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Abstract A novel design for realizing all optical analog to digital converter will be pro-

posed in this paper. The proposed structure consists of two main parts; a nonlinear

3-channel demultiplexer, followed by an optical coder. The nonlinear demultiplexer will be

used to quantize the input analog signal according to its optical intensity and the coder will

convert the quantized levels into 2-bit binary codes. The nonlinear demultiplexer will be

realized using three nonlinear resonant cavities. At appropriate values of input signal

optical intensity one of the cavities can drop the optical beam to its corresponding output

port. The proposed structure is capable of supporting maximum sampling rate up to 52 GS/

s and total footprint of the structure is about 924 µm2.
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1 Introduction

Photonic crystals (PhCs) are promising candidates for realizing all optical components

suitable for implementing optical integrated circuits for present and future optical com-

munications and signal processing systems. Due to existence of photonic band gap

(Alipour-Banaei and Mehdizadeh 2013a; Diaz-Valencia and Calero 2014; Liu et al. 2015),

which results from periodic modulation of refractive index, these artificial structures are

capable of controlling the propagation of optical beams inside ultra-compact waveguides.

Therefore so many optical components such as filters (Alipour-Banaei and Mehdizadeh

2013b; Djavid et al. 2008; Djavid and Abrishamian 2012; Ren et al. 2014; Robinson and
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Nakkeeran 2013; Roshan Entezar 2015; Taalbi et al. 2013), demultiplexers (Alipour-

Banaei et al. 2014b; Bernier et al. 2008; Bouamami and Naoum 2014; Jiu-Sheng et al.

2015; Khorshidahmad and Kirk 2010; Mansouri-Birjandi and Rakhshani 2013; Mehdiza-

deh and Soroosh 2015; Rostami et al. 2011), switches (Notomi et al. 2005; Teo et al. 2004;

Wang et al. 2009; Zhang et al. 2007), logic gates and other logic devices (Alipour-Banaei

et al. 2014a, c; Bao et al. 2014; Ghadrdan and Mansouri-Birjandi 2013; Goudarzi et al.

2016; Jiang et al. 2015; Jung et al. 2009; Liu et al. 2013; Mehdizadeh et al. 2015; Moniem

2015, 2016; Serajmohammadi et al. 2014) have been proposed based on PhC, whose

dimensions are suitable for integration inside all optical circuits.

Electrical to optical and optical to electrical conversions inside optical networks expose

mortal limitations of speed and bandwidth. Therefore all optical analog to digital con-

verters (ADCs) are ultra-essential for high quality optical systems and networks. Recently

few PhC based ADCs, have been proposed. Miao et al. (2006) proposed a 2-bit all optical

ADC, which was composed of three cascaded optical beam splitters. These splitters have

different splitting ratios. Youssefi et al. (2012) proposed another 2*bit ADC, by combining

nonlinear Kerr effect with two cascaded high efficiency channel drop filter. Fasihi (Fasihi

2014) used three cascaded 3-dB optical power splitters, created inside 2D PhC to realize an

all optical 2-bit ADC.

The fact is that none of above mentioned works perform the analog to digital conversion

completely. All of them only produce quantized levels of input analog signal. But the

produced codes are not well-defined standard binary codes. Most recently a 4-bit all optical

ADC was proposed by Tavousi et al. (2016). In the proposed structure they employed

nonlinear PhC ring resonators. Also they used two input ports for their structure which can

limit the application of the proposed structure in all optical integrated circuits. The other

drawback of the proposed structure is that they used four different refractive indices for the

linear rods of the resonant ring, such that the average different between the refractive

indices is about 0.02, realizing such a structure in real world is too difficult and compli-

cated. In this paper we aim to solve this problem and propose a structure capable of

producing standard binary codes from analog input signal. For this purpose we combined

nonlinear demultiplexer, with an optical coder. The nonlinear demultiplexer performs the

sampling and quantization and the coder produces a 2-bit binary standard code from the

quantized levels obtained from the nonlinear demultiplexer.

In this paper we used plain wave expansion (PWE) and finite difference time domain

(FDTD) methods for performing the required simulations and calculations. For obtaining

accurate results, we used effective refractive index method to reduce 3D simulations into

2D simulations with acceptable accuracy. In this method in order to confine the optical

beams in third dimensions the main material will be sandwiched between two layers of low

refractive index such as SiO2, for this method the refractive index of the material will be

replaced by the effective index of guided modes in the 3D hetero-structure. Qiu (2002)

explored and confirmed the validity of 2D approximation by the effective refractive index

method.

The rest of the paper was organized as follows; in Sect. 2 we introduce the nonlinear

3-channel demultiplexer and its optical behavior, in Sect. 4 the final ADC and its func-

tionality will be discussed and finally conclusions will be discussed in Sect. 4.
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2 Nonlinear demultiplexer

As we know analog to digital conversion consists of three main steps; sampling, quanti-

zation and coding. In this paper the two first steps will be done with a nonlinear 3-channel

demultiplexer, whose output ports should be controlled via optical intensity. The funda-

mental platform used for designing the nonlinear demultiplexer is a 2D square lattice array

of dielectric rods. The fundamental platform has 40 rods in X direction and 46 in Z

direction. Refractive index and radius of rods are n = 3.46 and r = 0.26*a, respectively

where a = 725 nm is the lattice constant of the PhC. Using plane wave expansion (PWE)

method (Johnson and Joannopoulos 2001) the band structure diagram of the fundamental

structure was obtained like Fig. 1 which shows that the fundamental structure has two PBG

regions in transverse magnetic (TM) mode (blue colored area). The second PBG region in

TM mode is at 0.45 \ a/λ \ 0.54 which is equal to 1342 nm \ λ \ 1611 nm. Con-

sidering the PBG region the fundamental PhC is suitable for designing optical device in

TM mode.

For creating the required demultiplexer we need one input and three output waveguides,

which are created by removing dielectric rods from the appropriate locations and directions

inside the fundamental PhC. Also for any output waveguide, there should be a wavelength

Fig. 1 The band structure of the fundamental platform

Fig. 2 Nonlinear demultiplexer along with resonant cavity
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selective structure, which was realized via resonant cavity in this paper. The resonant

cavities consist of two corner and two inner defective rods. The radius of the corner defects

was reduced in order to control the resonant mode and transmission efficiency of the

resonant modes. Then for taking advantage of nonlinear Kerr effect and realizing a non-

linear demultiplexer whose output ports can be controlled via optical intensity, the inner

Fig. 3 Output spectra of the demultiplexer when the input power is at a 0 \ Pin \ 0.25P0, b 0.25P0
\ Pin \ 0.5P0, c 0.5P0 \ Pin \ 0.75P0 and d 0.75P0 \ Pin \ P0

Fig. 4 Variation of resonant wavelengths of the output channels for different values of input power

 38 Page 4 of 11 F. Mehdizadeh et al.

123



rods were replaced with dielectric rods made of doped glass, whose refractive index and

nonlinear Kerr coefficient are n1 = 1.4 and n2 = 10−14 m2/W.

The nonlinear demultiplexer and its output spectra are shown in Fig. 2. The corner and

inner defect rods are shown in blue and green respectively. The output spectra of the

nonlinear demultiplexer for different values of input power are shown in Fig. 3. As shown

in Fig. 3a, the nonlinear demultiplexer has three resonant modes. When the input power is

at 0\ Pin \ 0.25P0 range, these resonant modes are at λ1 = 1548.5 nm, λ2 = 1547.5 nm,

and λ3 = 1546.5 nm for the first, second and third output ports, respectively. However by

increasing the input power the resonant modes shift toward higher wavelengths (as shown

Table 1 Normalized output power of the nonlinear demultiplexer for different values of the optical
intensity

Pin Ch 1 (%) Ch 2 (%) Ch 3 (%)

0 \ Pin \ 0.25P0 2 2 1

0.25P0 \ Pin \ 0.5P0 80 5 2

0.5P0 \ Pin \ 0.75P0 5 75 2

0.75P0 \ Pin \ P0 3 5 75

Fig. 5 Optical behavior of the nonlinear demultiplexer for the optical intensity being at a 0\ Pin \ 0.25P0,
b 0.25P0 \ Pin \ 0.5P0, c 0.5P0 \ Pin \ 0.75P0 and d 0.75P0 \ Pin \ P0
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in Figs. 3, 4). The central wavelength of the resonant modes of output ports for different

values of input power are listed in Table 1.

An optical beam via central wavelength of 1550 nm and optical intensity (Pin) less than

P0 = 0.1 W/µm2 was used for simulating the nonlinear demultiplexer. Due to existence of

nonlinear rods, the functionality of the structure strongly depends on input optical inten-

sity. When the optical intensity is at 0 \ Pin \ 0.25P0, the central wavelength of the input

beam coincides with none of the resonant cavities, so none of the cavities will drop the

optical beam from input port into their corresponding output waveguides and the nor-

malized power at all output ports will be less than 5% (Fig. 6a). Therefore all the output

ports will be OFF (Fig. 5a). Increasing the input optical intensity increases the refractive

index of inner rods, which results in blue shift in the resonant wavelength of the cavities.

When the input optical intensity is about 0.25P0 \ Pin \ 0.5P0, the resonant mode of the

first cavity coincides with the central wavelength of input beam, so it will drop the optical

beam into the first output waveguide and Ch#1 will be on (Fig. 5b). In this case the

normalized power at Ch#1, Ch#2 and Ch#3 will be 80, 5 and 2% respectively (Fig. 6b).

Similarly When the input optical intensity is about 0.5P0 \ Pin \ 0.75P0, the resonant

mode of the second cavity coincides with the central wavelength of input beam, so it will

drop the optical beam into the second output waveguide and Ch#2 will be on (Fig. 5c). In

this case the normalized power at Ch#1, Ch#2 and Ch#3 will be 5, 75 and 2% respectively

(Fig. 6c). Finally When the input optical intensity is about 0.75P0 \ Pin \ P0, the resonant

mode of the third cavity coincides with the central wavelength of input beam, so it will

drop the optical beam into the third output waveguide and Ch#3 will be on (Fig. 5d). In this

Fig. 6 Normalized output power of the nonlinear demultiplexer for the optical intensity being at
a 0 \ Pin \ 0.25P0, b 0.25P0 \ Pin \ 0.5P0, c 0.5P0 \ Pin \ 0.75P0 and d 0.75P0 \ Pin \ P0
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case the normalized power at Ch#1, Ch#2 and Ch#3 will be 3, 5 and 75% respectively

(Fig. 6b). As one can see the maximum normalized power for Ch#1, Ch#2 and Ch#3 at ON

states are 80, 75 and 75% respectively. Also the maximum normalized power for Ch#1,

Ch#2 and Ch#3 at OFF states are 5%. Therefore the ratio of OFF optical power level to ON

optical power level for Ch#1, Ch#2 and Ch#3 will be 6.25, 6.7 and 6.7% respectively.

3 All optical ADC

Now for completing the analog to digital conversion and realizing the final ADC, we

should add a section which can convert the quantized levels to 2-bit binary code. The coder

section was realized by creating some additional waveguides inside the structure. The final

sketch of the proposed 2-bit ADC is shown in Fig. 7.

The total structure has one input and two output ports. O1 is representative of the least

significant bit (LSB), and O2 is representative of the most significant bit (MSB). Between

input waveguide and output waveguides there are three resonant cavities and some

intermediate waveguides. W1 is the input and W2 and W3 are the output waveguides. W4,

W6 and W5 correspond to the first, second and third resonant cavities respectively. W6

was split to two parts via a T-shaped splitter. The resulted splitter has two branches labeled

W7 and W8. W7 joins W4 at the front side of W2, also W8 joins W5 at the front side of

W3. Therefore the required optical paces will be created between the input port and output

ports. At the following we are going to investigate the functionality of the proposed

structure.

Fig. 7 The final sketch of the proposed ADC
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The proposed structure is a 2-bit optical ADC, so there should be four different working

states corresponding to four different ranges for the input optical intensity. In this paper

the, for the output ports optical intensity more than 0.25P0 (P0 = 0.1 W/µm2) considered as

logic 1 and optical intensity less the 0.05P0 considered as logic 0. When the input signal

optical intensity is at 0 \ Pin \ 0.25P0 (P0 = 0.1 W/µm2), none of the resonant cavities

would couple the optical beam from input port to their corresponding output waveguides.

So both of the output ports will be OFF and the generated code will be “00” (Fig. 8a).

For Pin at 0.25P0 \ Pin \ 0.5P0, only the first cavity will drop the optical beam from

W1 into W4. The dropped beam finds its wave toward O1 through W4 and W7. So O1 will

be on and O2 will be OFF, and the generated code will be “01” (Fig. 8b). For Pin at

0.5P0 \ Pin \ 0.75P0, only the second cavity will drop the optical beam from W1 into

W5. The dropped beam finds its way toward O2 through W5 and W8. So O2 will be on and

O1 will be OFF, and the generated code will be “10” (Fig. 8c). Finally when Pin is at

0.75P0 \ Pin \ P0, only the third cavity will drop the optical beam from W1 into W6. The

dropped beam finds its way toward O1 and O2 through W5, W7 and W8. So O1 and O2

will be on, and the generated code will be “11” (Fig. 8d). These states were summarized in

Table 2.

As shown we proposed an all optical 2-bit analog to digital converter which is capable

of generating standard 2-bit binary codes from the optical intensity of the input analog

signal. Time response of the structure for the third case is shown in Fig. 9. As shown in

Fig. 8 Optical behavior of the proposed optical ADC for the optical intensity being at a 0 \ Pin \ 0.25P0,
b 0.25P0 \ Pin \ 0.5P0, c 0.5P0 \ Pin \ 0.75P0 and d 0.75P0 \ Pin \ P0
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Fig. 9, the maximum time required for the O2 output port to reach 0.25P0 is about

cT = 4200 µm, for converting this value to standard time we should divide it by

c = 3 9 108 m/s, there for the maximum time required for O2 to reach 0.25 P0 is about

14 ps. In order to obtain the shut off delay we turned off the source at cT = 700 µm, Fig. 9

shows that at cT = 8560 µm the output power declines to 0.05 P0, so the maximum shut off

time is about cT = 1560 µm. If we divide this value by c = 3 9 108 m/s, the maximum

time required for the O2 output port to reach 0.05P0 when the source is OFF, will be about

5.2 ps, so the minimum time period for the input pulse should be more than 19.2 ps.

Therefore the maximum sampling rate will be about 52 GS/s. Total footprint of the

proposed optical ADC is about 924 µm2.

4 Conclusion

In this paper an all optical analog to digital converter was proposed based on nonlinear

resonant cavities. The proposed structure has one input and two output ports, which

generates 2-bit binary codes from the optical input signal. A nonlinear 3-channel demul-

tiplexer was used to quantize the optical intensity of the input signal, then an optical coder

was used to convert the quantized levels into 2-bit binary codes. Maximum sampling rate

and total foot print of the structure are about 52 GS/s and 924 µm2 respectively.

Table 2 Working states of the
proposed ADC

Pin O2 O1

0 \ Pin \ 0.25P0 0 0

0.25P0 \ Pin \ 0.5P0 0 1

0.5P0 \ Pin \ 0.75P0 1 0

0.75P0 \ Pin \ P0 1 1

Fig. 9 Time response of the structure used for calculating the delay times
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