k tabu lists,
one for each neighbourhood size.

The value of k varies dynamically as the algorithm progresses.
When rectangle j is successfully moved and the total number of
bins is reduced, the value of k is decreased by one. If the number of
bins remains the same, then the move is only accepted, and k
reduced, if the move is non-tabu; otherwise, the move is assigned
a penalty of infinity. Finally, if the move increases the number of
bins (i.e. to kþ 1), then a subproblem is solved to determine
whether the move is rejected. The subproblem involves identify-
ing a new target bin out of the kþ 1 bins, emptying this bin, and
repacking the rectangles along with rectangle j. If these rectangles
fit into a single bin, then the penalty is the minimum filling
function value of the kþ 1 bins; otherwise, the penalty is infinity.
Once the entire neighbourhood for the target bin has been
searched, the move with the minimum finite penalty is accepted
with k remaining unchanged. If there is no move with a penalty
less than infinity, then k is increased by one. An upper limit is set
for k, and if this limit is reached, then diversification moves are
performed. Each neighbourhood size has a tabu list where the
minimum penalty for the last τ neighbourhoods are stored, thus
preventing cycling. We have implemented this algorithm using
BFB for placing the rectangles in the bins, an upper limit of 3 for k,
and τ¼ 3.

We now turn our attention to the version of UTSBFB that is
designed for the objective of minimizing the maximum lateness.
Only relatively minor modifications are needed to deal with the
alternative objective function. The maximum lateness of the
current solution is found, as usual, by using Eq. (1), renumbering,
and applying Eq. (2). Then, we define the target bin to be a bin
containing a rectangle with the maximum lateness.

The moves attempt to remove the rectangle(s) with the
smallest due date from the target bin in the same way as the
original UTS. However, in this case our objective is to minimize the
maximum lateness. A potential move is one in which the rectan-
gles from the k selected bins, plus the rectangle from the target bin
are repacked. The resulting solution is accepted if: (i) the max-
imum lateness over all bins is decreased, or (ii) the number of bins
used does not exceed the current solution value while maintaining
the maximum lateness value. Note that we allow the number of
bins used to increase if it results in a decrease in the maximum
lateness.

As in the original procedure, the value of k is updated during
the execution of the algorithm. When either (i) or (ii) is applied,
the move is immediately performed, and k is reduced by one. If the
neighbourhood has been completely searched without finding a



Table 1
Data types for the problem instances (Lodi et al., 1999b).

Data class Bin (W�H) Item (wj and hj)

I 10�10 uniformly random in [1,10]
II 30�30 uniformly random in [1,10]
III 40�40 uniformly random in [1,35]
IV 100�100 uniformly random in [1,35]
V 100�100 uniformly random in[1,100]
VI 300�300 uniformly random in [1,100]
VII 100�100 Type 1 with probability 70%,

Type 2, 3, 4 with probability 10% each
VIII 100�100 Type 2 with probability 70%,

Type 1, 3, 4 with probability 10% each
IX 100�100 Type 3 with probability 70%,

Type 1, 2, 4 with probability 10% each
X 100�100 Type 4 with probability 70%,

Type 1, 2, 3 with probability 10% each

J.A. Bennell et al. / Int. J. Production Economics 145 (2013) 547–560554
move that is accepted, then k is increased by one unless an upper
limit is reached. In the latter case when k reaches the upper limit, a
diversification procedure is performed. When neither (i) nor (ii)
apply, a penalty is associated with the move. The penalty is infinity
if the move is tabu, or if the maximum lateness value obtained
from the new packing is higher than the current solution. If the
search of the neighbourhood is completed without detecting cases
(i) and (ii), then a move having the minimum finite penalty (if any)
is performed. As for the original UTS, there is a tabu list and a tabu
tenure for each value of k. Each list stores the penalty values
corresponding to the previous moves performed.

6.2. Randomized Descent Method

The Randomized Descent Method (RDM) that we implement
uses the same neighbourhoods and diversification procedure as
those in UTS. The main difference lies in the removal of the tabu
list and an alternative acceptance rule. When the objective is to
minimize the number of bins, if the target bin is emptied then this
is an improving move and is accepted. If the move fails to empty
the bin, even if some items are removed, this is a neutral move. If
the number of bins is increased then this is a deteriorating move
and rejected. In the case of minimizing the maximum lateness,
only the rectangles with the smallest due dates must be removed
and repacked elsewhere. A decrease in maximum lateness is an
improving move and accepted, even if the number of bins is
increased, the same maximum lateness while maintaining the
number of bins is a neutral move, otherwise it is a deteriorating
move and rejected. As the search progresses, emptying an entire
bin, or moving the maximum lateness item to a bin that is then re-
ordered by the EDD rule to improve the lateness becomes quite
challenging. We found that there are many neutral moves forming
plateaux areas in the solution space. Hence the acceptance rule in
RDM allows up to 1000 neutral moves for consecutive iterations
before terminating the algorithm. When there are multiple iden-
tical neutral moves found during the neighbourhood search
procedure in a single iteration, we randomly select one of these
moves. Consequently, the procedure can negotiate these plateaux.
Note that deteriorating moves are automatically rejected, rather
than solving the subproblem involving assigning penalties as
in UTS.
7. Computational experience

In this section, we explain the experimental design used in the
evaluation of our algorithms, and present and discuss the results
of our computational experiments. The first set of experiments
compares BFB with some well-known heuristic placement rou-
tines, namely BLF, Touching Perimeter (TP) and Floor-Ceiling (FC).
We then compare our proposed MXGA with a Single Crossover
Genetic Algorithm (SGA) that is identical to MXGA except for the
crossover, UTS and RDM for the standard 2DBPP, and also for the
2DBPP with rectangle due dates.

7.1. Experimental design

The algorithms are coded in ANSI-C using Microsoft Visual C++
6.0 as the compiler, and run on a Pentium 4, 2.0 GHz computer
with 2.0 GB RAM. We consider ten different classes of problem
instances that have formed the basis for comparing algorithms in
previous studies reported in the literature. These classes are listed
in Table 1. The first six classes (I–VI) are introduced by Berkey and
Wang (1987), while the other four classes (VII–X) are introduced
by Martello and Vigo (1998) and are based on the following types
of rectangles that are defined in terms of the width W and height
H of the bins.
Type 1:
 wj uniformly random in ½23W ;W �; hj uniformly random in
½1; 12H�
Type 2:
 wj uniformly random in ½1; 12W �; hj uniformly random in
½23H;H�
Type 3:
 wj uniformly random in ½12W ;W �; hj uniformly random in
½12H;H�
Type 4:
 wj uniformly random in ½1; 12W �; hj uniformly random in
½1; 12H�.
For each class, the five values n¼20, 40, 60, 80, 100 are
considered. Also, for each combination of class and value of n, 10
problem instances are generated. The problem instances are
provided by Lodi et al. (1999b) and are publicly available (www.
or.deis.unibo.it/research.html)

In order to evaluate the algorithms' performance, we use the
lower bound LBBin proposed by Dell'Amico et al. (2002) for the
number of bins, and the lower bound LBLmax derived in Section 2.2
for the maximum lateness, where the bin processing time is
P¼100. A lower bound on the completion time of the last bin is
given by PLBBin. For each problem instance (assuming LBBin41),
we generate three sets of integer due dates from the uniform
distribution of ½101; βPLBBin�, where β∈f0:6;0:8;1:0g. We label each
set of due date class as Class A for β¼ 0:6, Class B for β¼ 0:8 and
Class C for β¼ 1:0.

We compare the performance of the various heuristic place-
ment routines and local search algorithms on the basis of the
Relative Percentage Deviation for Bins, Mean Squared Utilization
of the bins, the Relative Percentage Deviation for maximum
Lateness, defined by

RPD : B¼ 100ðUBBin−LBBinÞ
LBBin

; ð4Þ

MSU¼
∑UBBin

j ¼ 1 U
2
j

UBBin
; ð5Þ

RPD : L¼ 100ðUBLmax−LBLmax Þ
LBLmax

; ð6Þ

where UBBin and UBLmax represent the heuristic solutions found for
the number of bins used and the maximum lateness, respectively,
and LBBin and LBLmax are the lower bounds. The use of squared
utilization as a performance measure in (5) is consistent with its
use within our fitness function. The tables of results provided
below report the average of the 10 instances generated for each
due date class and each value of n.

www.or.deis.unibo.it/
www.or.deis.unibo.it/


Table 2
Values of average RPD:B for placement heuristics.

Data n Placement heuristic

Class BLF BFB FC TP

I 20 9 3 6 5
40 12 4 8 6
60 13 5 9 5
80 15 6 9 6
100 12 4 7 3

All 12 4 8 5

II 20 0 0 0 0
40 10 10 10 10
60 10 5 5 0
80 7 7 3 7
100 6 3 3 0

All 7 5 4 3

III 20 20 6 18 6
40 22 13 16 11
60 26 10 19 11
80 27 10 15 10
100 23 8 13 8

All 24 9 16 9

IV 20 0 0 0 0
40 0 0 0 0
60 10 15 10 10
80 10 10 10 7
100 13 7 7 3

All 7 6 5 4

V 20 15 9 8 6
40 18 10 10 11
60 16 9 11 8
80 17 9 11 8
100 16 8 10 8

All 16 9 10 8

VI 20 0 0 0 0
40 40 40 40 40
60 10 5 5 5
80 0 0 0 0
100 13 7 7 7

All 13 10 10 10

VII 20 22 19 19 13
40 20 12 17 10
60 20 10 18 12
80 20 10 17 11
100 19 9 17 11

All 20 12 18 11

VIII 20 23 15 16 16
40 22 16 19 16
60 19 9 18 11
80 19 10 16 11
100 19 9 17 12

All 20 12 17 13

IX 20 1 1 0 1
40 2 2 1 2
60 1 1 1 1
80 1 1 1 1
100 1 1 1 1

All 1 1 1 1

Table 2 (continued )

Data n Placement heuristic

Class BLF BFB FC TP

X 20 15 20 15 20
40 13 7 9 8
60 14 8 9 9
80 14 6 6 6
100 11 7 7 6
All 13 10 9 10

Overall 13 8 10 8

J.A. Bennell et al. / Int. J. Production Economics 145 (2013) 547–560 555
Parameter settings for our proposed MXGA are determined
through the results of initial computational experiments, as
described by Lee (2006). We compare t¼3,5,7,9,10 for the size of
the candidate list of temporary offspring in MXGA (see Section 5.5)
with t¼5 providing the best quality solutions within a reasonable
computation time. The crossover probability and mutation prob-
ability (see Sections 5.5 and 5.7) are varied, resulting in the
settings pc¼0.75, pM¼0.25 and pm ¼ 1=n. These values keep the
mutation on a moderate scale while introducing small changes in
the selected offspring. Potential parents are selected (see Section
5.4) by a binary tournament. Based on initial experiments, we set
s¼0.75, which gives a 75% chance of selection as the parent for the
fitter individual as compared to the less fit individual which only
has a 25% chance. The size of the initial population is set as
npop ¼ 100 (see Section 5.3), and the filtration procedure (see
Section 5.9) is invoked every 50 generations. Results showing
the impact on performance of the addition of the swap operator
and the mutation operator (see Sections 5.6 and 5.7) is also
provided by Lee (2006).
7.2. Comparison of heuristic placement routines

In this subsection, we compare our proposed Best Fit Bin (BFB)
with Bottom Left Fill (BLF), Floor-Ceiling (FC) and Touching
Perimeter (TP). Previous studies with BLF suggest that ordering
the rectangles by non-increasing width, height or area improves
the quality of the resulting solutions. Our experiments show that
ordering by decreasing area, breaking ties by decreasing width,
provides the best solution quality.

Table 2 reports the average RPD:B for each placement routine,
computed over the 10 problem instances. The values for FC and TP
are quoted from the study of Lodi et al. (1999b). The final row for
each data class gives the overall average values of RPD:B, and
similarly the final row of the table gives the overall average values
of RPD:B over all classes. The embolding highlights the best
average RPD:B found in each class, and overall. Note that we do
not list the computation times for these runs since they are very
small (less than 0.1 s for any instance).

Examining the results in Table 2, we observe that BLF place-
ment routine consistently produces the worst solutions among the
four routines tested. Neither of the placement routines BFB, FC or
TP can be classified as the clear winner in these tests as they
produce mixed degrees of success in terms of the solution quality
in each data class. For the average value over all classes, BFB and
TP perform equally well, and BFB outperforms FC by 2%.

Given the similar quality solutions that are generated by BFB,
FC and TP, and the time complexity of BFB being only Oðn2Þ
compared to Oðn3Þ for FC and TP, it is advantageous to employ
BFB as our heuristic placement routine within a genetic algorithm
or local search procedure for the 2DBPP.



Table 3
Values of average RPD:B and average MSU for local search algorithms for 2DBPP.

Data class n SGA MXGA UTSBFB UTSTP RDM

1P 2P 1P 2P RPD:B MSU RPD:B RPD:B MSU

RPD:B MSU RPD:B MSU RPD:B MSU RPD:B MSU

I 20 2.7 81.3 2.7 81.2 2.7 81.7 2.7 81.9 2.7 81.3 5.0 4.7 79.9
40 3.8 86.0 4.9 84.5 3.8 86.2 2.9 87.2 3.6 85.6 4.0 4.6 83.5
60 5.2 86.7 4.0 88.0 4.0 88.6 4.0 88.5 4.0 88.1 4.0 4.0 88.2
80 5.1 87.0 5.9 87.2 4.3 88.2 5.1 87.8 5.9 87.3 6.0 5.9 86.8
100 2.8 92.4 1.9 92.7 2.1 93.6 2.5 92.9 3.1 92.5 3.0 3.1 92.2

All 3.9 86.7 3.9 86.7 3.4 87.7 3.4 87.6 3.9 87.0 4.4 4.5 86.1

II 20 0.0 42.4 0.0 42.4 0.0 42.4 0.0 42.4 0.0 42.4 0.0 0.0 42.4
40 10.0 54.8 10.0 55.0 10.0 56.1 10.0 56.1 10.0 56.1 10.0 10.0 56.0
60 20.0 67.2 16.7 70.4 0.0 76.5 0.0 76.8 0.0 76.8 0.0 0.0 76.8
80 6.7 78.0 6.7 78.0 0.0 83.5 3.3 81.1 0.0 83.5 3.0 3.3 81.3
100 3.3 78.2 3.3 78.1 0.0 81.5 0.0 81.4 0.0 81.5 0.0 0.0 81.5

All 8.0 64.1 7.3 64.8 2.0 68.0 2.7 67.5 2.0 68.0 2.6 2.7 67.6

III 20 5.7 66.4 5.7 66.5 3.7 69.0 3.7 69.4 3.7 68.9 6.0 5.7 66.2
40 8.9 73.4 10.6 71.4 8.9 74.4 8.9 74.8 8.9 74.6 9.0 9.7 73.0
60 10.3 77.8 9.5 78.5 7.9 82.0 8.7 81.0 9.5 80.5 8.0 9.5 80.5
80 9.3 79.4 9.2 79.4 6.3 83.4 6.3 83.4 9.2 79.6 7.0 9.4 79.2
100 8.2 81.2 8.7 80.6 5.7 85.3 6.2 84.3 6.2 83.5 7.0 7.2 82.8

All 8.5 75.6 8.7 75.3 6.5 78.8 6.8 78.6 7.5 77.4 7.4 8.3 76.3

IV 20 0.0 38.4 0.0 38.4 0.0 38.4 0.0 38.4 0.0 38.4 0.0 0.0 38.4
40 0.0 55.1 0.0 55.0 0.0 56.7 0.0 56.6 0.0 56.7 0.0 0.0 56.7
60 10.0 70.1 10.0 69.6 10.0 71.5 10.0 71.3 10.0 71.1 10.0 10.0 71.1
80 10.0 73.0 10.0 72.9 6.7 76.5 10.0 74.2 3.3 79.3 7.0 3.3 79.3
100 6.7 75.8 6.7 75.4 3.3 79.3 3.3 79.0 3.3 79.2 3.0 3.3 79.2

All 5.3 62.4 5.3 62.3 4.0 64.5 4.7 63.9 3.3 64.9 4.0 3.3 64.9

V 20 5.8 68.3 5.8 68.7 4.2 70.7 4.2 70.8 5.8 68.5 4.0 4.2 69.6
40 8.0 74.2 8.0 73.7 6.1 76.6 6.1 76.7 8.9 72.9 7.0 8.9 72.9
60 7.6 75.6 6.9 76.9 5.6 78.6 6.4 78.3 8.9 75.7 6.0 6.9 77.0
80 7.1 76.3 7.6 76.7 5.8 79.6 6.2 78.9 8.0 76.9 7.0 6.7 77.9
100 6.6 80.9 8.1 80.4 5.3 84.3 6.5 82.8 8.1 79.7 7.0 6.9 80.6

All 7.0 75.1 7.3 75.3 5.4 78.0 5.9 77.5 7.9 74.7 6.2 6.7 75.6

VI 20 0.0 29.2 0.0 29.2 0.0 29.2 0.0 29.2 0.0 29.2 0.0 0.0 29.2
40 40.0 49.1 40.0 49.1 40.0 47.4 40.0 47.4 30.0 50.3 40.0 40.0 47.6
60 5.0 66.2 5.0 66.0 0.0 70.0 0.0 70.2 5.0 66.2 5.0 5.0 65.9
80 0.0 66.7 0.0 67.0 0.0 68.7 0.0 67.9 0.0 68.0 0.0 0.0 68.6
100 10.0 72.6 10.0 72.4 6.7 76.0 6.7 75.4 6.7 75.7 7.0 6.7 75.2

All 11.0 56.4 11.0 56.4 9.3 58.6 9.3 58.4 8.3 57.9 10.4 10.3 57.3

VII 20 13.0 69.2 13.0 69.0 11.0 71.9 11.0 72.1 13.0 68.6 11.0 13.0 68.2
40 9.3 77.2 11.6 75.7 7.3 80.7 7.3 80.5 8.3 79.0 8.0 8.3 78.5
60 8.5 80.5 8.5 81.1 4.9 85.3 6.3 83.9 7.0 82.6 6.0 6.3 83.0

J.A
.Bennell

et
al./

Int.J.Production
Econom

ics
145

(2013)
547

–560
556



80 10.2 81.2 9.1 82.4 7.6 85.1 8.6 83.7 9.6 81.2 10.0 9.6 81.0
100 9.6 82.3 9.2 82.4 6.6 86.4 6.6 86.2 8.4 84.4 8.0 8.4 84.2

All 10.1 78.1 10.3 78.1 7.5 81.9 8.0 81.3 9.3 79.2 8.6 9.1 79.0

VIII 20 12.0 69.5 12.0 69.1 10.0 72.3 10.0 72.3 10.0 72.1 10.0 10.0 72.2
40 11.4 76.6 9.3 78.3 9.3 80.3 9.3 79.7 13.3 76.0 10.0 13.3 74.9
60 9.9 80.1 9.9 79.7 6.3 84.9 6.3 84.6 7.0 83.2 7.0 7.0 83.5
80 9.1 81.4 9.2 80.7 7.1 85.3 8.1 83.7 8.6 82.6 8.0 10.1 80.9
100 8.3 82.5 7.9 82.6 5.4 87.3 5.9 86.0 8.3 84.7 9.0 8.3 84.7

All 10.2 78.0 9.7 78.1 7.6 82.0 7.9 81.3 9.4 79.7 8.8 9.7 79.2

IX 20 0.7 43.0 0.7 43.0 0.0 43.6 0.0 43.6 0.0 43.6 0.0 0.0 43.6
40 1.1 45.6 1.1 45.6 1.1 45.8 1.1 45.7 1.1 45.7 0.1 1.1 45.7
60 0.7 43.5 0.7 43.5 0.7 43.6 0.7 43.6 0.7 43.6 0.1 0.7 43.6
80 0.9 45.0 0.9 45.0 0.9 45.1 0.9 45.1 0.9 45.0 0.1 0.9 45.0
100 0.7 46.0 0.7 46.0 0.7 46.1 0.7 46.1 0.7 46.0 0.1 0.7 46.1

All 0.8 44.6 0.8 44.6 0.7 44.8 0.7 44.8 0.7 44.8 0.8 0.7 44.8

X 20 12.5 67.4 12.5 66.9 12.5 68.5 12.5 68.5 15.0 66.3 12.0 13.0 68.5
40 6.1 78.4 6.1 78.0 6.1 79.9 6.1 79.6 6.1 79.2 6.0 6.1 79.6
60 9.7 80.2 8.5 80.6 6.7 84.5 7.6 83.4 5.8 85.2 6.0 5.8 85.3
80 7.4 82.8 6.4 83.2 5.6 85.9 5.6 85.6 4.8 89.0 5.0 4.8 89.2
100 7.3 83.0 6.6 83.5 4.0 88.0 4.0 87.1 4.1 86.9 5.0 4.8 86.1

All 8.6 78.3 8.0 78.4 7.0 81.4 7.2 80.9 7.2 81.3 6.8 6.9 81.7

Overall 7.3 69.9 7.2 70.0 5.3 72.6 5.6 72.2 6.0 71.5 6.0 6.2 71.3

J.A
.Bennell

et
al./

Int.J.Production
Econom

ics
145

(2013)
547

–560
557



Table 4
Values of average RPD:B, MSU and RPD:L for local search algorithms for 2DBPP with DD: solutions with smallest Lmax.

Due date Data SGA MXGA UTSBFB RDM

class class RPD:B MSU RPD:L RPD:B MSU RPD:L RPD:B MSU RPD:L RPD:B MSU RPD:L

A I 5.4 83.1 16.6 4.1 85.3 12.4 5.0 83.4 16.0 8.7 78.8 22.2
II 3.3 63.7 17.4 2.0 66.2 11.1 2.5 64.9 13.2 2.5 65.4 12.0
III 10.9 71.4 30.9 7.7 75.4 22.0 8.2 74.5 27.9 9.0 73.2 26.8
IV 4.7 60.7 21.7 4.7 61.7 17.1 3.3 62.3 19.1 4.0 61.8 18.9
V 8.7 72.5 24.2 7.0 74.5 17.9 7.7 73.6 22.0 7.4 73.5 21.7
VI 11.0 54.5 23.2 9.3 56.1 16.6 11.0 54.4 21.5 10.3 55.3 19.5
VII 11.8 74.5 33.5 8.9 78.5 23.5 10.7 76.7 29.7 9.0 77.1 29.4
VIII 12.1 74.2 33.9 8.8 78.8 23.3 10.1 77.3 30.0 10.1 76.3 29.0
IX 0.7 44.1 1.7 0.7 44.1 1.7 0.7 42.9 1.7 0.7 43.2 2.0
X 9.7 75.0 27.9 7.9 77.3 23.8 7.9 76.6 32.0 9.0 74.9 27.5

Average 7.8 67.4 23.1 6.1 69.8 16.9 6.7 68.7 21.3 7.1 67.9 20.9

B I 6.4 81.8 34.9 4.6 84.7 24.2 6.8 81.7 31.7 8.8 78.4 38.2
II 3.3 63.6 47.7 2.7 65.6 34.0 3.7 64.1 39.7 3.2 63.9 33.4
III 12.3 68.9 66.8 8.7 73.9 46.2 12.7 70.0 65.0 10.7 71.6 56.4
IV 6.0 59.3 53.4 4.7 61.7 36.0 6.3 59.6 49.1 6.0 59.2 45.7
V 11.0 69.7 48.6 8.1 73.4 35.5 10.4 70.9 48.3 9.4 71.6 40.3
VI 11.0 54.4 48.8 11.0 54.9 37.7 9.0 55.4 46.3 9.7 55.0 42.0
VII 13.0 72.9 71.9 10.2 76.8 52.2 13.3 73.5 65.8 12.0 74.4 58.1
VIII 14.1 72.2 72.7 9.0 77.4 49.4 11.2 75.1 67.3 11.7 74.3 60.5
IX 0.7 43.9 2.4 0.7 44.0 2.4 0.7 43.1 2.5 0.7 43.4 3.6
X 11.1 73.4 67.4 8.6 76.3 53.5 12.2 73.0 81.0 10.1 73.2 64.4

Average 8.9 66.0 51.5 6.8 68.9 37.1 8.6 66.6 49.7 8.2 66.5 44.3

C I 8.4 79.3 136.7 5.4 83.5 93.0 8.1 79.8 115.3 10.1 76.6 128.0
II 5.0 61.8 232.1 4.0 64.0 149.5 4.8 62.5 165.3 4.0 62.5 179.6
III 16.2 65.9 180.4 9.1 73.3 124.9 14.7 68.0 173.8 12.5 69.1 148.1
IV 7.0 58.7 223.2 5.3 60.7 153.2 6.3 60.0 210.7 6.3 59.2 183.1
V 13.2 67.3 149.2 8.8 72.4 105.0 13.2 68.2 142.1 10.4 70.0 121.0
VI 11.0 54.4 274.9 11.0 54.5 241.2 11.0 54.3 264.4 11.7 53.9 251.4
VII 14.6 70.2 296.5 10.5 76.2 209.6 16.3 70.3 262.0 13.4 71.8 227.3
VIII 14.5 70.9 421.5 10.1 76.8 273.3 16.7 69.6 387.1 13.2 72.3 320.4
IX 0.7 43.7 9.9 0.7 43.8 9.9 0.8 43.1 15.1 0.8 43.3 18.7
X 12.3 71.3 396.6 9.0 75.3 318.5 12.5 70.8 412.6 13.1 71.0 345.2

Average 10.3 64.4 232.1 7.4 68.1 167.8 10.5 64.7 214.8 9.6 65.0 192.3

Overall Average 9.0 65.9 102.2 6.8 68.9 73.9 8.6 66.7 95.3 8.3 66.5 85.8

J.A. Bennell et al. / Int. J. Production Economics 145 (2013) 547–560558
7.3. Comparison of local search algorithms for 2DBPP

In this subsection, we provide computational results that
compare the performance of our proposed MXGA with SGA,
UTSBFB, UTSTP and RDM for the classical 2DBPP. Recall that SGA is
identical to SXGA except that a single pair of offspring is produced
from each pair of parents. We evaluate both 1-point and 2-point
crossover for each of SGA and MXGA, respectively. Results for
UTSTP are those provided by Lodi et al. (1999b) and are based on a
CPU time limit of 60 s per instance using a Silicon Graphics INDY
R10000sc. However, computational results of Lee (2006) indicate
that UTSBFB and UTSTP compete closely across all test instances and
the overall average performance is the same. For a fair comparison
between SGA, MXGA, UTSBFB, and RDM in our tests, we employ a
stopping criterion of 120 CPU seconds per instance. Apart from
UTSTP, all algorithms use BFB for the placement of rectangles.

Our computational results are presented in Table 3. For each
algorithm, apart from UTSTP, the entries in the first column report
the average value of RPD:B, while the entries in the second column
give the mean squared utilization of the bins (MSU), both averages
being computed over the ten generated instances. The average by
data class and the overall average value for all classes are also
provided. It is clear that MXGA with the single point crossover
exhibits better or at least equal performance relative to all of the
other algorithms with respect to the average value of RPD:B as a
performance measure for all but classes IV, VI and X. Similarly,
with respect to the average value of MSU, MXGA exhibits super-
iority except for data classes II, IV and X. These results indicate a
clear preference for the 1-point crossover over the 2-point cross-
over, and also for the multicrossover approach used in MXGA over
the single crossover used in SGA. Further, the 1-point MXGA is
superior to the two UTS algorithms and also to RDM.

A closer scrutiny of the results for UTSBFB, UTSTP and RDM show
that they each exhibit reasonable performance, with the two
versions of UTS performing marginally better. This supports the
notion that the acceptance rule and randomization procedure
introduced into RDM are comparable with the ideas of tabu lists
and tabu tenure used within Unified Tabu Search.

7.4. Comparison of local search algorithms for 2DBPP with DD

Our final set of computational experiments compare the results
of applying local search algorithms that are adapted for solving the
2DBPP with DD. As above, we again use t¼5 in MXGA. Also, as
suggested from the previous results, we employ the 1-point
crossover operator in both MXGA and SGA.

Recall that for the 2DBPP with DD, our goal is to optimize the
bicriteria objective function of the problem by alternating between
minimizing the maximum lateness and minimizing the number of
bins. In our implementation, the number of generations executed



Table 5
Values of average RPD:B, MSU and RPD:L for local search algorithms for 2DBPP with DD: solutions with smallest number of bins.

Due date Data SGA MXGA UTSBFB RDM

Class Class RPD:B MSU RPD:L RPD:B MSU RPD:L RPD:B MSU RPD:L RPD:B MSU RPD:L

A I 3.8 86.0 22.2 3.5 86.2 13.9 3.7 85.6 18.8 5.1 79.1 22.5
II 3.3 63.8 17.3 2.0 66.3 11.2 2.0 65.3 13.0 2.0 65.7 12.1
III 7.9 74.9 38.3 6.8 76.4 23.6 5.8 77.3 30.2 6.8 74.8 29.0
IV 4.7 60.8 21.7 4.7 61.7 17.2 3.3 62.3 19.0 4.0 61.8 18.8
V 6.6 74.7 27.5 6.2 75.6 20.2 5.5 76.3 26.2 7.0 73.9 21.8
VI 11.0 54.7 23.1 9.3 56.2 16.5 11.0 54.4 21.3 10.3 55.4 19.3
VII 9.1 77.9 39.4 7.5 80.2 28.2 6.6 81.5 34.1 9.2 77.7 30.6
VIII 8.8 78.3 39.8 7.9 80.2 28.3 7.1 80.8 33.3 9.5 77.2 29.3
IX 0.7 44.2 1.7 0.7 44.2 1.5 0.7 42.9 1.6 0.7 43.2 2.0
X 7.7 77.2 30.0 7.1 78.3 26.4 6.1 79.8 35.1 8.1 76.0 28.3

Average 6.4 69.2 26.11 5.6 70.5 18.7 5.2 70.6 23.3 6.3 68.5 21.4

B I 4.0 85.3 46.1 3.4 86.3 28.7 3.4 86.0 39.8 5.8 79.4 42.4
II 3.3 63.6 47.7 2.0 66.2 34.1 2.0 65.5 40.2 2.0 64.8 33.4
III 7.6 74.9 89.8 7.1 76.0 55.0 6.1 77.1 76.4 7.4 74.9 68.2
IV 5.3 59.7 53.6 4.7 61.9 35.9 4.3 61.2 49.4 4.3 60.6 45.5
V 6.7 74.5 63.5 6.0 75.7 40.7 5.6 76.2 56.0 7.4 73.7 48.0
VI 11.0 54.4 48.8 10.3 55.5 37.7 8.3 55.8 46.5 9.0 55.5 42.0
VII 8.8 77.9 91.0 7.8 79.5 66.7 6.5 81.4 82.0 9.2 77.4 65.8
VIII 8.8 78.3 89.9 7.8 79.7 59.4 6.8 81.4 82.1 9.5 76.6 68.2
IX 0.7 43.9 2.4 0.7 44.0 2.4 0.7 43.1 2.4 0.7 43.4 3.6
X 7.8 77.5 75.0 7.1 78.2 60.0 7.0 78.4 92.6 7.8 76.4 73.1

Average 6.4 69.0 60.80 5.7 70.3 42.1 5.1 70.6 56.7 6.3 68.3 49.0

C I 4.1 85.3 189.4 3.4 86.0 124.4 3.5 85.7 149.0 5.9 78.2 138.1
II 3.7 63.0 234.6 2.0 65.7 152.7 2.0 65.0 168.5 2.0 64.3 181.7
III 7.4 75.3 253.5 7.0 75.7 147.6 5.2 78.1 227.0 8.1 73.8 182.3
IV 5.3 60.0 225.3 4.7 61.2 154.2 4.0 61.8 213.2 4.5 60.7 186.7
V 7.2 74.0 200.5 6.0 75.6 145.1 5.4 76.2 184.5 7.7 72.6 146.3
VI 11.0 54.4 274.7 11.0 54.4 241.1 10.3 55.2 264.4 10.3 54.8 252.2
VII 8.7 78.2 386.5 7.8 79.4 263.0 6.5 81.3 332.0 10.7 74.9 267.4
VIII 8.9 77.9 509.1 8.1 79.4 328.6 6.8 81.0 467.6 9.8 75.8 450.7
IX 0.7 43.7 9.7 0.7 43.8 9.9 0.7 43.3 16.4 0.8 43.4 21.6
X 7.2 77.7 497.1 7.0 78.3 418.8 6.5 79.0 487.2 8.2 76.3 441.0

Average 6.4 69.0 278.0 5.8 70.0 198.5 5.1 70.7 251.0 6.8 67.5 226.8

Overall average 6.4 69.1 121.6 5.7 70.3 86.4 5.1 70.6 110.3 6.5 68.1 99.1

J.A. Bennell et al. / Int. J. Production Economics 145 (2013) 547–560 559
before alternating the objective function is set using G¼100, and
the number of iterations executed for both UTSBFB and RDM before
alternating the objective function is also 100. By alternating the
objective functions during the execution of the algorithms, we are
solving the problem using a simultaneous optimization approach.
Under this approach, both objective functions are treated as
equally important. As a result, we approximate the set of Pareto
optimal solutions corresponding to our two objective functions.
Note that there are likely to be only a small number of Pareto
solutions because the number of bins used in any “reasonable”
solution is likely to exhibit little variability.

We present only the results for the two extreme points of our
approximation of the Pareto optimal solutions, specifically those
solutions with the minimum value of the maximum lateness and
with the minimum number of bins. The computational results for
these pairs of solutions are presented in Tables 4 and 5. In these
tables, the first two columns give the due date class and the data
class. The average values of RPD:B, MSU and RPD:L are listed for
each of MXGA, MGA, UTSBFB and RDM. For each due date class, the
final line gives the average value over all data classes. Further, the
final line of each table gives the overall average value over all due
date and data classes.

From Table 4 where the solutions with the smallest value of
Lmax are summarized, it is clear that MXGA produces better quality
solutions compared to other algorithms. The performance of
UTSBFB and RDM is similar, while SGA yields inferior solutions on
an average. Although the average values of RPD:B are larger than
those in Table 3, the differences are not large. This suggests that
solutions with a small Lmax also use a relatively small number of
bins, and therefore the two objective functions do not always
conflict.

The pattern of results in Tables 5 that summarize the solutions
with the smallest number of bins exhibit a more varied
pattern. The best solutions in terms of numbers of bins are
provided by UTSBFB with MXGA coming second best. However,
for these solutions, the ones generated by MXGA have the smaller
values of Lmax on average. Also, the solutions for UTSBFB that are
able to pack the rectangles using a small number of bins
come at the expense of relatively large Lmax values. This outcome
is not surprising as the original UTSBFB is designed specifically for
the classic 2DBPP where the sole objective is to minimize the
number of bins used. It is interesting in Table 5 that the
average value of RPD:B obtained from SGA of 6.4 and from
UTSBFB of 5.1 are generally better than the those obtained from
the classic 2DBPP (7.4 for SGA and 6.0 for UTSBFB in Table 3).
However, MXGA and RDM fail to improve the solution quality in
terms of RPD:B when compared with their counterparts in the
classic problem.



J.A. Bennell et al. / Int. J. Production Economics 145 (2013) 547–560560
We might expect the problem instances in due date class C to
be the most challenging since the rectangle due dates are spread
throughout the time horizon. The results for the average RPD:L in
Tables 4 and 5 do not contradict this, although it is difficult to
draw firm conclusions because the quality of the lower bound on
Lmax that is given in Eq. (3) affects the values of RPD:L.
8. Concluding remarks

In this paper, a new two-dimensional rectangular, single bin
size, bin packing problem is defined where the rectangles to be
packed have associated due dates. The objective is twofold: to
minimize the number of bins used, and to minimize the maximum
lateness. This problem helps to build bridges between the fields of
bin packing and production scheduling.

A new heuristic placement routine for two-dimensional bin
packing called Best Fit Bin (BFB) is described, and its performance
is compared with the best performing placement heuristics in the
bin packing literature. When considering both its computational
complexity and solution quality, BFB is an attractive choice.

A multicrossover genetic algorithm (MXGA) is proposed to
solve the classical non-oriented 2DBPP, the new problem variant
with due dates and also the bicriteria problem. Various devices
have been introduced into the MXGA to further enhance the
solutions generated. In comparative computational results for
the classical 2DBPP, MXGA achieves better performance compared
to a single crossover genetic algorithm, the Unified Tabu Search
(UTS) method of Lodi et al. (1999a, 1999b, 2004), and to a
randomized descent method. However, the relative quality of the
results is not so clear cut for the 2DBPP with DD, where the MXGA
has mixed success when compared with UTS.

References

Arbib, C., Marinelli, F., Pezzella, F., 2012. An LP-based tabu search for batch
scheduling in a cutting process with finite buffers. International Journal of
Production Economics 136, 287–296.

Baker, B.S., Coffman Jr., E.G., Rivest, R.L., 1980. Orthogonal packing in two dimen-
sions. SIAM Journal on Computing 9, 846–855.

Beasley, J.E., 2004. A population heuristic for constrained two-dimensional non-
guillotine cutting. European Journal of Operations Research 156, 601–627.

Berkey, J.O., Wang, P.Y., 1987. Two-dimensional finite bin-packing algorithms.
Journal of the Operational Research Society 38, 423–429.

Burke, E.K., Kendall, G., Whitwell, G., 2004. A new placement heuristic for the
orthogonal stock-cutting problem. Operations Research 52, 655–671.

Burke, E.K., Kendall, G., Whitwell, G., 2009. A simulated annealing enhancement of
the best-fit heuristic for the orthogonal stock cutting problem. INFORMS
Journal of Computing 21, 505–516.

Chazelle, B., 1983. The bottom-left bin packing heuristic: an efficient implementa-
tion. IEEE Transactions on Computers 32, 697–707.

Coffman Jr., E.G., Garey, M.R., Johnson, D.S., 1984. Approximation algorithms for
bin-packing—an updated survey. In: Ausiello, G., Lucertini, N., Serafini, P. (Eds.),
Algorithm Design for Computer Systems Design. Springer-Verlag, New York,
pp. 49–106.

Dowsland, K.A., Dowsland, W.B., 1992. Packing problems. European Journal of
Operations Research 56, 2–14.

Dell'Amico, M., Martello, S., Vigo, D., 2002. A lower bound for the non-oriented
two-dimensional bin packing problem. Discrete Applied Mathematics 118,
13–24.

Dyckhoff, H., Finke, U., 1992. Cutting and Packing in Production and Distribution.
Physica Verlag, Heidelberg, Germany.

Esquivel, S.C., Leiva, A., Gallard, R.H., 1997. Multiple crossover per couple in genetic
algorithms. In: IEEE International Conference on Evolutionary Computation,
pp. 103–106.

Evans, G.W., 1984. An overview of techniques for solving multiobjective mathe-
matical programs. Management Science 30, 1268–1282.

Falkenauer, E., Delchambre, A., 1992. A genetic algorithm for bin packing and line
balancing. In: Proceedings of the 1992 IEEE International Conference on
Robotics and Automation. IEEE Computer Society Press, Los Alamitos, CA,
pp. 1186–1192.

Garey, M.R., Johnson, D.S., 1979. Computer and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine
Learning. Kluwer Academic Publishers, Boston, MA.

Gonçalves, J.F., Resende, M.G., 2011. A parallel multi-population genetic algorithm
for a constrained two-dimensional orthogonal packing problem. Journal of
Combinatorial Optimisation 22, 180–201.

Gramani, M.C.N., França, P.M., 2006. The combined cutting stock and lot sizing
problem in industrial processes. European Journal of Operations Research 174,
509–521.

Hendry, L.C., Fok, K.K., Shek, K.W., 1996. A cutting stock and scheduling problem in
the copper industry. Journal of the Operational Research Society 47, 38–47.

Herrera, F., Lozano, M., Pérez, E., Sánchez, A.M., Villar, P., 2002. Multiple crossover
per couple with selection of the two best offspring: an experimental study with
the BLX-α crossover for real-coded genetic algorithms. In: Advances in Artificial
Intelligence—IBERAMIA 2002. Lecture Notes in Computer Science, vol. 2727.
Springer, Berlin. pp. 392–401.

Hopper, E., Turton, B.C.H., 1999. A genetic algorithm for a 2D industrial packing
problem. Computers and Industrial Engineering 37, 375–378.

Hopper, E., Turton, B.C.H., 2001a. A review of the application of meta-heuristic
algorithms to 2D strip packing problems. Artificial Intelligence Review 16,
257–300.

Hopper, E., Turton, B.C.H., 2001b. An empirical investigation of meta-heuristic and
heuristic algorithms for a 2D packing problem. European Journal of Operations
Research 128, 34–57.

Hwang, S.-M., Kao, C.-Y., Horng, J.-T., 1994. On Solving Rectangle Bin Packing
Problems using Genetic Algorithms. In: Proceedings of the 1994 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, vol. 2. IEEE, San Antonio,
TX, pp. 1583–1590.

Jakobs, S., 1996. On genetic algorithms for the packing of polygons. European
Journal of Operations Research 88, 165–181.

Kroger, B., 1995. Guillotineable bin packing—a genetic approach. European Journal
of Operations Research 84, 645–661.

Lee, L.S., 2006. Multicrossover Genetic Algorithms for Combinatorial Optimisation
Problems. PhD Thesis. School of Mathematics, University of Southampton, UK.

Leung, T.W., Yung, C.H., Troutt, M.D., 2001. Applications of genetic search and
simulated annealing to the two-dimensional non-guillotine cutting stock
problem. European Journal of Operational Research 145, 530–542.

Leung, T.W., Yung, C.H., Troutt, M.D., 2003. Applications of a mixed simulated
annealing-genetic algorithm for the two-dimensional orthogonal packing
problem. Computers and Industrial Engineering 40, 201–214.

Li, S., 1996. Multi-Job cutting stock problem with due dates and release dates.
Journal of the Operational Research Society 47, 490–510.

Liu, D., Teng, H., 1999. An improved BL-algorithm for genetic algorithm of the
orthogonal packing of rectangles. European Journal of Operations Research 112,
413–420.

Lodi, A., Martello, S., Vigo, D., 1999a. Approximation algorithms for the oriented
two-dimensional bin packing problem. European Journal of Operations
Research 112, 158–166.

Lodi, A., Martello, S., Vigo, D., 1999b. Heuristic and metaheuristic approaches for a
class of two-dimensional bin packing problems. INFORMS Journal of Computing
11, 345–357.

Lodi, A., Martello, S., Vigo, D., 2002a. Recent advances on two-dimensional bin
packing problems. Discrete Applied Mathematics 123, 379–396.

Lodi, A., Martello, S., Vigo, D., 2002b. Two-dimensional packing problems: a survey.
European Journal of Operations Research 141, 241–252.

Lodi, A., Martello, S., Vigo, D., 2004. TSpack: a unified tabu search code for multi-
dimensional bin packing problems. Annals of Operations Research 131,
203–213.

Martello, S., Vigo, D., 1998. Exact solution of the two-dimensional finite bin packing
problem. Management Science 44, 388–399.

Nonas, S.L., Thorstenson, A., 2000. A combined cutting-stock and lot-sizing
problem. European Journal of Operations Research 120, 327–342.

Puchinger, J., Raidl, G.R., Koller, G., 2004. Solving a real-world glass cutting problem.
In: EvoCOP, vol. 3004, pp. 165–176.

Reinertsen, H., Vossen, T.W.M., 2010. The one-dimensional cutting stock problem
with due dates. European Journal of Operations Research 210, 701–711.

Smith, D., 1985. Bin-packing with adaptive search. In: Grefenstette, J.J. (Ed.),
Proceedings of the 1st International Conference on Genetic Algorithms and
their Applications. Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 202–206.

Wäscher, G., Haußner, H., Schumann, H., 2007. An improved typology of cutting
and packing problems. European Journal of Operations Research 183,
1109–1130.

Zheng, W., Ren, P., Ge, P., Qiu, Y., Liu, Z., 2012. Hybrid heuristic algorithm for two-
dimensional steel coil cutting problem. Computers and Industrial Engineering
62, 829–838.

http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref1
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref1
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref1
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref2
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref2
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref3
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref3
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref4
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref4
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref5
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref5
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref6
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref6
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref6
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref7
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref7
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref8
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref8
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref8
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref8
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref9
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref9
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref10
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref10
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref10
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref11
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref11
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0005
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0005
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0005
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref13
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref13
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0010
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0010
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0010
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0010
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref15
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref15
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref16
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref16
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref17
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref17
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref17
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref18
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref18
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref18
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref19
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref19
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0015
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0015
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0015
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0015
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0015
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0015
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref21
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref21
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref22
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref22
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref22
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref23
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref23
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref23
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0020
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0020
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0020
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0020
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref25
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref25
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref26
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref26
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0025
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0025
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref28
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref28
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref28
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref29
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref29
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref29
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref30
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref30
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref31
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref31
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref31
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref32
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref32
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref32
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref33
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref33
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref33
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref34
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref34
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref35
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref35
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref36
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref36
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref36
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref37
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref37
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref38
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref38
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0030
http://refhub.elsevier.com/S0925-5273(13)00204-1/othref0030
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref40
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref40
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref41
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref41
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref41
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref42
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref42
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref42
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref43
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref43
http://refhub.elsevier.com/S0925-5273(13)00204-1/sbref43

	A genetic algorithm for two-dimensional bin packing with due dates
	Introduction
	Preliminaries
	Problem definition
	Lower bound

	Literature
	Heuristic placement routines
	Local search methods

	Best Fit Bin
	Multicrossover genetic algorithms
	Representation
	Decoding
	Initial population
	Selection mechanism
	Multicrossover operator
	Swap operator
	Mutation operator
	Fitness evaluation
	Replacement and filtration strategies

	Neighbourhood search algorithms
	Unified Tabu Search
	Randomized Descent Method

	Computational experience
	Experimental design
	Comparison of heuristic placement routines
	Comparison of local search algorithms for 2DBPP
	Comparison of local search algorithms for 2DBPP with DD

	Concluding remarks
	References




