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Abstract—Microgrids are key components of future smart
grids, which integrate distributed renewable energy generators to
efficiently serve the load locally. However, the intermittent nature
of renewable energy generations hinders the reliable operation
of microgrids. Besides the commonly adopted methods such as
deploying energy storage system (ESS) and supplementary fuel
generator to address the intermittency issue, energy cooperation
among microgrids by enabling their energy exchange for sharing
is an appealing new solution. In this paper, we consider the
energy management problem for two cooperative microgrids each
with individual renewable energy generator and ESS. First, by
assuming that the microgrids’ renewable energy generation/load
amounts are perfectly known ahead of time, we solve the off-line
energy management problem optimally. Based on the obtained
solution, we study the impacts of microgrids’ energy cooperation
and their ESSs on the total energy cost. Next, inspired by
the off-line optimization solution, we propose online algorithms
for the real-time energy management of the two cooperative
microgrids. It is shown via simulations that the proposed online
algorithms perform well in practice, have low complexity, and
are also valid under arbitrary realizations of renewable energy
generations/loads. Finally, we present one method to extend our
proposed online algorithms to the general case of more than two
microgrids based on a clustering approach.

Index Terms—Microgrid, energy cooperation, renewable en-
ergy, distributed storage, smart grid, optimization.

I. INTRODUCTION

The increasing electric energy consumption in recent
decades has become a serious concern for the existing power
grids. To reduce both the operational and environmental costs
of conventional fossil fuel based energy generations, microgrid
that consists of networked groups of renewable energy genera-
tors and distributed loads has emerged as an appealing solution
[1]. However, unlike the conventional energy generations,
renewable energy is intermittent in nature; hence, it does not
ensure the reliable operation of microgrids at all time.

To overcome the aforementioned issue, various approaches
have been proposed in the literature. For instance, microgrids
can be always connected to the main grid to meet their
energy deficit. This approach is not environmentally friendly
and may also lead to high energy cost for microgrids, since
any energy deficit needs to be mitigated through drawing
conventional energy from the main grid even when electricity
prices offered by the main grid are high. On the other
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hand, energy storage systems (ESSs) can be deployed in
conjunction with renewable energy generators to store the
energy surplus and be discharged upon energy deficit or
when electricity prices offered by the main grid are high [2].
However, relying solely on ESSs is not a viable solution due
to their limited capacities, high maintenance costs, and losses
during charging/discharging [3]. With the advances in smart
grid technologies, energy cooperation among microgrids has
been proposed as a promising new solution to achieve the
reliable and cost-effective operation of microgrids [4]. Energy
cooperation enables microgrids with energy surplus to share
energy to those with energy deficit. In addition, it reduces
the overall transmission losses, since the distance among
microgrids in the distribution network is practically smaller
than that among microgrids and distributors in the main gird.
Last but not least, it can reduce the need for large-size ESSs.
However, it is important to optimize the amount of energy
exchanged among microgrids, that drawn from the main grid
by each microgrid, and that charged/discharged to/from the
ESS of each microgrid. This optimization requires joint energy
management of the microgrids.

It is worth nothing that there have been a handful of
prior studies on the energy management problem for mi-
crogrids [5]–[21]. For instance, [5]–[7] studied the system
with only a single microgrid or multiple microgrids operating
independently without energy cooperation. The general case
of joint energy management for multiple microgrids was
considered in [8]–[21]. Specifically, [8]–[11] studied the off-
line energy management problem by assuming that renewable
energy generation/load amounts are either deterministic or
known ahead of time. On the other hand, [12]–[21] solved the
online energy management problem under the assumption of
stochastic renewable energy generation/load models. However,
the minimum and maximum constraints for the state of ESS
were not considered in [12], [13]; therefore, their obtained
results may not be practically implementable. In [14], ESS
was not modeled in the system for simplicity. Furthermore,
the renewable energy generation/load were assumed to either
follow stationary processes [15] or their exact distributions
were known [12], [16]–[18], which may not be practically
valid for highly intermittent renewable energy sources such
as solar. Besides, the online energy management problem
was studied in [19] under the simplified model of no energy
exchange between microgrids, and in [13], [20] under the
assumption of ideal transmission lines without energy trans-
mission losses. It is also noted that energy cooperation between
the base stations with individual renewable energy generation
in wireless communication systems was studied in [22].
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In this paper, we investigate the real-time energy manage-
ment problem for a system with two cooperative microgrids
that belong to the same entity or different entities with com-
mon interests. We assume that the microgrids can exchange
energy via the transmission line connecting them, and each
comprises renewable energy generators, ESS, and an aggregate
load. The main results of this paper are summarized as follows:

• We first formulate the off-line energy management prob-
lem by assuming that the microgrids’ net energy pro-
files, i.e., the renewable energy generation offset by the
aggregate load of individual microgrids, are perfectly
known ahead of time. We then study the impacts of
microgrids’ energy cooperation and their ESSs on the
total energy cost saving via simulations based on the real
wind generation data of Tuscon power system [23]. The
results show that although both energy cooperation and
ESSs can be used to save the energy cost, one can be
more effective than the other depending on the system
setup. For instance, energy cooperation reduces the total
energy cost more considerably when the microgrids’ net
energy profiles are highly uncorrelated. However, ESSs
reduce the total energy cost more effectively when the
net energy profiles are correlated and/or the energy loss
in the transmission line is high.

• Next, we consider the practical setup of stochastic net
energy profiles. Based on the results obtained from the
off-line optimization, we propose two online algorithms
of low complexity for the real-time cooperative energy
management of microgrids, namely store-then-cooperate
and cooperate-then-store. The proposed algorithms can
be applied under arbitrary realizations of microgrids’ net
energy profiles. Simulation results reveal that our online
algorithms perform very close to the optimal solution
derived from the off-line optimization.

• Finally, we extend our proposed online algorithms to
the general case of more than two microgrids based
on a clustering approach. We show that the proposed
clustering based approach performs fairly close to the
optimal off-line solution, with performance losses of only
4.78% and 6.14% in the noisy environment with 15% and
30% renewable energy prediction errors, respectively.

In contrast to the prior works [5]–[21], in this paper we
consider a more practical setup of cooperative microgrids
with both renewable energy integration and deployment of
ESSs, while adopting a practical model for energy sharing
losses. In particular, we devise new online algorithms for
the real-time energy management of cooperative microgrids,
which i) achieve close-to-optimal performance in practice,
ii) have low complexity as compared to stochastic gradient
based methods in e.g., [15], and iii) are valid under arbitrary
realizations of net energy profiles, unlike those in e.g., [16]–
[18] assuming their known stochastic distributions. Compared
to our previous work [5] that studied the energy management
problem for a single microgrid, this paper studies microgrids’
energy cooperation and its impact on the energy cost saving
as well as reducing the need for bulk ESSs. A preliminary
conference version of this work is presented in [24].
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Fig. 1. System model.

The rest of this paper is organized as follows. Section II
presents the system model. Section III presents the optimal
solution to the off-line energy management problem and inves-
tigates the impacts of microgrids’ energy cooperation and use
of ESSs on the total energy cost. Section IV presents online
algorithms for the real-time cooperative energy management
of two microgrids. Section V presents one method to extend
the proposed online algorithms to the general case of more
than two microgrids. Last, we conclude the paper in Section
VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a power system consisting of two microgrids
that are connected to each other and also to the main grid, as
shown in Fig. 1. Particularly, each microgrid, denoted by index
j, j ∈ J = {1, 2}, comprises renewable energy generators,
an ESS, and an aggregate load. The two microgrids exchange
energy via the transmission line connecting them, where the
energy cooperation is coordinated by a central control unit
that gathers the required information from both microgrids.
We assume that the microgrids belong to the same entity or
different entities with common interests. Hence, the central
control unit jointly optimizes the energy exchanged between
microgrids, that drawn from the main grid by each microgrid,
and that charged/discharged to/from ESS of each microgrid
to minimize their total energy cost over time. Note that the
two microgrids cannot be treated as a single microgrid with
simply aggregated energy generation and consumption, since
the distance between microgrids is practically large and the
transmission loss between them is considerable. However, the
transmission losses within each microgrid are neglected due to
their relatively smaller distance; hence, the renewable energy
generation and load of each microgrid are aggregated, as
shown in Fig. 1.

We assume a time-slotted system with slot index i, i ∈
N = {1, . . . , N}, where N ≥ 1 denotes the total number
of time slots for energy management. For the convenience of
analysis, we assume a quasi-static time-varying energy model,
in which the rates of the renewable energy generation and load
are constant within each time slot, but may change from one
slot to another. We also assume that the duration of each slot
is normalized to a unit time; hence, we can use power and
energy interchangeably throughout this paper.

In the following, we define our system model in more detail.
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1) Energy Storage System (ESS): We denote the energy
charged (discharged) to (from) the ESS of microgrid j at time
slot i as Cj,i ≥ 0 (Dj,i ≥ 0). The energy losses during
the charging and discharging processes are specified by the
charging and discharging efficiency parameters, denoted by
0 < αcj < 1 and 0 < αdj < 1, respectively. Denote the state
(stored energy) of the ESS of microgrid j at the beginning of
time slot i as Sj,i ≥ 0. The storage over time for microgrid j
is then obtained as Sj,i+1 = Sj,i+α

c
jCj,i−Dj,i/α

d
j , ∀i ∈ N .

Moreover, we denote Smax
j ≥ 0 and Smin

j ≥ 0 as the
storage capacity and the minimum energy allowed in the
ESS of microgrid j, respectively. We thus have the following
constraints for the states of the ESS in microgrid j:

Smin
j ≤ Sj,1 + αcj

i∑
k=1

Cj,k − 1/αdj

i∑
k=1

Dj,k ≤ Smax
j , ∀i ∈N

(1)

where Smin
j ≤ Sj,1 ≤ Smax

j , ∀j ∈ J .1

2) Energy Cost of Microgrids: We consider a linear time-
varying energy cost model for the conventional energy drawn
from the main grid [25]. By denoting the conventional energy
drawn from the main grid to microgrid j at time slot i as
Gj,i ≥ 0, the energy cost at time slot i is given by

fi({Gj,i}) =

2∑
j=1

λj,iGj,i, (2)

where λj,i > 0 is the price of purchasing one unit of power
from the main grid for microgrid j at time slot i. We assume
that prices λj,i, ∀j ∈ J , ∀i ∈ N , are known to microgrids.

3) Load and Renewable Energy Generation: Denote the
load and renewable energy generation of microgrid j at time
slot i by Lj,i ≥ 0, and REj,i ≥ 0, respectively. We assume
that Lj,i’s and REj,i’s are predictable but with finite prediction
errors, due to their randomness in practice. Suppose that the
predictable load and renewable energy generation values of
microgrid j at time slot i are denoted as Lj,i and REj,i,
respectively. We then have Lj,i = Lj,i + δLj,i and REj,i =

REj,i+δREj,i , where δLj,i and δREj,i denote the prediction errors
for the load and renewable energy of microgrid j at time slot i,
respectively, which are modeled by arbitrary realizations over
time. We thus model the net energy profile in microgrid j as

∆j,i = ∆j,i + δj,i, ∀i ∈ N (3)

where ∆j,i = REj,i − Lj,i and δj,i = δREj,i − δLj,i.
4) Power Transmission Loss: In practical systems, power

loss is inevitable over transmission lines due to the ohmic
resistance. Let Ej,i ≥ 0 denote the power transferred from
microgrid j to microgrid ̄, ̄ ∈ J \{j} at time slot i. Denote
R > 0 and V > 0 as the ohmic resistance of the transmission
line connecting the two microgrids per length unit and its
operating voltage, respectively. The transmission loss is then
modeled as P loss(Ej,i) = βE2

j,i, where β = (R · d)/V 2

1In practice, there are other constraints besides (1) for ESSs such as the
maximum charging/discharging rates, which can further limit their operation.

[25]. Accordingly, the net power received in microgrid ̄ from
microgrid j at time slot i can be expressed as Ej,i − βE2

j,i.
2

5) Transmission Line Capacity: The power transferred over
the line connecting the two microgrids is constrained by the
transmission line capacity, denoted by 0 ≤ E < 1/(2β), due
to, e.g., thermal constraints of its conductors. Accordingly, we
have the following constraints for the power transferred from
microgrid j to ̄ as

0 ≤ Ej,i ≤ E, ∀i ∈ N . (4)

6) Energy Neutralization Constraint: We assume that the
energy deficit in microgrid j is always satisfied by (i) dis-
charging its ESS and/or (ii) drawing energy from the other
microgrid and/or (iii) drawing conventional energy from the
main grid. Accordingly, the energy neutralization constraints
in microgrid j are expressed as

Gj,i+∆j,i−Cj,i+Dj,i−Ej,i+E̄,i−βE2
̄,i≥ 0, ∀i∈N . (5)

Note that in case of energy surplus ∆j,i > 0, part of the energy
may be curtailed due to the limited capacities of ESSs and the
transmission line connecting the two microgrids. In this case,
(5) will hold with a strict inequality.

With the aforementioned models, we now proceed to
jointly optimize the energy drawn from the main grid
{Gj,i}, that exchanged between microgrids {Ej,i}, and that
charged/discharged to/from the ESSs of individual microgrids
{Cj,i, Dj,i} to minimize the total cost of the energy drawn
from the main grid, i.e.,

∑N
i=1 fi({Gj,i}), while satisfying the

given constraints of ESSs, loads, and the transmission line. We
thus formulate the optimization problem as3

(P1) : min
{Gj,i},{Ej,i},{Cj,i},{Dj,i}

2∑
j=1

N∑
i=1

λj,iGj,i

s.t. (1), (4), and (5), ∀j ∈ J
Gj,i ≥ 0, Cj,i ≥ 0, Dj,i ≥ 0, ∀j ∈ J , ∀i ∈ N .

To solve (P1), we first assume that ∆j,i’s can be perfectly
predicted without any error, i.e., δj,i = 0, ∀j ∈ J , ∀i ∈ N ;
accordingly, we solve the off-line optimization problem. Next,
we propose online algorithms for the practical setup of noisy
net energy profiles with arbitrary error realizations of δj,i’s.

III. OFF-LINE OPTIMIZATION AND ENERGY COOPERATION
VERSUS STORAGE TRADEOFF IN COST REDUCTION

In this section, we consider the off-line optimization for (P1)
by assuming {∆j,i} are perfectly known. It can be verified
that (P1) is a convex optimization problem, which can be
solved by standard convex optimization techniques such as
the interior point method [26]. Alternatively, we apply the
Lagrange duality method to solve this problem in order to

2Since voltages of lines connecting the main grid to microgrids are high
(over 220 KV), it follows that the corresponding β’s are very small and thus
we can ignore the resulting losses in these lines.

3It is worth noting that (P1) with deterministic ∆j,i’s can be regarded as
the classical DC power flow problem that takes into account only the active
power. In this case, we assume that the magnitude and phase of the voltage of
the transmission line can be adjusted using independent VAR compensators,
e.g., series/shunt capacitor/inductance banks [27].
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draw useful insights from the solution and enable distributed
implementation. Through a numerical example, we then show
that the microgrids’ energy cooperation can help reduce the
required storage capacities of ESSs, i.e., Smax

j , under the same
load requirement. We also compare the impacts of microgrids’
energy cooperation versus their ESSs on the total energy
cost saving, which motivate our design of the online energy
management algorithms later in Section IV.

A. Optimal Off-line Solution
Denote the optimal solution to (P1) as

{G?j,i, E?j,i, C?j,i, D?
j,i}. Based on the Lagrange duality

method, the optimal solution to (P1) is given in the following
proposition.

Proposition 3.1: The optimal solution to (P1) is given by

E?j,i =


0 γ?̄,i = 0

min

([
γ?
̄,i−γ

?
j,i

2γ?
̄,iβ

]+
, E

)
otherwise

, (6)

for ∀j ∈ J , ∀i ∈ N , where [x]+ , max(0, x), and
0 ≤ γ?j,i ≤ λj,i, ∀j ∈ J , ∀i ∈ N , are the optimal
Lagrange dual variables corresponding to energy neutralization
constraints given in (5). Given {E?j,i} in (6), (P1) becomes a
linear programming (LP) over {Gj,i, Cj,i, Dj,i}. We thus solve
the following LP to obtain {G?j,i, C?j,i, D?

j,i}.

min
{Gj,i≥0},{Cj,i≥0},{Dj,i≥0}

2∑
j=1

N∑
i=1

λj,iGj,i

s.t. (1), ∀j ∈ J
Gj,i+∆j,i−Cj,i+Dj,i−t?j,i≥ 0, ∀j ∈ J , ∀i ∈ N (7)

where t?j,i = E?j,i − E?̄,i + βE?̄,i
2.

Proof: Please refer to Appendix A.
The optimal solution proposed in Proposition 3.1 can be

implemented in a distributed manner, where the central con-
trol unit computes {γ?j,i} using a subgradient based method
(see Appendix A for the detail), based on the information
received from the two microgrids. The optimal Lagrange dual
variables {γ?j,i} are sent to the microgrids, each of which then
independently derives {G?j,i, E?j,i, C?j,i, D?

j,i} from (6) and (7).
Furthermore, given γ?j,i and γ?̄,i, it can be verified from (6)
that E?j,i and E?̄,i cannot be non-zero simultaneously at each
time slot i. This result is intuitively correct, since it is not
optimal for the microgrids to transfer energy at the same time
due to the energy loss in the transmission line.

Remark 3.1: The Lagrange dual variable γj,i can be inter-
preted as the marginal cost in microgrid j, defined as the
increment in the total energy cost due to consuming extra unit
power in this microgrid to satisfy its load, to charge its ESS
and/or to transfer to microgrid ̄. From (6), it follows that when
γj,i < γ̄,i, energy flows from microgrid j to microgrid ̄ to
reduce the total energy cost.

Last, note that for the general case of more than two
microgrids, the same standard procedure can be followed to
formulate and optimally solve the off-line energy management
problem. For brevity, we omit the details here, while simula-
tion results will be provided later in Section V for the online
energy cooperation in the general case.
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Fig. 2. Hourly predicted wind energy generation over one week for (a)
microgrid 1 and (b) microgrid 2.

TABLE I
SYSTEM PARAMETERS

Energy Storage Systems Transmission line connecting
microgridsαc

j 0.85

αd
j 0.85 R (Peacock) 0.0945 Ω/Km

Sj,1 0 R (Goat) 0.2923 Ω/Km
Smin
j 0 V 33 KV

Smax
1 80 MW d 45 Km
Smax
2 110 MW E 40 MW

B. Impact of Energy Cooperation on Energy Storage Require-
ment

In this subsection, we aim to show how the microgrids’
energy cooperation reduces the need for ESSs with large
storage capacities in the system. For the purpose of expo-
sition, we consider a system with two microgrids that are
located in Tucson, Arizona, United States [23].4 Microgrid
1 and microgrid 2 own 70 and 80 Vestas V90 wind turbines,
respectively, where each turbine has the rated power output of
3 MW. We model the renewable energy generation in the two
microgrids at each particular time slot i, i.e., [RE1,i RE2,i]

T ,
as a Gaussian random vector with mean [RE1,i RE2,i]

T ,
variance [σ2

RE1,i
σ2
RE2,i

]T with σREj,i
> 0, ∀j ∈ J , ∀i ∈ N ,

and the covariance matrix Σi given by

Σi =

[
σ2
RE1,i

ρRE1,i,RE2,iσRE1,iσRE2,i

ρRE1,i,RE2,i
σRE1,i

σRE2,i
σ2
RE2,i

]
,

where ρRE1,i,RE2,i
is the correlation coefficient between

RE1,i and RE2,i. We assume σREj,i = σ, ∀j ∈ J , ∀i ∈ N ,
and ρRE1,iRE2,i = ρ, ∀i ∈ N . We set the predictable
renewable energy generation in the microgrids {REj,i} as the
hourly wind energy generation over a week (from 5 August
2006 to 11 August 2006) in Tucson [23], as shown in Fig.
2. We consider time-invariant aggregate loads in microgrids
with L1,i = 20 MW and L2,i = 30 MW, ∀i ∈ N , and for
simplicity assume that {Lj,i} can be perfectly predicted, i.e.,
δLj,i = 0, ∀j ∈ J , ∀i ∈ N . Accordingly, from (3) it follows
that [∆1,i ∆2,i]

T = [RE1,i − 20 RE2,i − 30]T , ∀i ∈ N .
The prediction error component in the net energy profile is
also obtained as δj,i = δREj,i , ∀j ∈ J , ∀i ∈ N . As a result,
σ∆j,i = σREj,i = σ and ρ∆1,i,∆2,i = ρRE1,i,RE2,i = ρ,
∀j ∈ J , ∀i ∈ N , where σ∆j,i

> 0 and ρ∆1,i,∆2,i
denote

4We assume that microgrid 1 comprises wind generators with site IDs: 151,
161, 162, 163, 170, 171, 189, and microgrid 2 with site IDs: 152, 172, 181,
190, 200, 216, 219, 220 [23].
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Fig. 3. Total energy cost of microgrids versus Smax
1 for two cases with and

without energy cooperation.

the standard deviation of ∆j,i and the correlation between
∆1,i and ∆2,i, respectively. We consider the average daily
electricity prices for both peak and off-peak hours in Tucson
[28] and set λj,i = 89.85 $/MW, ∀j ∈ J , ∀i ∈ N . The
parameters of ESSs and the transmission line connecting the
two microgrids [29] are given in Table I.

Given the aforementioned system setup and by setting ρ = 0
and σ = 30 MW, we plot the total energy cost versus the
storage capacity in microgrid 1 in Fig. 3, while Smax

2 = 110
MW is assumed constant. It is observed that in both cases
with and without energy cooperation, the total energy cost of
microgrids decreases over Smax

1 , which is due to less waste
in surplus energy. Furthermore, it is observed that microgrids
with energy cooperation can achieve the total energy cost
target with a smaller Smax

1 as compared to the case without
energy cooperation. For example, as shown in Fig. 3, to
achieve the total energy cost of 4.4 × 105 $, we can set
Smax

1 = 0 in the case with energy cooperation, while we need
Smax

1 = 115 MW in the case without energy cooperation. This
shows that microgrids’ energy cooperation can significantly
reduce the required storage capacities.

C. Energy Cooperation versus Storage for Cost Reduction

Although both microgrids’ energy cooperation and use of
ESSs can save the total energy cost, it is not clear yet
under what conditions one can be more effective than the
other. In this subsection, we further investigate this issue via
simulations.

Under the same system setup as in Section III-B and by
setting σ = 30 MW, we plot the total energy cost versus
the correlation coefficient5 between the microgrids’ net energy
profiles ρ in Figs. 4-a and 4-b, for two different types of
transmission line. It is observed that the combination of both
microgrids’ energy cooperation and ESSs yields the lowest
total energy cost, while the highest total energy cost results
from the absence of both energy cooperation and ESSs. When
ρ is close to −1, energy cooperation saves the total energy cost
significantly, since it is more likely that the energy surplus in
one microgrid compensates the energy deficit in the other one.
In contrast, when ρ is close to 1, energy cooperation is less

5The correlation between net energy profiles in microgrids depends on
various parameters such as the type of their renewable energy generators
(e.g., one microgrid mainly using solar energy while the other mainly using
wind energy), their geographical diversity, etc.
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Fig. 4. Microgrids’ total energy cost for different operation modes: (a)
Peacock line with R= 0.0945 Ω/Km, (b) Goat line with R= 0.2923 Ω/Km.
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Fig. 5. Microgrids’ total energy exchange: (a) Peacock line with R = 0.0945
Ω/Km, (b) Goat line with R = 0.2923 Ω/Km.
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Fig. 6. Microgrids’ total number of charging and discharging slots: (a)
Peacock line with R= 0.0945 Ω/Km, (b) Goat line with R= 0.2923 Ω/Km.

effective, while most of cost saving is due to ESSs. Last, Fig.
4-b shows that the impact of microgrids’ energy cooperation
in reducing the total energy cost is less significant as compared
to Fig. 4-a, when the transmission line with larger resistance
(R = 0.2923 Ω/Km) is deployed, due to high energy loss
during the energy exchange.

Figs. 5-a and 5-b show the total energy exchanged between
microgrids, i.e.,

∑N
i=1Ej,i, ∀j ∈ J , for two different types

of transmission line. It is observed that the total energy
exchanged between microgrids decreases over ρ due to their
highly correlated net energy profiles. In this case, each micro-
grid relies more on its ESS to deal with energy deficit and thus
the total number of times that the ESS is charged/discharged,
i.e.

∑N
i=1 1{Cj,i > 0}+ 1{Dj,i > 0} with 1{·} denoting the

indicator function, increases over ρ, as shown in Figs. 6-a
and 6-b. It is also observed that while high resistance of the
transmission line reduces the total energy exchanged between
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microgrids (see Fig. 5-a and Fig. 5-b), it leads to more frequent
charging/discharging of ESSs (see Fig. 6-a and Fig. 6-b).

In summary, our above results show that both the energy
cooperation as well as ESSs have significant impacts on the
microgrids’ total energy cost reduction, while one can be more
effective than the other depending on the system setup. We
thus draw the following observations for both long-term and
short-term plannings of cooperative microgrids system:
• For the long-term planning problem that is aimed to

minimize the deployment cost, if the energy cost saving
is mainly due to microgrids’ energy cooperation, ESSs
with small storage capacities should be used for the cost-
effective operation of microgrids. In contrast, if micro-
grids’ energy cooperation is not effective in reducing
the total energy cost, enabling energy cooperation may
not be essential, while installing ESSs with large storage
capacities is more effective.

• For the short-term planning problem, which, on the other
hand, aims to minimize the operation cost of microgrids
with the ESSs and transmission line between microgrids
already deployed, the above results show that the ef-
fectiveness of microgrids’ energy cooperation and their
ESSs in reducing the total energy cost depends on several
parameters, e.g., the correlation between microgrids’ net
energy profiles, the resistance of the line connecting them,
charging/discharging efficiency parameters of ESSs, etc.
Accordingly, in the next section, we design two algo-
rithms, which use ESSs or energy cooperation with higher
priority, respectively. Based on the system setup and using
practical data, the algorithm that leads to a lower total
energy cost can be chosen off-line and then adopted for
real-time implementation.

IV. ONLINE ALGORITHMS FOR REAL-TIME ENERGY
MANAGEMENT OF MICROGRIDS

In this section, we consider the practical setup of noisy
net energy profiles, i.e., δj,i 6= 0, ∀j ∈ J , ∀i ∈ N . We
aim to propose online algorithms for the real-time energy
management of cooperative microgrids such that their total
energy cost is minimized. By assuming the energy prices
λj,i = λ ≥ 0, ∀j ∈ J , ∀i ∈ N for simplicity, we propose the
following algorithms.

A. Store-Then-Cooperate
In this algorithm, the microgrid with energy surplus first

charges its ESS and then transfers the remaining (if any)
to the other microgrid to satisfy its energy deficit or to be
stored in its ESS. This algorithm is more effective when
the energy cost saving is mainly due to ESSs rather than
microgrids’ energy cooperation, e.g., the energy loss in the
transmission line connecting the two microgrids is high. We
set {Gj,i, Ej,i, Cj,i, Dj,i} all equal to zero in the algorithm,
unless otherwise stated. The algorithm is described as follows:

Case A.1) ∆1,i ≥ 0 and ∆2,i ≥ 0. In this case, each
microgrid first charges its ESS. We thus have

Cj,i = min{(Smax
j − Sj,i)/αcj ,∆j,i}, j ∈ J

Sj,i+1 ← Sj,i + αcjCj,i, j ∈ J . (8)

If S1,i+1 = Smax
1 and S2,i+1 = Smax

2 or S1,i+1 < Smax
1

and S2,i+1 < Smax
2 , then this case terminates. Otherwise if

S2,i+1 < Smax
2 and S1,i+1 = Smax

1 , then microgrid 1 transfers
all its energy surplus to microgrid 2 and the decision variables
are updated as

E1,i ← min{∆1,i − C1,i, E},
C2,i ← C2,i + min{E1,i − βE2

1,i, (S
max
2 − S2,i+1)/αc2},

S2,i+1←S2,i+1 +αc2(min{E1,i−βE2
1,i, (S

max
2 −S2,i+1)/αc2}).

(9)

Similarly, if S1,i+1 < Smax
1 and S2,i+1 = Smax

2 , then decision
variables are updated as (9) with the roles of microgrids 1 and
2 swapped.

Case A.2) ∆1,i ≥ 0 and ∆2,i < 0. In this case, the energy
surplus in microgrid 1 is first stored in its ESS. The remaining
energy (if any) is transferred to microgrid 2. The algorithm
thus sets

C1,i = min{∆1,i, (S
max
1 − S1,i)/α

c
1},

E1,i = min{∆1,i − C1,i, E},
S1,i+1 ← S1,i + αc1C1,i. (10)

Let ∆′2,i = ∆2,i + E1,i − βE2
1,i. If ∆′2,i ≥ 0, the transferred

energy from microgrid 1 compensates the energy deficit in
microgrid 2. The remaining energy (if any) is stored in the
ESS of microgrid 2, i.e.,

C2,i = min{∆′2,i, (Smax
2 − S2,i)/α

c
2},

S2,i+1 ← S2,i + αc2C2,i. (11)

Otherwise, If ∆′2,i < 0, then the ESS in microgrid 2 is
discharged first and the remaining energy deficit (if any) is
then drawn from the main grid. We thus have

D2,i = min{αd2S2,i,−∆′2,i}, G2,i = −∆′2,i −D2,i,

S2,i+1 ← S2,i − 1/αd2D2,i. (12)

Case A.3) ∆1,i < 0 and ∆2,i ≥ 0. This case is symmetric
to Case A.2, with the roles of microgrid 1 and microgrid 2
swapped. We thus omit the description of the algorithm here.

Case A.4) ∆1,i < 0 and ∆2,i < 0. In this case, microgrids
do not exchange energy since neither of them has energy
surplus. In particular, each microgrid compensates its deficit
by first discharging its ESS. The remaining energy deficit is
drawn from the main grid. We thus have

Dj,i = min{αdjSj,i,−∆j,i}, Gj,i = −∆j,i −Dj,i, ∀j ∈ J
Sj,i+1 ← Sj,i − 1/αdjDj,i, ∀j ∈ J . (13)

B. Cooperate-Then-Store

This algorithm is devised such that the microgrid with
energy surplus first transfers energy to the other microgrid (if it
has energy deficit) and stores the remaining (if any) in its ESS.
This algorithm is more effective when the energy cost saving is
mainly attributed to microgrids’ energy cooperation rather than
ESSs, e.g., the correlation between the microgrids’ net energy
profiles is small and the energy loss in the transmission line
is low. We set {Gj,i, Ej,i, Cj,i, Dj,i} all equal to zero in the
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algorithm, unless otherwise stated. Similar to the store-then-
cooperate algorithm, this algorithm is described as follows:

Case B.1) ∆1,i ≥ 0 and ∆2,i ≥ 0. In this case, the algorithm
performs the same as Case A.1 in Section IV-A.

Case B.2) ∆1,i ≥ 0 and ∆2,i ≤ 0. In this case, microgrid 1
with excess energy first transfers energy to microgrid 2 with
energy deficit. If the energy deficit in microgrid 2 is higher
than the maximum energy that can be received from microgrid
1, i.e., −∆2,i ≥ E − βE

2
, then we set

E1,i = min{∆1,i, E},
D2,i = min{−(∆2,i + E1,i − βE2

1,i), α
d
2S2,i},

G2,i = −(∆2,i + E1,i − βE2
1,i)−D2,i,

S1,i+1 ← S1,i, S2,i+1 ← S2,i − 1/αd2D2,i. (14)

Otherwise, if −∆2,i < E − βE2
, then microgrid 1 transfers

energy as much as is needed in microgrid 2. Thus, we have

E1,i = min{∆1,i, (1−
√

1 + 4β∆2,i)/(2β)}. (15)

Define ∆′2,i = ∆2,i + E1,i − βE2
1,i. If ∆′2,i ≤ 0, then the

remaining energy deficit in microgrid 2 is compensated using
its ESS and the main grid, and {G2,i, D2,i} are derived from
(14). Otherwise, if ∆′2,i > 0, then the energy surplus in
microgrid 1 is first stored in its ESS and the remaining energy
(if any) is sent to microgrid 2 and stored in its ESS. The
algorithm thus sets

C1,i = min{∆1,i − E1,i, (S
max
1 − S1,i)/α

c
1},

E1,i ← E1,i + min{∆1,i − E1,i − C1,i, E − E1,i},
C2,i = min{E1,i + ∆2,i − βE2

1,i, (S
max
2 − S2,i)/α

c
2},

S1,i+1 ← S1,i + αc1C1,i, S2,i+1 ← S2,i + αc2C2,i. (16)

Case B.3) ∆1,i ≤ 0 and ∆2,i ≥ 0. This case is symmetric
to Case B.2, with the roles of microgrid 1 and microgrid 2
swapped. We thus omit the description of the algorithm here.

Case B.4) ∆1,i ≤ 0 and ∆2,i ≤ 0. In this case, the algorithm
performs the same as Case A.4 in Section IV-A.

In practice, given the system setup and based on the histori-
cal data, we can select one of the above two algorithms which
results in a lower energy cost by off-line computation and then
implement it for microgrids’ real-time energy management. It
is worth noting that every single decision made at each time
slot may not be optimal in the above approach; however, the
overall performance of the selected algorithm is optimized,
since the off-line optimization has taken into account all im-
pacts of ESS capacities, transmission loss, predicted renewable
energy generations and loads, etc.

C. Performance Evaluation

First, we compare the performance of our proposed online
algorithms using the same system setup in Section III-B. Fig.
7 and Fig. 8 show the total energy cost of microgrids versus
the prediction error variance σ2, for the two different types
of transmission line. It is observed from Fig. 7 that the
cooperate-then-store online algorithm performs closer to the
optimal solution derived from the off-line optimization, while
the store-then-cooperate algorithm performs better in Fig. 8.
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Fig. 7. Performance comparison of online algorithms when ρ = 0 and
R = 0.0945 Ω/Km.
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Fig. 8. Performance comparison of online algorithms when ρ = 0 and
R = 0.2923 Ω/Km.

This is because the resistance of the transmission line in Fig.
7 is lower than that in Fig. 8; hence, energy cooperation is
more effective in reducing the total energy cost in Fig. 7.

Next, we consider the special setup where both microgrids
have mainly wind/solar energy generators. In this case, it
can be shown that the correlation coefficient between micro-
grids’ renewable energy generations ρRE1,iRE2,i

is distance-
dependent and can be approximated by an exponential function
of the distance between microgrids, d, as follows [30].

ρRE1,i,RE2,i
= e−ad

b

, ∀i ∈ N (17)

where a and b are empirically obtained coefficients by e.g.
curve fitting techniques. Denote the prediction error variance
of Lj,i as σ2

Lj,i
. We then have the following proposition.

Proposition 4.1: By assuming that L1,i and L2,i, as well as
Lj,i and REk,i, ∀j, k ∈ J , ∀i ∈ N are independent random
variables, it can be shown that for ∀i ∈ N , we have

ρ∆1,i,∆2,i =
σRE1,i

σRE2,i√
σ2
RE1,i

+ σ2
L1,i

√
σ2
RE2,i

+ σ2
L2,i

ρRE1,i,RE2,i .

(18)

Proof: Please refer to Appendix B.
We use the same system setup as in Section III-B. Due

to our assumption that δLj,i = 0, we have σLj,i = 0,
∀j ∈ J , ∀i ∈ N . Accordingly, it follows from (18) that
ρ∆1,i,∆2,i

= ρRE1,i,RE2,i
= ρ, ∀i ∈ N , which can be

computed from (17) with given distance d. We also set
a = 0.04 and b = 0.95. Next, we plot the energy cost saving
versus the distance between the two microgrids d for both
types of transmission line in Fig. 9. It is observed that the
maximum energy cost saving occurs at a distance threshold
denoted by d. The distance threshold in Goat (higher ohmic
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Fig. 9. Energy cost saving versus distance d.

resistance) is d = 30 Km which is smaller than that in
Peacock (lower ohmic resistance) with d = 60 Km. This result
is expected, since the transmission loss per Km in Goat is
higher than that in Peacock; hence, the effectiveness of energy
cooperation is reduced given the same distance. Last, it is
observed that the energy cost saving increases for 0 ≤ d ≤ d,
while the opposite is true for d ≥ d. For 0 ≤ d ≤ d, the
correlation between net energy profiles in the two microgrids
reduces considerably as d increases and thus results in more
energy exchange, while the increase in the transmission loss
is relatively lower. Thus, the energy cost saving increases with
d. However, for d ≥ d, the decrease in the energy cost saving
caused by the relatively high transmission loss is dominated
by the energy cooperation gain due to more independent net
energy profiles. From these observations, we can conclude
that microgrids’ energy cooperation is more effective when
0 ≤ d ≤ d and cooperate-then-store algorithm is thus more
suitable for the online energy management in this case. In
contrast, when d ≥ d, the transmission loss is large such that
the effectiveness of energy cooperation becomes diminished;
as a result, store-then-cooperate algorithm performs better in
this case.

V. EXTENSION TO MORE THAN TWO MICROGRIDS

In this section, we extend our proposed online algorithms in
Section IV to the general case of more than two microgrids.
For the purpose of illustration, we consider a power system
consisting of four microgrids, each of which is modeled based
on the real data available from California, US, over a one-week
scheduling period (from 1 January, 2006 to 7 January, 2006)
[23], [31]–[33]. The result can be also applied for arbitrary
even number of microgrids. We model energy consumers in
the microgrid based on the available data of actual residential
and commercial users given in [31]. The number of energy
consumers in each microgrid and their types are given in Table
II. The solar and wind energy generation data are based on
[23], [32]. The number of wind and solar PV stations in each
microgrid is given in Table III. We also consider sodium-
sulfur based batteries for ESSs in microgrids and set their
charging and discharging efficiencies as αcj = αdj = 0.87,
∀j ∈ {1, . . . , 4} [34]. The total ESS capacities in micro-
grids are presented in Table IV. For simplicity, we assume
microgrids are connected to each other via the same type of
transmission lines, i.e. Peacock, with R = 0.0945 Ω/Km and
set V = 33 KV. By denoting the distance between microgrid j
and microgrid k as djk (or dkj), j, k ∈ {1, . . . , 4}, j 6= k, the

TABLE II
NUMBER OF LOADS IN MICROGRIDS

Microgrid index No. of Commercial loads No. of residential loads
1 390 9500
2 450 12000
3 100 5000
4 250 8000

TABLE III
RENEWABLE ENERGY GENERATION IN MICROGRIDS

Microgrid index No. of wind stations No. of solar PV stations
1 2 5
2 5 2
3 0 8
4 4 0

TABLE IV
ESS CAPACITIES IN MICROGRIDS

Microgrid index Total ESS capacity (MW)
1 80
2 110
3 80
4 110

i (hour)
24 48 72 96 120 144 168

λ
j,i

 (
$/

kW
)

20

40
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80

100

120

Fig. 10. Hourly market electricity price from CAISO [33].

distances between microgrids are set as d12 = 18, d13 = 40,
d14 = 46, d23 = 55, d24 = 45, and d34 = 34 Km. The
electricity prices offered by the main grid to all microgrids are
assumed equal and set according to CAISO electricity market
[33], as shown in Fig. 10.

For the case that renewable energy generation and load are
perfectly known to all microgrids, we can solve the off-line
optimization using the Lagrange duality method, following the
same procedure given in Proposition 3.1. While for the prac-
tical setup of unknown renewable energy generation/load with
prediction errors, we propose a clustering based algorithm,
where the algorithm first divides microgrids into two groups
each consisting of two microgrids, and assumes that only
microgrids within the same group can have energy cooperation
with each other. Next, store-then-cooperate/cooperate-then-
store online algorithms proposed in Section III-C are used for
real-time energy management in each group.

In practice, various methods can be adopted to group
microgrids. Particularly, from the results shown in Section
III-C on the effectiveness of energy cooperation on reducing
microgrids’ total energy cost, we know that the distance
between microgrids and the correlation coefficient between
their net energy profiles can significantly affect the perfor-
mance gain of energy cooperation. Accordingly, one possible
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TABLE V
MICROGRIDS’ ENERGY COSTS IN DIFFERENT CLUSTERING CASES

Microgrids clustering Total energy costs of microgrids ($)
Case I:

1 and 2, 3 and 4 4.7547 × 105

Case II:
1 and 3, 2 and 4 4.7902 × 105

Case III:
1 and 4, 2 and 3 5.1335 × 105

TABLE VI
PERFORMANCE EVALUATION OF THE PROPOSED ONLINE ALGORITHMS

FOR THE BEST CLUSTERING CASE: CASE I

Renewable energy
prediction error (%) Off-line ($) Online Performance

loss (%)
15 4.836 × 105 5.0673 × 105 4.78
30 4.9043 × 105 5.20590 × 105 6.14

clustering approach can be grouping microgrids based on
their distance such that those located close to each other
are clustered in one group. Another approach is to group
microgrids with less correlated net energy profiles (e.g., one
microgrid with solar energy integration while the other one
with wind energy integration). Herein, we consider a more
general framework to group microgrids by making use of the
off-line optimization. Specifically, we first consider all possible
cases for clustering microgrids into groups of two (see Table
V for three possible cases to cluster four microgrids), and
solve the off-line optimization problem for each case given
the system setup and the predicted values of renewable energy
generation/load. Next, we choose the case resulting in the
lowest total energy cost among all possible groupings. In
general, the off-line optimization based clustering approach
is more precise than the distance or correlation based criteria
for grouping microgrids, since it considers the overall effects
of distance, correlation coefficient between microgrids’ net
energy profiles, ESS capacities, etc.

Total energy costs obtained from the off-line optimization
for the three cases of microgrids grouping are presented in
Table V. It is observed that Case I, in which microgrids 1
and 2 are in one group while microgrids 3 and 4 are in the
other group yields the lowest total energy cost. Given this
grouping, we solve the online energy management problem
using our proposed algorithms in Section IV, where the total
energy costs of microgrids for 15% and 30% of renewable
energy prediction errors are presented in Table VI. It is
observed that our proposed online algorithms perform fairly
close to the optimal off-line solution with performance loss
of only 4.78% and 6.14% in the noisy environment with
15% and 30% renewable energy prediction errors, respectively.
Note that in our proposed clustering based online algorithm,
each microgrid can exchange energy with only one other
microgrid within the same cluster and the clustering of the
microgrids also remains unchanged throughout the scheduling
time. However, the performance may be further improved if
we devise more complex algorithms that enable simultaneous
energy exchange among more than two microgrids at each
time slot. In addition, clustering microgrids dynamically over
time based on their instantaneous renewable energy supply and
load demand may also help improve the performance of our

proposed clustering algorithm for energy cooperation.

VI. CONCLUSION

In this paper, we study the energy management problem for
two cooperative microgrids. First, through the off-line opti-
mization, we show that both microgrids’ energy cooperation
and use of ESSs can help mitigate the intermittent renewable
energy generations and thereby reduce the total energy cost,
while their effectiveness depend on several parameters such as
the correlation between the microgrids’ net energy profiles, the
resistance of the line connecting them, etc. Based on the off-
line optimization solution, we propose two online algorithms
of low complexity for the real-time energy management of
cooperative microgrids with arbitrary net energy profile real-
izations. We also propose one possible method to extend the
online energy cooperation to the general case of more than
two microgrids based on a clustering approach. The simulation
results show that our proposed algorithms perform close to the
optimal off-line solution under various practical settings.

APPENDIX A
PROOF OF PROPOSITION 3.1

Problem (P1) cannot be solved for each microgrid inde-
pendently since it is not separable over decision variables
{G1,i, E1,i, C1,i, D1,i} and {G2,i, E2,i, C2,i, D2,i} due to cou-
pling constraints in (5). Let γj,i ≥ 0, ∀j ∈ J , ∀i ∈ N , be the
Lagrange dual variables corresponding to constraints in (5).
The Lagrangian of (P1) is thus expressed as

L =
2∑
j=1

N∑
i=1

(λj,i − γj,i)Gj,i +
2∑
j=1

N∑
i=1

γj,i(Cj,i −Dj,i)

+
2∑
j=1

N∑
i=1

(
γ̄,iβE

2
j,i + Ej,i(γj,i − γ̄,i)

)
−

2∑
j=1

N∑
i=1

γj,i∆j,i.

(19)

Accordingly, the dual function is given by

g({γj,i}) = min
{Gj,i≥0},{Ej,i≥0},{Cj,i≥0},{Dj,i≥0}

L

s.t. (1), and (4). (20)

Thus, the dual problem of (P1) is given by

(D1) : max
{γj,i≥0}

g({γj,i}). (21)

Since (P1) is convex and satisfies the Slater’s condition,
strong duality holds between (P1) and its dual problem (D1)
[26]. Hence, we can solve (P1) optimally by solving its dual
problem (D1) equivalently. In the following, we first solve (20)
to obtain g({γj,i}) with given γj,i ≥ 0, ∀j ∈ J , ∀i ∈ N , and
then search over {γj,i} to maximize g({γj,i}) in (21).

We first have the following lemma.
Lemma A.1: In order for g({γj,i}) to be bounded from

below, it must hold that γj,i ≤ λj,i, ∀j ∈ J , ∀i ∈ N .
Proof: Suppose that γj′,i′ > λj′,i′ holds for some j′ ∈ J

and i′ ∈ N . In this case, by letting Gj,i →∞ it can be shown
from (19) and (20) that L → −∞ and thus resulting g({γj,i})
to become unbounded from below. Hence, γj,i > λj,i cannot
be true for g({γj,i}) to be bounded from below.
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From Lemma A.1, we need to solve the problem in (20)
with given {γj,i} satisfying 0 ≤ γj,i ≤ λj,i, ∀j ∈ J ,
∀i ∈ N . It can be readily verified that the minimization
problem in (20) is now separable over {G1,i, E1,i, C1,i, D1,i}
and {G2,i, E2,i, C2,i, D2,i}, which means that it can be de-
composed into two subproblems (one for each microgrid). The
subproblem corresponding to microgrid j is given as follows:

min
{Gj,i,Ej,i,Cj,i,Dj,i}

N∑
i=1

(
(λj,i − γj,i)Gj,i + γj,i(Cj,i −Dj,i)

+ γ̄,iβE
2
j,i + Ej,i(γj,i − γ̄,i)

)
s.t. (1), and (4),

Gj,i ≥ 0, Cj,i ≥ 0, Dj,i ≥ 0, ∀i ∈ N . (22)

The optimization problem in (22) can be further decomposed
over {Gj,i}, {Ej,i}, and {Cj,i, Dj,i} as follows:

min
{Gj,i≥0}

N∑
i=1

(λj,i − γj,i)Gj,i, j ∈ J , (23)

min
{0≤Ej,i≤E}

N∑
i=1

γ̄,iβE
2
j,i + Ej,i(γj,i − γ̄,i), j ∈ J , (24)

min
{Cj,i≥0},{Dj,i≥0}

N∑
i=1

γj,i(Cj,i −Dj,i)

s.t. (1), j ∈ J . (25)

Given Lemma A.1, the optimal solution to (23) is given by6

G∗j,i = 0, j ∈ J , ∀i ∈ N . (26)

It can be also shown that {E∗j,i}, given in the following,
satisfies the Karash-Kuhn-Tucker (KKT) conditions [26] for
the problem in (24) and is thus an optimal solution to (24).

E∗j,i =

 0 γ̄,i = 0

min

([
γ̄,i−γj,i

2γ̄,iβ

]+
, E

)
otherwise , (27)

for j ∈ J , ∀i ∈ N , where [x]+ , max(0, x). The
optimization problem in (25) is an LP since the objective
and all constraint functions are linear. As a result, the optimal
solution {C∗j,i, D∗j,i} is derived by solving the following LP.

{C∗j,i, D∗j,i}Ni=1 ∈ arg min
{Cj,i≥0},{Dj,i≥0}

s.t. (1)

N∑
i=1

γj,i(Cj,i −Dj,i), (28)

Given {G∗j,i, E∗j,i, C∗j,i, D∗j,i} in (26)-(28), we obtain
g({γj,i}) with given {γj,i} satisfying 0 ≤ γj,i ≤ λj,i, j ∈ J ,
∀i ∈ N . Next, we maximize g({γj,i}) over {γj,i} to solve
the dual problem (D1) given in (21). Problem (D1) is concave
but is not necessarily differentiable; therefore, a subgradient
based method such as the ellipsoid method [35] is applied. It
can be verified that subgradients of g({γj,i}) are expressed as
−(∆j,i +D∗j,i − C∗j,i − E∗j,i + E∗̄,i − βE∗̄,i

2) at γj,i, ∀j ∈ J ,

6Note that if λj,i − γj,i = 0, then the optimal solution G∗
j,i in (23) is not

unique and can take any non-negative value. In this case, for simplicity, we
set G∗

j,i = 0 as the optimal solution to this subproblem.

∀i ∈ N . Therefore, the optimal solution to (D1) is obtained
as {γ?j,i} using the ellipsoid method.

By denoting the optimal solution to (P1) as
{G?j,i, E?j,i, C?j,i, D?

j,i}, it can be verified that {E?j,i} can
be derived from (27) given {γ?j,i}. However, {G?j,i} and
{C?j,i, D?

j,i} cannot be obtained from (26) and (28) directly
with given {γ?j,i}, since the solution to the problem in (20)
is generally not unique for {G?j,i} if λ?j,i − γ?j,i = 0 and/or
for {C?j,i, D?

j,i} if γ?j,i = 0. Given {E?j,i}, (P1) becomes an
LP over {Gj,i, Cj,i, Dj,i}, as expressed in (7), and can be
easily solved via existing software such as CVX [36]. Note
that given {γ?j,i}, each microgrid j independently computes
{G?j,i, E?j,i, C?j,i, D?

j,i}, which shows that the above algorithm
for solving (P1) can be implemented in a distributed manner.
This proposition is thus proved.

APPENDIX B
PROOF OF PROPOSITION 4.1

The correlation coefficient between ∆1,i and ∆2,i, denoted
by ρ∆1,i,∆2,i

, is defined as

ρ∆1,i,∆2,i
=

E
[
(∆1,i −∆1,i)(∆2,i −∆2,i)

]
σ∆1,i

σ∆2,i

, (29)

where ∆j,i and σ∆j,i denote the mean and standard devia-
tion of ∆j,i, respectively, and E[·] denotes the expectation
over ∆j,i. Due to our assumption that L1,i and L2,i, as
well as Lj,i and REk,i, ∀j, k ∈ J , ∀i ∈ N , are inde-
pendent random variables, it follows that E [REk,iLj,i] =
E [REk,i]E [Lj,i], E [L1,iL2,i] = E [L1,i]E [L2,i], and σ2

∆j,i
=

σ2
REj,i

+ σ2
Lj,i

, ∀j ∈ J , ∀i ∈ N . Accordingly,
it can be verified that E

[
(∆1,i −∆1,i)(∆2,i −∆2,i)

]
=

E
[
(RE1,i −RE1,i)(RE2,i −RE2,i)

]
. Using the obtained re-

sults, it can be verified that (18) follows from (29). The proof
of Proposition 4.1 is thus completed.
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