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a  b  s  t  r  a  c  t

Online  social  networks  (OSNs)  recommend  new  friends  to  registered  users  based  on  local-based  features
of the  graph  (i.e.  based  on  the number  of  common  friends  that  two  users  share).  However,  OSNs  do  not
exploit  all  different  length  paths  of  the network.  Instead,  they  consider  only  pathways  of maximum  length
2 between  a user  and  his  candidate  friends.  On  the other  hand,  there  are  global-based  approaches,  which
detect  the  overall  path  structure  in  a  network,  being  computationally  prohibitive  for  huge-sized  social
networks.  In  this  paper  we  provide  friend  recommendations,  also  known  as  the  link  prediction  problem,
by  traversing  all paths  of a  limited  length,  based  on  the “algorithmic  small  world  hypothesis”.  As a  result,
we  are  able  to  provide  more  accurate  and faster  friend  recommendations.  We  also  derive  variants  of
ocial networks our method  that  apply  to different  types  of  networks  (directed/undirected  and  signed/unsigned).  We
perform  an  extensive  experimental  comparison  of  the  proposed  method  against  existing  link  prediction
algorithms,  using  synthetic  and  three  real  data  sets  (Epinions,  Facebook  and  Hi5).  We  also  show  that  a
significant  accuracy  improvement  can  be  gained  by  using  information  about  both  positive  and  negative
edges.  Finally,  we  discuss  extensively  various  experimental  considerations,  such  as  a  possible  MapReduce
implementation  of  FriendLink  algorithm  to achieve  scalability.
. Introduction

Online social networks (OSNs) such as Facebook.com, Mys-
ace.com, Hi5-.com, etc. contain gigabytes of data that can be
ined to make predictions about who is a friend of whom. OSNs

ather information on users’ social contacts, construct a large inter-
onnected social network, and recommend other people to users
ased on their common friends. The premise of these recommenda-
ions is that individuals might only be a few steps from a desirable
ocial friend, but not realize it.

In this paper, which is an extension of our previously published
ork in Papadimitriou et al. (2011),  we focus on recommendations

ased on links that connect the nodes of an OSN, known as the
ink Prediction problem, where there are two main approaches
hat handle it (Liben-Nowell and Kleinberg, 2003). The first one is
ased on local features of a network, focusing mainly on the nodes
tructure; the second one is based on global features, detecting the

verall path structure in a network. For instance, an example of a
ocal-based approach is shown in Fig. 1. Facebook.com or Hi5.com
se the following style of recommendation for recommending

� A preliminary version of this paper entitled “Predicting Links in Social Networks
f  Trust via Bounded Local Path Traversal” has been presented at the 3rd Conference
n Computational Aspects of Social Networks (CASON’2011).
∗ Corresponding author.

E-mail address: apapadi@csd.auth.gr (A. Papadimitriou).
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© 2012 Elsevier Inc. All rights reserved.

new friends to a target user U1: “People you may  know: (i) user
U7 because you have two  common friends (user U5 and user U6)
(ii) user U9 because you have one common friend (user U8) . . .”.
The list of recommended friends is ranked based on the number
of common friends each candidate friend has with the target
user.

1.1. Motivation

Compared to approaches which are based on local-based fea-
tures of a network, we  expand user’s neighborhood horizon by
exploiting paths of greater length. In contrast, they consider only
pathways of maximum length 2 between a target user and his can-
didate friends. In our approach, we assume that a person can be
connected to another with many paths of different length (through
human chains). For example, in Fig. 1, according to existing OSNs, U1
would get as friend recommendation with equal probability U4 or
U7. However, if we  take into account also paths of length 3, then U4
should have a higher probability to be recommended as a friend to
U1. Compared to global-based approaches, which detect the over-
all path structure in a network, our method is more efficient. This
means, that our method, which is based on a limited path traver-
sal, requires less time and space complexity than the global based

algorithms. The reason is that we traverse only paths of length
� in a network based on the “algorithmic small world hypoth-
esis”, whereas global-based approaches detect the overall path
structure.

dx.doi.org/10.1016/j.jss.2012.04.019
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:apapadi@csd.auth.gr
dx.doi.org/10.1016/j.jss.2012.04.019
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method outperforms the other methods in terms of accuracy. The
Fig. 1. Social network example.

.2. Contribution

The contributions of our approach are summarized as follows:
i) We  define a new node similarity measure that exploits local and
lobal characteristics of a network. (ii) We  provide more accurate
riend recommendations, by traversing paths of different length
hat connect a person to all other persons in an OSN. (iii) We  pro-
ide higher efficiency than the global-based approaches, by limiting
ur traversing in �-length paths in a network. (iv) We  also derive
ariants of our method that apply to different types of networks
directed/undirected and signed/unsigned). We  show that a signif-
cant accuracy improvement can be gained by using information
bout both positive and negative edges. (v) To run our algorithm
ith huge sized networks, we discuss its possible MapReduce

Dean and Ghemawat, 2008) implementation. Note that this paper
s an extension of our previously published work in Papadimitriou
t al. (2011).

The rest of this paper is organized as follows. Section 2 sum-
arizes the related work, whereas Section 3 briefly reviews

reliminaries in graphs employed in our approach. Section 4
efines a new node similarity measure in OSNs. A motivating
xample, the proposed approach, its complexity analysis, and the
xtension of FriendLink for different types of networks, i.e. signed
etworks, are described in Section 5. Experimental results are
iven in Section 6. Also, in Section 7 we discuss the scalability of
ur method by proposing a possible MapReduce implementation.
inally, Section 8 discusses basic research questions, whereas Sec-
ion 9 concludes this paper.

. Related work

Based on his provocative “small world” experiments, Stanley
ilgram claimed that everyone in the world could be connected

o everyone else via an average small path length (Milgram, 1967).
his experiment is also known as the “six degrees of separation”,
lthough Milgram did not use this term himself. Recently, Goel
t al. (2009) reported experiments for the “algorithmic small-world
ypothesis”, where half of all chains can be completed in 6–7 steps,
upporting the “six degrees of separation” assertion. However, they
eport that the number of steps in a search chain depends not only
n the actual distance between the source and the target, but also
n the search strategies of the intermediaries.

The research for link prediction in social networks, tries to infer
ew interactions among members of a social network that are likely
o occur in the near future. There are two main approaches (Liben-
owell and Kleinberg, 2003) to handle the link prediction problem.

he first one is based on local features of a network, focusing mainly
n the nodes structure; the second one is based on global features,
etecting the overall path structure in a network.
s and Software 85 (2012) 2119– 2132

Tylenda et al. (2009) proposed methods to incorporate temporal
information available on evolving social networks for link pre-
diction. Schifanella et al. (2010) discover the connection between
the usage of shared tags and the social links existing between
users. When they considered the annotations of the most active
users, almost all of the semantic similarity measures considered
outperform the neighbor suggestions from the Last.fm system at
predicting actual friendship relations. Zheleva et al. (2008) study
the predictive power of overlaying friendship and family ties on
three real-world social networks. Zhou et al. (2009) and Lü et al.
(2009) propose a similar idea to our own  but they do not include any
attenuation factor experimentation, path normalization or a pos-
sible MapReduce implementation scenario to support huge sized
networks.

There is a variety of local-based similarity measures (Liben-
Nowell and Kleinberg, 2003), which are node-dependent (i.e.
Common Neighbors index or else known as Friend of a Friend
(FOAF) algorithm, Adamic/Adar index, Jaccard Coefficient, etc.) for
analyzing the “proximity” of nodes in a network. FOAF (Chen et al.,
2009) is based on the common sense that two  nodes vx, vy are
more likely to form a link in the future, if they have many common
neighbors. More complicated local-based measures such as Jaccard
Coefficient (Liben-Nowell and Kleinberg, 2003) and Adamic/Adar
index (Adamic and Adar, 2005), refine the simple counting of com-
mon  features by weighting rarer features more heavily. Another
well-known local-based similarity measure is Preferential Attach-
ment (Liben-Nowell and Kleinberg, 2003). The basic premise of
Preferential Attachment (PA) is that the probability a new edge
involves a node is proportional to the current number of its neigh-
bors.

There is a variety of global-based approaches (Liben-Nowell and
Kleinberg, 2003) which are path-dependent (i.e. Katz status index,
RWR  algorithm, SimRank algorithm, etc.). Katz (1953) introduced a
status index that computes the important and influential nodes in
a social network. Random Walk with Restart (RWR) algorithm (Pan
et al., 2004) is based on a Markov chain model of random walks
through a graph. In the same direction with RWR, the Markov Dif-
fusion (MD) kernel (Fouss et al., 2006) is based on a discrete-time
diffusion Markov model. Moreover, Fouss et al. (2007) and Fouss
et al. (2012) proposed a random walk model that computes matrix
kernels (i.e. the average commute time, the regularized commute
time (RCT), etc.) to capture similarities between any pair of nodes
in a network. These matrix kernels have the property of increas-
ing, when the number of paths connecting two nodes increases
and when the length of connecting paths decreases. Furthermore,
Sarkar and Moore (2007) proposed a truncated commute time ran-
dom walk model to compute all “interesting” pairs of approximate
nearest neighbors in truncated commute times, without computing
it between all pairs. Notice that truncated commute time (Sarkar
and Moore, 2007) algorithm shares a similar idea with our method,
but it questionable that it has not yet been compared with other
state-of-art link prediction algorithms. SimRank (Jeh and Widom,
2002) also computes a global-based similarity measure based on
the structural context of a network that says “two objects are sim-
ilar if they are related to similar objects”. Finally, proposed an
algorithm based on the hierarchical network structure.

The novelty of our approach compared to existing approaches
is as follows: (i) Our method can be categorized as a local-based
similarity measure, because it relies on a truncated strategy of
counting paths in a graph. We  compare our method against FOAF,
Adamic/Adar and PA algorithms, as representative of the local-
based measures, and as will be experimentally shown later, our
reason is that we take into account more information by expand-
ing the user’s neighborhood horizon. (ii) In contrast to global-based
algorithms, our method is more efficient, because it is based on a
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Fig. 2. Adjacency matrix A of graph G.

ocal-based similarity measure. Thus, it requires less time and space
omplexity than global based algorithms. We  have compared our
ethod against RWR, Katz, MD  and RCT, among others, as represen-

atives of the global based algorithms, and our method outperforms
ll these methods. The reason is that global methods have to com-
ute the inverse of a n × n matrix (n is number of vertices in a
etwork) resulting to O(n3) time complexity, whereas our method
equires a linear CPU time to the network size n. Moreover, our
ethod is more effective in terms of accuracy. The reason is that

lobal methods traverse globally the social network, missing to
apture adequately the local characteristics of the graph.

. Preliminaries in graphs

A graph G = (V, E) is a set V of vertices and a set E of edges such
hat an edge joins a pair of vertices. In this paper, G will always
e a general undirected and unvalued graph as shown in Fig. 1. G
xpresses friendships among users of an OSN and will be used as
ur running example, throughout the paper.

The adjacency matrix A of graph G is a matrix with rows and
olumns labeled by graph vertices, with a 1 or 0 in position (vi, vj)
ccording to whether vi and vj are friends or not. For an undirected
raph, the adjacency matrix is symmetric. In Fig. 2, we  present the
esulting adjacency matrix A of graph G.

The adjacency matrix of graph G when raised to the power of 2
esults in the matrix shown in Fig. 3, which presents the number of
ength-2 paths that exist between each pair of graph nodes. In our

unning example, as shown in Fig. 3, node U1 has 2 length-2 paths
onnecting him to U4 and U7, and 1 length-2 paths connecting him
o U9. Notice that by raising the adjacency matrix A  to the power of

Fig. 3. Adjacency matrix A  of graph G raised to the power of 2.
s and Software 85 (2012) 2119– 2132 2121

3, we  get the number of length-3 paths between each pair of nodes
in G. This process can be repeated for higher powers.

4. Defining a node similarity measure

In this section, we  define a new similarity measure to determine
a way of expressing the proximity among graph nodes. Let vi and vj

be two  graph nodes and sim(vi, vj) a function that expresses their
similarity. The higher the similarity score between two  nodes, the
higher the possibility of them being friends.

Suppose that two  persons in an OSN want to have a relation-
ship, but the shortest path between them is blocked by a reluctant
broker. If there exists another pathway, the two persons are likely
to use it, even if it is longer and “less efficient”. In general, two per-
sons can use all the pathways connecting them, rather than just the
shortest path between them. Thus, our method expands the idea of
shortest paths connection between two persons in an OSN.

By traversing all possible paths between a person and all other
persons in an online social graph, a person can be connected to
another by many possible paths (through human chains). Our
method assumes that persons in an OSN can use all the pathways
connecting them, proportionally to the pathway lengths. Thus, two
persons who are connected with many unique pathways have a
high possibility to know each other, proportionally to the length of
the pathways they are connected with.

For example, referring back to Fig. 1, if we consider only length-
2 paths, then U1 would get as friend recommendation with equal
probability U4 or U7. However, if we take into account also length-3
paths, then U4 should have a higher probability to be recommended
as a friend to U1.

Definition 1. The similarity sim(vx, vy) between two graph nodes
vx and vy is defined as the counts of paths of varying length � from
to vx and vy:

sim(vx, vy) =
�∑

i=2

1
i − 1

·

∣∣∣pathsi
vx,vy

∣∣∣
∏i

j=2(n − j)
(1)

where

• n is the number of vertices in a graph G,
• � is the maximum length of a path taken into consideration

between the graph nodes vx and vy (excluding paths with cycles).
By the term “paths with cycles” we  mean that a path cannot be
closed (cyclic). Thus, a node can exist only one time in a path
(e.g. path v1 → v2 → v3 → v1 → v5 is not acceptable because v1 is
traversed twice),

• 1/(i − 1) is an “attenuation” factor that weights paths according to
their length �. Thus, a 2-step path measures the non-attenuation
of a link with value equals to 1 (1/(2 − 1) = 1). A 3-step path mea-
sures the attenuation of a link with value equals to 1/2 (1/(3 − 1)
= 1/2), etc. In this sense, we  use appropriate weights to allow the
lower effectiveness of longer path chains. Notice that we have also
tested experimentally other possible attenuation factors such as
Katz’s original exponential ˇ�, the logarithmic 1/log(i),  etc. and
as will be shown later the attenuation factor 1/(i  − 1) attains the
best accuracy results.

•
∣∣∣paths�

vx,vy

∣∣∣ is the number of all length-� paths from vx to vy,
∏i
•

j=2(n − j) is the number of all possible length-� paths from vx

to vy, if each vertex in graph G was  linked with all other vertices.
Notice that, we do not count all paths of length-� that lead from
all users to every other user in the social graph.
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Fig. 4. User matrix that contains all paths of

Finally, the similarity is computed for nodes that are connected
ith paths of length � ≥ 2. This is because when there is a path

etween two nodes of length 1 they are already friends.

. The proposed approach

In this section, through a motivating example we  first provide
he outline of our approach, named FriendLink. Next, we  analyze
he steps of the proposed algorithm.

.1. Outline

Our FriendLink approach finds similarities between nodes in
n undirected graph constructed from the connection data. The
riendLink algorithm uses as input the connections of a graph G
nd outputs a similarity matrix between any two nodes in G. There-
ore, friends can be recommended to a target user u according to
heir weights in the similarity matrix. In the following, to illustrate
ow our approach works, we apply the FriendLink algorithm to our
unning example. As illustrated in Fig. 1, 9 users are connected in a
raph.

If we have to recommend a new friend to U1, then there is no
irect indication for this task in the original adjacency matrix A,
s shown in Fig. 2. However, after performing the FriendLink algo-
ithm, we can get a similarity matrix between any two  nodes of
raph G and recommend friends according to their weights.

Firstly, we modify the adjacency matrix A  so that instead of
olding 0/1 values, the (i, j) entry of the matrix A  is a list of paths

rom i to j. The idea is that, if you have the 0/1 adjacency matrix of a
raph, and you raise that matrix to the Nth power, then the (vi, vj)
ntry of the result shows how many length-N paths exist from node
i to node vj (here the length is measured in the number of traversed
dges). Then, instead of just counting the paths, we keep track of
ll the actual paths themselves. Then, we perform matrix multipli-
ation of the modified adjacency matrix with itself but, instead of

ultiplying and adding entries, we produce all paths from node vi

o node vj . As shown in Fig. 4, we have created all paths of length
 and 3, which connect each node of graph G to every other graph
ode. Notice that paths containing loops are excluded.
 2 and 3 in graph G of our running example.

Next, we update the similarity between nodes vi and vj , for each
produced length-� path, where vi is the start node and vj is the des-
tination node (i.e. all paths of length [2.  . . �]). For the calculation of
the similarity value between nodes vi and vj we use Eq. (1).  In our
running example, suppose we  calculate the similarity between U1
with U4 and U7, respectively. Firstly, as shown in Fig. 4, the sim-
ilarity between U1 and U4 is computed based on the three paths
that connect them (1→2→4,  1→3→4, and 1→8→9→4). Accord-
ing to Eq. (1),  each of the paths 1→2→4 and 1→3→4 corresponds
to a weight of 0.1428 (1 path of length-2 that connects the two
nodes divided to the 7 possible paths of length-2 that could exist
between them and this ratio is multiplied with an attenuation fac-
tor equal to 1), while path 1→8→9→4 corresponds to a weight of
0.0119 (1 path of length-3 that connects the two  nodes divided to
the 42 possible paths of length-3 that could exist between them
and this ratio is multiplied with an attenuation factor equal to
0.5). Thus, the total similarity between U1 and U4 equals to 0.2975
(0.1428 + 0.1428 + 0.0119). Secondly, as shown also in Fig. 4, there
are two paths (1→5→7  and 1→6→7) that connect U1 with U7. The
weight of each path is again 0.1428. The total similarity between U1
and U7 equals to 0.2856 (0.1428 + 0.1428). Notice that the weight
that corresponds to each path of length � is computed as the ratio
between the existed paths of length � to the total possible paths of
length �, which are calculated by the denominator of Eq. (1).

In Fig. 5, we present the node similarity matrix of graph G. There-
fore, new friends can be recommended according to their total
weight, which is computed by aggregating all paths connecting
them with the target user, proportionally to the length of each path.

In our running example, as shown in Fig. 5, user U1 would receive
user U4 as friend recommendation. The resulting recommendation
is reasonable, because U1 is connected with more paths to user U4
than those that connect U1 and U7. That is, the FriendLink approach
is able to capture the associations among the graph data objects. The
associations can then be used to improve the friend recommenda-
tion procedure, as will be verified by our experimental results.
5.2. The FriendLink algorithm

In this section, we describe our FriendLink algorithm in detail.
Our Friendlink algorithm computes node similarity between any
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Fig. 5. Node similarity matrix. It presen

wo nodes in a graph G. The initial input of Friendlink is the num-
er n of nodes of G, the adjacency matrix A, and the length � of
aths that will be explored in G. To enumerate all simple paths

n G, Rubin’s algorithm (Rubin, 1978) can be employed. However,
ubin’s algorithm uses O(n3) matrix operations to find all paths of
ifferent length between any pair of nodes, where n is the number
f nodes in G. In the following, we customize Rubin’s algorithm to
reate only paths of length up to � for our purpose.

As shown in Fig. 6, our FriendLink algorithm consists of a main
rogram and two functions. In the main program, we  modify the
djacency matrix so instead of holding 0/1 values, the (i, j) entry
f the matrix A is a list of paths from i to j. Then, in the function
ombine Paths(), we perform the matrix multiplication algorithm.
owever, instead of multiplying and adding entries, we  concate-
ate pairs of paths together. Notice that, for simplicity reasons, we
o not include the code for loop removals in Fig. 6. Finally, in the
unction Compute Similarity(), we update the similarity between
odes i and j, for each length-� path we find, where i is the start
ode and j is the destination node (i.e. all paths of length [2.  . . �]).
or the update of the similarity value between nodes i and j we  use
q. (1).  Notice that, we do not take into account cyclic paths in our
imilarity measure.

.3. Complexity analysis

Social networks are large and contain a significant amount of
nformation. Global based algorithms that can be used for link pre-
iction and friend recommendation, such as Random Walk with
estart(RWR) (Tong et al., 2006; Pan et al., 2004), Katz index (Katz,
953), the Markov Diffusion (MD) kernel (Fouss et al., 2006) and
he Regularized Commute Time (RCT) (Fouss et al., 2007, 2012) are
omputationally prohibitive for large graphs, because they require
he inversion of a matrix. For instance, the time complexity of Katz
ndex is mainly determined by the matrix inversion operator, which
s O(n3). There is also a faster version (Foster et al., 2001) of Katz sta-
us index that reduces computational complexity from time O(n3)
o O(n + m), where m is the number of edges. RWR  algorithm also
equires a matrix inversion, which can be pre-computed and stored
or faster on-line operations. This choice is fast on query time, but
equires additional storage cost (i.e. quadratic space on the number
f nodes on the graph). A solution to this is that, the matrix inver-
ion can be computed on the fly, through power iteration. However,
ts on-line response time is linear to the iteration number and the
umber of edges. Notice that Tong et al. (2006) proposed a faster
ersion of RWR. However, it is less accurate than the original RWR,
hich is not an adequate solution to the friend recommendation
roblem, where accuracy is one of the most important parameters.

Friend of a Friend algorithm (FOAF), as a representative of the
ocal-based methods, considers very small paths (only paths of

ength 2) between any pair of nodes in G. In particular, for each
x node, FOAF traverses all its neighbors and then traverses the
eighbors of each of vx’s neighbor. Since the time complexity to
raverse the neighborhood of a node is simply h (h is the average
 possibility of two  users being friends.

nodes degree in a network) and our graph G is sparse, it holds that
h < < n. Thus, the time complexity of FOAF is O(n  × h2). The space
complexity for FOAF is O(n  × h).

Our FriendLink algorithm considers also paths with higher
length (l-length paths). Based on Milgram’s, 1967 “small-world
hypothesis”, l can take integer values in the interval [2,6], where for
l = 2 our FriendLink equals to the FOAF algorithm. Thus, FriendLink’s
time complexity is O(n × hl). The space complexity for FriendLink is
also O(n × h). Notice that in our code we  store adjacent nodes using
adjacency lists and not a matrix structure. However, for simplicity
reasons, in Fig. 6 we  present our algorithm using a matrix structure.

5.4. Extending FriendLink for different types of networks

Until this point in our paper analysis, we  dealt with un-weighted
and undirected networks. However, our algorithm can be eas-
ily extended to different types of networks. In this section, we
derive variants of FriendLink that apply to directed networks
and networks with weighted edges, including the case of edges
with negative weights (signed networks). Applying FriendLink to
directed graphs can be achieved (i) by simply disregarding the edge
directions (Wasserman and Faust, 1994), (ii) or by replacing the
original adjacency matrix A with an asymmetric one.

For weighted networks, if edges weights are all positive,
FriendLink applies trivially. In some networks, however, edges have
positive as well as negative weights. Such signed graphs arise for
instance in social networks (i.e. Epinions.com, Shashdot Zoo, etc.)
where negative edges denote enmity instead of friendship. In such
signed graphs, FriendLink’s equation (1),  which is based on the adja-
cency matrix, can be interpreted as weighted sums of powers of the
adjacency matrix which denote path count in the network. Thus,
if some edges have negative weight, the total weight of a path is
counted as the product of the edges’s weights, based on the assump-
tion of multiplicative transitivity of the structural balance theory
(Hage and Harary, 1983; Leskovec et al., 2010), as formulated in the
graph-theoretic language by Hage and Harary (1983).

Structural balance theory considers the possible ways in which
triangles on three individuals can be signed. Triangles with three
positive signs exemplify the principle that “the friend of my friend is
my friend”, whereas those with one positive and two negative edges
capture the notions “the enemy of my  friend is my  enemy”, “the
friend of my  enemy is my  enemy”, and the “enemy of my  enemy is
my friend”.

6. Experimental evaluation

In this section, we compare experimentally our FriendLink algo-
rithm with 8 other link prediction algorithms. In particular, we use
in the comparison the Markov diffusion kernel (Fouss et al., 2006),

the Regularized commute-time kernel (Fouss et al., 2012), the Ran-
dom Walk with Restart (Pan et al., 2004) algorithm, the Katz (1953)
status index, the Adamic and Adar (2005), the Preferential Attach-
ment (Newman, 2001), the Friend of a Friend (Chen et al., 2009)
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Fig. 6. The Fri

nd the Shortest Path (Fredman and Tarjan, 1987) algorithm. Our
xperiments were performed on a 3 GHz Pentium IV, with 2 GB of
emory, running Windows XP. All algorithms were implemented

n Matlab.

.1. Algorithms settings

In this following, we present basic information of the algorithms
hat will be compared experimentally with our proposed method:

The Markov Diffusion kernel: The Markov Diffusion kernel
Fouss et al., 2006) is a distance measure between nodes of a graph.
t is based on a discrete-time diffusion Markov model, where an
nitial state starts from a node vx and reaches a node vy after t time
teps. The similarity matrix (i.e. Kernel) between nodes of a graph,
an be computed by Eq. (2):

ernelMD(t) = (evx − evy )T · Zt · ZT
t · (evx − evy ) (2)

ith Zt = (1/t) · (I − P)−1 · (I − Pt) · P, where I is the identity matrix and

 is the transition-probability matrix. Notice that P = D−1A, where D
s a diagonal matrix containing the outdegrees of the graph nodes.

oreover, evx and evy are the column vectors of nodes vx and vy,
espectively.
nk algorithm.

The Regularized Commute-Time kernel: The Regularized
Commute-Time kernel (Fouss et al., 2012) performs a regulariza-
tion on the commute-time kernel (Fouss et al., 2007). Thus, instead
of taking the pseudoinverse of the Laplacian matrix (i.e. L+), which
is not invertible, a simple regularization framework is applied that
replaces L+ with D − ˛A. The similarity matrix (i.e. Kernel) between
nodes of a graph, can be computed by Eq. (3):

KernelRCT = (D − ˛A)−1 (3)

where D is a diagonal matrix containing the outdegrees of the graph
nodes, A is the adjacency matrix with  ̨ ∈ [0,1].

Random Walk with Restart Algorithm: Random Walk with
Restart algorithm (Tong et al., 2006; Pan et al., 2004) considers a
random walker that starts from node vx, and chooses randomly
among the available edges every time, except that, before he makes
a choice, with probability ˛, he goes back to node vx (restart). The
similarity matrix (i.e. Kernel) between nodes of a graph, can be
computed by Eq. (4):
KernelRWR = (I − ˛P)−1 (4)

where I is the identity matrix and P is the transition-probability
matrix.
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Table  1
The algorithms used in the comparison with their parameters and test values.

Algorithm Abbreviation Equation Parameter Test values

FriendLink FriendLink (1) i 2,3,4,5
Markov Diffusion (Fouss et al., 2006) MD (2) t 1,2,. . .,10,50,100
Regularized Commute Time (Fouss et al., 2012) RCT (3)  ̨ 10−6, 10−5, . . .,  0.99
Random  Walk with Restart (Tong et al., 2006; Pan et al., 2004) RWR  (4)  ̨ 10−6, 10−5, . . .,  0.99
Katz  Status Index (Katz, 1953) Katz (5)  ̌ 0.05,0.005,0.0005
Adamic/Adar (Adamic and Adar, 2005) AA (6) – –
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a positive edge to be the real value +1 and the negative to be −1.
We calculated several topological properties of the real data sets

which are presented in Fig. 7.

1

Preferential Attachment (Barabasi et al., 2002; Newman, 2001) PA 

Friend  of a Friend (Chen et al., 2009) FOAF
Shortest Path (Fredman and Tarjan, 1987) SP

Katz status index algorithm: Katz (1953) defines a measure
hat directly sums over all paths between any pair of nodes in graph
, exponentially damped by length to count short paths more heav-

ly. The similarity between nodes vx and vy, can be computed by Eq.
5):

core(vx, vy) =
∞∑

�=1

ˇ� ·
∣∣∣paths�

vx,vy

∣∣∣ , (5)

here
∣∣∣paths�

vx,vy

∣∣∣ is the number of all length-� paths from vx to vy.

Adamic/Adar algorithm: Adamic and Adar (2005) proposed a
istance measure to decide when two personal home pages are
trongly “related”. In particular, they computed features of the
ages and defined the similarity between two pages x, y as follows:

z 1/log (frequency(z)), where z is a feature shared by pages x, y.
his refines the simple counting of common features by weighting
arer features more heavily. The similarity between nodes vx and
y, can be computed by Eq. (6):

core(vx, vy) =
∑

z∈�(vx)∩�(vy)

1

log
∣∣�(z)

∣∣ (6)

here �(vx), �(vy) are the sets of neighbors of vx and vy.
Preferential Attachment: The basic premise of Preferential

ttachment is that the probability a new edge involves node vx

s proportional to its degree. Barabasi et al. (2002) and Newman
2001) have further proposed on the basis of empirical evidence,
hat the probability of that a new edge involves vx and vy is corre-
ated with the product of the number of connections of vx and vy,
orresponding to the measure shown by Eq. (7),

core(vx, vy) := |�(vx) · �(vy)| (7)

here �(vx), �(vy) are the sets of neighbors of vx and vy.
Friend of a Friend algorithm: The Friend of a Friend (FOAF)

lgorithm (Chen et al., 2009) relies on the number of friends that
wo nodes vx and vy have in common, as shown by Eq. (8)

core(vx, vy) := |�(vx) ∩ �(vy)| (8)

here score(vx, vy) is the number of common friends of vx and vy,
nd �(vx), �(vy) are the sets of their neighbors. The candidates are
ecommended to vx in decreasing order of their score.

Shortest Path algorithm: Shortest Path calculates the short-
st distance between any pair of users in the social network.
herefore, users can be recommended to a target user vx accord-
ng to their shortest distance in the social network. We  use the
rendman–Tarjan algorithm (Fredman and Tarjan, 1987) to calcu-
ate the shortest paths between any pair of nodes.

Table 1 summarizes the algorithms used in the experimental
valuation. The second column of Table 1 provides an abbreviation

f each algorithm name. Most algorithms require the tuning of a
arameter, which is shown in the last two columns of Table 1.
(7) – –
(8) – –
– – –

6.2. Real and synthetic evaluation data sets

To evaluate the examined algorithms, we have used a synthetic
and three real data sets from Facebook, Hi5 and the Epinions web
sites.

We crawled the graph data from the Facebook and Hi5 web
sites at two different time periods. In particular, we crawled the
Facebook web site on the 30th of October 2009 and on the 15th
of December 2010. Our data crawling method was the following:
For each user u, we  traverse all his friends and then traverse the
friends of each of u’s friends, etc. From the first crawl of Facebook
web site we created a training data set with 3694 users (network
size N = 3.694, number of edges E = 13, 692), denoted as Facebook
3.7K, where the initial starting node of our crawling was a random
user in Germany. From the second crawl of Facebook web site we
created the probe data set with the same users by only preserving
3912 new emerged edges among them and dismissing the 1150
new users that appeared in the second crawl data set. Notice that,
we had 120 deletions of previous existed edges and 135 deletions of
users in the second crawl data set. We  followed the same crawling
procedure from the Hi5 web  site. From the first crawl of Hi5 web
site we created a training data set with 63,329 users and 88,261
edges among them, denoted as Hi5 63K1, where the initial starting
node of our crawling was  a random user in the US.  From the sec-
ond crawl of Hi5 web site we  created the probe data set with the
same users by only preserving 16,512 new emerged edges connect-
ing them and dismissing the 9150 new users that appeared in the
data set. Moreover, 1480 edges and 1250 vertices were deleted in
the second crawl data set. Based on the above graph statistics the
general provision is that edges and vertices are mostly added to the
graph and that the graph is expanded steadily. The graph data from
the first crawl are used to predict the new links emerging in the
second crawl.

We also use in our experiments the Epinions2 data set, which
is a who-trusts-whom social network. In particular, users of Epin-
ions.com express their Web  of Trust, i.e. reviewers whose reviews
and ratings they have found to be valuable. The Epinions data set
is a directed network and, thus, we treat it by simply disregarding
the directions of links (Wasserman and Faust, 1994). It contains 49K
users and 487K edges among pairs of users. Moreover, we  include
in our experiments the extended Epinions data set3 which is a
directed and signed network. In particular, the extended Epinions
data set contains 131,828 nodes and 841,372 edges, each labeled
either trust (positive) or distrust (negative). Of  these labeled edges,
85% are positive and 15% are negative. We  interpret the weight of
http://delab.csd.auth.gr/ symeon.
2 http://www.trustlet.org/wiki/.
3 http://snap.stanford.edu/data/soc-sign-epinions.html.

http://delab.csd.auth.gr/~symeon
http://www.trustlet.org/wiki/
http://snap.stanford.edu/data/soc-sign-epinions.html
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In our evaluation we  consider the following evaluation metrics:
We use the classic precision/recall metric as performance mea-

sure for friend recommendations. For a test user receiving a list of k
Fig. 7. Topological pro

As shown in Fig. 7, Epinions 49K, Extended Epinions 132K and
acebook 3.7K present (i) a large clustering coefficient (LCC) equal
o 0.26, 0.24 and 0.111 respectively, and (ii) a small average shortest
ath length (ASD) equal to 4.01, 4.1 and 4.233 respectively. These
opological features can be mainly discovered in small-worlds
etworks. Small-world networks have sub-networks that are char-
cterized by the presence of connections between almost any two
odes within them (i.e. high LLC). Moreover, most pairs of nodes
re connected by at least one short path (i.e. small ASD).

In contrast, as also shown in Fig. 7, Hi5 63K has a very small
LC (0.02) and a quite big ASD (7.18). In other words, Hi5 data set
annot be considered as a small-world network, since (i) most of
ts nodes cannot be reached from every other by a small number
f hops or steps and (ii) does not have sub-networks that are a few
dges shy of being cliques.

The size of real online social networks is huge. For instance, Face-
ook has over 500 million users with an average of roughly 100
riends each. This means that our data sample collected is extremely
mall relative to the overall graph. To study the algorithms’ effi-
iency (i.e. time complexity) and effectiveness (i.e. accuracy with
ontrollable sparsity), we also used synthetic network models of
ifferent sizes. Although real networks have many complex struc-
ural properties (Costa et al., 2007), such as degree heterogeneity,
he rich-club phenomenon, etc., as a start point for generating syn-
hetic data sets, we consider a very simple model. In contrast to
urely random (i.e., Erdos-Renyi) graphs, where the connections
mong nodes are completely independent random events, our syn-
hetic model ensures dependency among the connections of nodes,
y characterizing each node with a ten-dimensional vector with
ach element a randomly selected real number in the interval [− 1,
]. This vector represents the node’s intrinsic features such as the
rofile of a person. Two nodes are considered to be similar and
hus of high probability to connect to each other if they share many
lose attributes. The synthetic data set was created by the same
enerator used in Papadimitriou et al. (2011) and Symeonidis et al.
2010).  Given a network size N and a mean degree k of all nodes,
e start with an empty network with N nodes. At each time step,

 node with the smallest degree is randomly selected (there is
ore than one node having the smallest degree). Among all other

odes whose degrees are smaller than k, this selected node will

onnect to the most similar node with probability 1 − p, while a
andomly chosen one with probability p. The parameter p ∈ [0, 1]
epresents the strength of randomness in generating links, which
an be understood as noise or irrationality that exists in almost
s of the real data sets.

every real system. Based on the above procedure, we  have created
3 synthetic data sets based on different network sizes N (1000,
10,000, 100,000), where the degree distribution of the network
decreases slowly, closely following a power-law. The average node
degree has been calculated to be around 20. We  also calculated sev-
eral topological properties of the derived synthetic data sets which
are presented in Fig. 8.

6.3. Experimental protocol and evaluation metrics

As already described in Section 6.2, in our evaluation we  con-
sider the division of Facebook 3.7K and Hi5 63K data sets into two
sets, according to the exact time stamp of the links downloaded:
(i) the training set ET is treated as known information and, (ii) the
probe set EP is used for testing. No information in the probe set is
allowed to be used for prediction. It is obvious that ET ∩ EP = ø. For
each user that has at least one new friend in EP we generate friend
recommendations based on his friends in ET . Then, we average the
results for each user and compute the final performance of each
algorithm.

Epinions and Synthetic data sets do not have time stamps of the
edges. The performance of the algorithms is evaluated by applying
double cross-validation (internal and external). Each data set was
divided into 10 subsets. Each subset (EP) was  in turn used for perfor-
mance estimation in the external cross-validation. The 9 remaining
subsets (ET ) were used for the internal cross-validation. In particu-
lar, we  performed an internal 9-fold cross-validation to determine
the best values of the algorithms’ needed parameters. We  chose
as values for the parameters those providing the best performance
on the internal 9-fold cross-validation. Then, their performance is
averaged on the external 10-fold cross-validation. The presented
results, based on two-tailed t-test, are statistically significant at the
0.05 level.
Fig. 8. Topological properties of the synthetic data sets.
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Table  2
MAP  for 5 attenuation factors on both synthetic and real data sets.

Attenuation factor Synthetic 1K Synthetic 10K Synthetic 100K Epinions 49K Facebook 3.7K Hi5 63K

1/(m − 1) 0.305 0.131 0.089 0.445 0.385 0.154
1/(2m) 0.244 0.108 0.062 0.390 0.341 0.139
1/(m2) 0.183 0.094 0.041 0.322 0.302 0.099
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1/log(m)  0.149 0.081 

bm 0.122 0.043 

ecommended friends (top-k list), precision and recall are defined
s follows:

Precision is the ratio of the number of relevant users in the top-
 list (i.e., those in the top-k list that belong in the probe set EP of
riends of the target user) to k.

Recall is the ratio of the number of relevant users in the top-k
ist to the total number of relevant users (all friends in the probe
et EP of the target user).

Moreover, since we provide to a test user u a top-k list of friends,
t is important to consider the order of the presented friends in this
ist. That is, it is better to have a correct guess in the first places of the
ecommendation list. Thus, we use the Mean Average Precision
MAP) to emphasize ranking of relevant users higher. We  define

AP  by Eq. (9):

AP = 1
|N|

|N|∑

u=1

1
ru

ru∑

k=1

Precisionu@k (9)

here N is the number of users in the probe data set, ru is the
umber of relevant users to a user u and Precisionu @ k is the pre-
ision value at the kth position in the recommendation list for u.
otice that MAP  takes into account both precision and recall and is
eometrically referred as the area under the Precision-Recall curve.

Furthermore, we use the AUC statistic to quantify the accuracy
f prediction algorithms and test how much better they are than
ure chance, similarly to the experimental protocol followed by
lauset hierarchical structure. AUC is equivalent to the area under
he receiver-operating characteristic (ROC) curve. It is the proba-
ility that a randomly chosen missing link (a link in EP) is given a
igher similarity value than a randomly chosen non-existent link (a

ink in U − ET, where U denotes the universal set). In the implemen-
ation, among n times of independent comparisons, if there are n′

imes the missing link having higher similarity value and n′′ times
he missing link and nonexistent link having the same similarity
alue, we define AUC by Eq. (10):

UC = n′ + 0.5 × n′′

n
(10)

If all similarity values are generated from an independent and
dentical distribution, the accuracy should be about 0.5. Therefore,
he degree to which the accuracy exceeds 0.5 indicates how much
etter the algorithm performs than chance. This is also explained
horoughly at the end of Section 6.5.

.4. Sensitivity analysis for the FriendLink algorithm

In this section, we study the sensitivity of FriendLink accuracy
erformance in synthetic and real networks (i) with different atten-
ation factors, (ii) with different controllable sparsity, (iii) with
ifferent controllable randomness/noise in generating links, (iv)
ith different � values for path traversal and (v) the relations

etween the basic parameters (i.e. attenuation factors, path lengths,

nd graph densities) if one parameter is fixed and the other two
arameters change.

In Section 4, we presented the definition of our similarity mea-
ure (see Eq. (1)). The attenuation factor that was  mentioned,
 0.287 0.257 0.045
 0.235 0.211 0.012

weights paths according to their length �. In this section, we test
other possible attenuation factors in order to discover the best MAP
value that we  can attain. In particular, we  have tested the following
possible attenuation factors: (i) 1/(m − 1), (ii) 1/2 · m,  (iii) 1/m2, (iv)
1/log(m)  and (v) the Katz’s index attenuation factor ˇm, where m is
the path length. The attenuation factors performance can be seen in
Table 2 for all data sets. As shown, the best performance in all data
sets is attained by 1/(m − 1). In the following, we keep the 1/(m − 1)
as the default attenuation factor of the FriendLink algorithm.

Next, we measure the MAP  performance that FriendLink attains,
with different controllable sparsity. To examine the MAP  perfor-
mance of FriendLink in terms of different network sparsity, we  have
created for each of the 3 synthetic data sets (1K, 10K and 100K) 5
different sparsity cases, by changing the fraction of observed edges,
as shown in Fig. 9a. As expected, as the fraction of edges observed
increases, MAP  increases too. This is reasonable, since every pre-
diction algorithm is expected to give higher accuracy for a denser
network.

In our synthetic model, the parameter p ∈ [0, 1] represents the
strength of randomness/noise in generating links. Next, we  test
FriendLink’s sensitivity with different graph model randomness.
As shown in Fig. 9b, when the strength of randomness is weak,
FriendLink performs quite well for all three data sets. However, as
the strength of randomness becomes high in all data sets FriendLink
cannot perform better than pure chance.

The experimental results shown in Fig. 9 basically prove the
following two  points. Firstly, that the increase in the number of
edges observed, will result in an increase in precision attained by
Friendlink. We  are able to decrease/increase the number of edges
observed, and therefore the information available to Friendlink,
by taking into account a smaller/bigger part of our training set.
Secondly, the noise level plays an important part in Friendlink’s
sensitivity. This is to be expected, since random edges in our train-
ing set will result in Friendlink having a greater difficulty making
accurate recommendations.

In Section 5.2, one of the required input values for the FriendLink
algorithm is the length � of paths considered in a graph. To improve
our recommendations, it is important to fine-tune the � variable.
Based on Milgram’s, 1967 “small-world hypothesis”, � should take
integer values in the interval [2,6]. Fig. 10a–c illustrates precision
for varying � values for the Epinions 49K, Facebook 3.7K and Hi5
63K data sets, respectively. As expected, precision decreases as the
number of recommended friends is increased. The best precision is
attained for � = 3.

Next, we examine the performance of recall metric vs. different
values of �. Fig. 11a–c illustrates recall for varying � values for the
Epinions 49K, Facebook 3.7K and Hi5 63K data sets, respectively. As
expected, recall increases as the number of recommended friends
is increased. Once again, the best recall performance is attained for
� = 3. The main reason is that ASD for all data sets is relative small
and paths of length 3 can exploit simultaneously local and global
characteristics of a graph. In the following, we  keep the path equal

to � = 3, as the default value of the FriendLink algorithm.

Finally, we conduct experiments on our Facebook 3.7K data
set to investigate possible relations between the basic parame-
ters (i.e. attenuation factors, path lengths, and graph densities)
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Fig. 9. For 3 synthetic data sets (a) MAP vs. Fraction of Edges observed (b) MAP  vs. p randomness/noise graph.
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(i.e. high LCC and small ASD). Both data sets can be considered
as small-world networks. That is both networks are strongly
localized with most of paths being of short geographical lengths.

Table 3
MAP  values of all algorithms for the real data sets.

Algorithm Epinions 49K Facebook 3.7K Hi5  63K

FriendLink 0.445 0.385 0.154
MD  0.392 0.336 0.132
RCT  0.362 0.315 0.121
RWR  0.285 0.225 0.085
Katz  0.265 0.205 0.075
Fig. 10. Precision diagrams for data sets (a)

hat influence FriendLink’s performance. As shown in Fig. 12,  if
ne parameter is fixed, the MAP  value of FriendLink varies as the
ther two parameters change. In particular, Fig. 12(a) shows that
he highest MAP  value is obtained for path length � = 3 and graph
ensity of edges observed fixed at 80%. Fig. 12(b), shows that atten-
ation factor 1/(m − 1) attains the highest MAP  value when � = 3.
astly, Fig. 12(c) depicts the relationship between attenuation fac-
ors and graph densities.

.5. Comparison of FriendLink with other methods

In this section, we compare FriendLink against MD,  RCT, RWR,
atz, AA, PA, FOAF and SP algorithms. Table 3 presents the MAP
alues of the tested algorithms for the Epinions 49K, Facebook
.7K and Hi5 63K data sets, respectively. As shown, FriendLink
utperforms the other algorithms in all three real data sets. The

eason is that FriendLink exploits local and global characteristics
f the graph. In contrast, MD,  RCT, RWR, Katz and SP traverse
lobally the social network, missing to capture adequately the
ocal characteristics of the graph. Moreover, AA, PA, and FOAF
ons 49K, (b) Facebook 3.7K and (c) Hi5 63K.

fail to provide accurate recommendations because they exploit
only local characteristics of the graph. Notice that MAP  values
are impressive for the Epinions 49K and Facebook 3.7 data sets.
The main reason is the topological characteristics of both graphs
AA  0.140 0.125 0.054
PA 0.132 0.115 0.035
FOAF 0.125 0.105 0.021
SP 0.111  0.096 0.014
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Fig. 11. Recall diagrams for data sets (a) Epinions 49K, (b) Facebook 3.7K and (c) Hi5 63K.
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Table 4 shows the performance of the algorithms on each data
set, in terms of factor improvement over random predictor in terms
of precision, when we recommend a top-1 friend to a target user

Table 4
Algorithm performance measured by the factor improvement of precision over ran-
dom prediction.

Algorithm Epinions 49K Facebook 3.7K Hi5 63K

FriendLink 650 280 5502
MD  593 261 4902
RCT  580 250 4639
RWR  525 235 4013
Katz 451 210 3250
Fig. 12. MAP  performance of attenuation factor

hus, all algorithms can more easily find a short path that connects
 pair of nodes, and recommend friends that are near the target’s
ser neighborhood. In contrast, the overall performance of tested
lgorithms is significantly decreased with the Hi5 63K data set.
he main reason is that the Hi5 63K data set has a small LCC and

 high ASD. Therefore, in contrast to both Epinions and Facebook
ata sets, it cannot be considered as a small world network.

.6. Comparison to randomness

To more meaningfully represent the algorithms’ quality, we use
s a baseline algorithm a random predictor which simply randomly
elects pairs of users as friends. This random friendship guess is
enoted as random predictor. Notice that in terms precision the
erformance of all tested algorithms should be at least better than
he case, where the friend recommendations would be performed
andomly. For the synthetic 10K data set, if each user was  con-
ected with all others, we would have 49,995,000 [(10, 000 × 10,
00 − 10, 000)/2] graph edges. However, in the synthetic 10K test

ata set, we counted the number of the actual graph edges that
xist, which amount to 199,980 edges. Thus, if we  randomly pro-
osed a new friend to a target user u, we would get a precision of
.004 (199, 980/49, 995, 000). Following the same procedure for the
th � and density on the Facebook 3.7K data set.

Epinions 49K and Facebook 3.7K data sets, we  get their precision of
0.0004 and 0.002 respectively. The corresponding precision for the
Hi5 data set is 0.00004. This value is obtained by dividing the actual
graph edges that appear in the 63K data set, which are counted to
be 88,261 by the total number of edges that appear in the 63K data
set, which is 2,005,249,456 [(63, 329 × 63, 329 − 63, 329)/2].
AA  360 151 2601
PA 331 140 2420
FOAF 302 130 2501
SP 250 110 2502
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Table  5
Comparison of tested algorithms for the AUC statistic at 25%, 50% and 75% of edges
observed.

Algorithm Epinions 49K Facebook 3.7K Hi5 63K

25% 50% 75% 25% 50% 75% 25% 50% 75%

FriendLink 0.633 0.684 0.791 0.572 0.682 0.875 0.572 0.641 0.735
MD  0.581 0.664 0.769 0.562 0.662 0.857 0.562 0.619 0.723
RCT 0.572 0.656 0.752 0.553 0.656 0.853 0.553 0.605 0.719
RWR 0.562 0.626 0.741 0.545 0.644 0.843 0.532 0.601 0.710
Katz 0.546 0.603 0.731 0.539 0.625 0.821 0.524 0.585 0.686
AA  0.534 0.578 0.678 0.532 0.619 0.783 0.521 0.579 0.651
PA  0.533 0.574 0.665 0.528 0.610 0.772 0.519 0.562 0.621

u
e
d
c

f
o
e
s
r
S
f
w
e
n
s

f
p
a
n
i
l
g
e
c
T
a

6

F
o
t
o

Table 6
Time comparison of all tested algorithms for the synthetic and real data sets.

Algorithm Synthetic
10K

Synthetic
100K

Epinions 49K Facebook
3.7K

Hi5 63K

FriendLink 50 s 450 s 245 s 26 s 340 s
RCT 81 s 752 s 420 s 45 s 692 s
MD  74 s 698 s 351 s 36 s 480 s
RWR  78 s 702 s 380 s 40 s 520 s
Katz 90 s 811 s 460 s 50 s 617 s
AA  40 s 145 s 69 s 22 s 265 s
PA 39 s 136 s 65 s 24 s 242 s
FOAF 0.531 0.566 0.653 0.524 0.601 0.762 0.514 0.541 0.620
SP 0.527 0.537 0.594 0.521 0.533 0.610 0.510 0.535 0.591

. Bold entries represent the best factor improvement attained for
ach data set. We  can see that all 9 methods outperform the ran-
om predictor, suggesting that there is indeed useful information
ontained in the network topology.

Notice that the factor of improvement – in terms of precision
or all methods – over randomness is increased as the data sparsity
f a data set is increased. For instance, the factor of improvement is
normous for the Hi5 data set, because it presents the larger data
parsity among all real data sets. We  note, however, that using this
atio to judge prediction algorithms has an important disadvantage.
ome missing connections are much easier to predict than others:
or instance, if a network has a heavy-tailed degree distribution and
e remove a randomly chosen subset of the edges, the chances are

xcellent that two high-degree vertices will have a missing con-
ection. Thus, such a connection can be easily predicted by even
imple heuristics such as PA or FOAF algorithm.

To overcome the aforementioned limitation and more meaning-
ully represent the friend recommendation algorithms’ accuracy
erformance, we also use the AUC statistic, which looks at an
lgorithms overall ability to rank all the missing connections over
onexistent ones, not just those that are easiest to predict. As shown

n Table 5, we measure the AUC values vs. the fraction of observed
inks used in the training set for all real data sets. As shown, as a
reater fraction of the network is known, the accuracy becomes
ven greater, for all methods. FriendLink does far better than pure
hance, indicating that it is a strong predictor of missing structure.
he main reason is that FriendLink captures effectively the local
nd global graph features.

.7. FriendLink accuracy performance in signed networks

In this section, we present the accuracy performance of

riendLink when we take into account positive and negative links
f a signed network, i.e. extended Epinions 132K data set. We  have
wo different variants of FriendLink: The first variation considers
nly positive links and is denoted as FriendLink+. The second

Fig. 13. Accuracy performance of Friendlink in term
FOAF 37 s 126 s 55 s 15 s 221 s
SP 62 s 250 s 125 s 29 s 360 s

variation considers both positive and negative links and is denoted
as FriendLink+

−. Fig. 13a  presents the precision and recall diagram
for both versions of FriendLink, whereas Fig. 13b presents the AUC
accuracy statistic. Both Figures show that FriendLink+

− outperforms
FriendLink+. The reason is that FriendLink+

− exploits positive and
negative links. This means that if we  use information about neg-
ative edges for predicting the presence of positive edges we  get
an accuracy improvement of FriendLink predictions. These results
clearly demonstrate that there is, in some settings, a significant
improvement to be gained by using information about negative
edges, even to predict the presence or absence of positive edges.

6.8. Time comparison of FriendLink with other methods

In this section, we  compare FriendLink against MD,  RCT, RWR,
Katz, AA, PA, FOAF and SP algorithms in terms of efficiency using
10K and 100K synthetic and 3 real data sets. We  measured the
clock time for the off-line parts of all algorithms. The off-line part
refers to the building of the similarity matrix between any pair of
nodes in a graph. The results are presented in Table 6. As shown,
FriendLink outperforms MD,  RCT, RWR  and Katz, since they calcu-
late the inverse of an n × n matrix. As expected, AA, PA, and FOAF
algorithms, outperform the other algorithms due to their simpler
complexity.

Notice that the results depict the time needed to compute the
whole similarity matrix. On the other hand, if we  were to calculate
the similarity matrix of only one user, then the computation would
require only part of a second to produce a recommendation.

7. Scalability

There are many difficulties in the study of the link prediction
problem. One of them is the huge size of real systems. For instance,

Facebook has over 500 million users with an average of roughly 100
friends each. To run our algorithm for huge sized networks, it should
be adjusted to support a MapReduce (Dean and Ghemawat, 2008)
implementation. MapReduce is a distributed computing model for

s of (a) precision/recall and (b) AUC statistic.
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Fig. 14. Map and redu

rocessing large volumes of data. MapReduce is implemented in
hree steps: (i) splitting up the computing job into chunks that stan-
ard machines can process in a short time, (ii) parallel processing
n each sub-part by an independent machine and, (iii) the collec-
ion of intermediate values, produced by each machine, in order to
alculate the final result. In our case, the calculation of the simi-
arity matrix could be assigned to many machines in the following

ay. Each machine calculates one of the 2. . . �-length paths for a
pecific pair of users and then sum up the paths to calculate the
nal similarity value. An example is shown in Fig. 14.  As shown

n Fig. 14,  each Map  function on every machine receives as input
 pair of users and produces the similarity value for a designated
ath length �. All values for each pair of users are collected into
ne final value in the reduce phase. In our example, the similarity
alues produced by the Map  function, which are 0.03, 0.2, 0.14 and
.07 for path length � = 2, 3, 4, 5 respectively, will be “reduced” to
ne final similarity value, which is 0.44, for the respective pair of
sers.

. Discussion

Real networks have many complex structural properties (Costa
t al., 2007), such as degree heterogeneity, the rich-club phe-
omenon, the mixing pattern, etc. These network properties are
ot considered by our synthetic network model, since they are out
f the scope of this paper. However, our synthetic network model
an be easily extended to better resemble real networks. For exam-
le, by applying the degree heterogeneity index (Costa et al., 2007)
ith a probability p, a synthetic network with different level of
egree heterogeneity can be composed.

Also, as it was shown in Section 6.4,  the attenuation factor
eight for each path of given length plays an important role in

he performance of our FriendLink algorithm. One could suggest
earning these optimal weights instead of guessing them. One way

ould be through linear regression. Linear regression analyzes the
inear relationship between two variables, Y and X, where in our
ase Y is a vector that contains the similarities between a given
ser and the other users in a graph, whereas X is a matrix that
ontains the paths of different length between the given user and
he others of the graph (i.e. the training data of a user). Based
n linear regression, it stands that Y = AX,  where A is a vector
hich contains the optimal coefficient values of the attenuation

actor. In order to find the best coefficient values of the attenu-
tion factor, A can be calculated by equation A = (X′X)−1X′Y. Since
he similarities Y between a given user and the other users of a
raph are not available from the beginning, we  can instead con-

ider Y to contain values from the testing data of the user. The
omputed values of A can then be used as attenuation optimal
eights.
ctions in MapReduce.

9. Conclusions

Online social networking systems have become popular because
they allow users to share content, such as videos and photos, and
expand their social circle, by making new friendships. In this paper,
we introduced a framework to provide friend recommendations in
OSNs. Our framework’s advantages are summarized as follows:

• We define a new node similarity measure that exploits local and
global characteristics of a network. Our FriendLink algorithm,
takes into account all �-length paths that connect a person to
other persons in an OSN, based on the “algorithmic small world
hypothesis”.

• We derive variants of our method that apply to different types of
networks (directed/undirected and signed/unsigned). We  show
that a significant accuracy improvement can be gained by using
information about both positive and negative edges.

• We  performed extensive experimental comparison of the pro-
posed method against 8 existing link prediction algorithms, using
synthetic and real data sets (Epinions, Facebook and Hi5). We
have shown that our FriendLink algorithm provides more accu-
rate and faster friend recommendations compared to existing
approaches.

• Our proposed algorithm also outperforms the existing global-
based friend recommendation algorithms in terms of time
complexity, as shown experimentally in Section 6.8.

• Finally, in Section 7 we  discuss extensively a possible MAP  imple-
mentation to address the scalability issue.

In the future, we indent to examine ways of improving friend
recommendations based on other features that OSNs offer. Except
the friendship network, users in OSNs can also form several
implicit social networks through their daily interactions like co-
commenting on people’s post, co-rating similarly products, and
co-tagging people’s photos. The combination of similarity matrices
derived from heterogenous explicit or implicit social networks can
exploit information from multi-modal social networks and there-
fore yield to more accurate friend recommendations.
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