
A Hierarchical Framework with Consistency Trade-
off Strategies for Big Data Management

Yingyi Yang, Yi You, Bochuan Gu
Department of Smart Grid

Electric Power Research Institute Of Guangdong Power Grid Corporation
Guangzhou, China

Abstract—Geo-replicated cloud storage provides good
scalability, availability and fault-tolerance for managing big data
of high-volume, velocity and variety nature. However, the prickly
trade-off between consistency, cost and response time, which is
brought in by geo-replicated cloud storage, poses great challenges
to big data management. The goal of this work is to allow geo-
replicated cloud storage used in big data management to
dynamically switch to an appropriate consistency level at runtime
in the consideration of cost and performance constraints. In this
paper, we present a hierarchical consistency framework which
supports the implementations of a strong protocol and a range of
consistency semantics. The framework adopts a set of consistency
trade-off strategies at both the data level and the transaction level.
Based on a probabilistic model, a cost balance formula and a new
metric Consistency-ResponseTime Efficiency defined in the
trade-off strategies provides a basis to dynamically switch
consistency levels by using performance records collected at
runtime. Our evaluation verifies the effectiveness of our
hierarchical framework and trade-off strategies.

Keywords—big data management; geo-replicated cloud storage;
consistency hierarchical framework; trade-off strategies; tunable
consistency

I. INTRODUCTION

With the development of technology and the improvement
of demand, the data in the corporations and organizations have
an explosive growth in recent years [1]. EB or even ZB data
produced in this process is called big data. From an industry
point of view, beside three ‘V’s of big data [2]: volume,
velocity and variety, two additional dimensions, i.e. variability
and complexity, are also considered.

Due to its high availability and scalability, geo-replicated
cloud storage becomes an effective solution to tackle emerging
challenges brought by big data. Many corporations, such as
Google, Amazon and Yahoo! have deployed cloud storage
systems [3-5] for big data in their large-scale cloud
infrastructure. Geo-replication is one of the necessary
technologies for cloud storage systems to solve problems with
persistence, performance, availability and fault-tolerance.
Despite its importance, geo-replication results in side effects,
that is, data consistency [6].

Data consistency has been widely studied in distributed
research and practical community. Different consistency
guarantees, e.g. causal consistency, read-your-writes
consistency, etc., had been proposed [7]. In addition to the

important trade-off between consistency, availability and
network partitions proposed by the CAP theory [8], there is
another non-trivial trade-off between high performance,
reasonable cost and some level of consistencies for geo-
replicated cloud storage used in big data management. Initially,
many solutions either provide strong guarantees in a limited
scale [9] or trade eventual consistency [10] for performance
and scalability. Though those solutions differ in the degree of
consistency, there is only a single level of consistency they
provide. In the era of big data, people gradually come to realize
that it is difficult for a single consistency level to solve the
problem once and for all due of the diversity of big data. From
the perspective of application requirements, due to the
diversification of big data, different degree of consistency
requirements for the same data exist with respect to different
types of services or even the same service at different periods
of time. From an economic standpoint, users always expect to
adjust the consistency level in order to control the overall cost,
including consistency cost and penalty cost of inconsistencies,
especially in big data management based on geo-replicated
cloud storage. In terms of performance, the effect of the
implementation of strong consistency semantics on
performance should also be taken into account when designing
geo-replicated cloud storages for big data management.

To achieve high availability and fault tolerance, data is
usually stored in multiple servers not only within a data center
but also across data centers in different parts of the world when
using geo-replicated cloud storages. According to the above
analysis, a range of factors, such as cost, response time, etc.,
should to be considered carefully when providing a well-
designed consistency solution for big data management in this
context. In general, designing geo-replicated cloud storages
providing a particular consistency level is not the silver bullet
for managing big data. Instead, we see it as fundamental to
explore a framework that can be tuned to provide different
levels of consistency at a middleware layer as well as its
appropriate trade-off strategies for geo-replicated cloud
storages. In this paper, the goal is to allow geo-replicated cloud
storage used in big data to dynamically switch to an
appropriate consistency level at runtime in the consideration of
cost and performance constraints.

The contributions of this paper are as follows: (a) We
introduce a consistency hierarchical framework. It supports the
implementations of a strong consistency protocol, named D-
Paxos [11], which has high write throughput and low average
read latency under the heavy reads and writes, and a range of

This work was partially supported by China Southern Power Grid
Company Limited Science and Technology Program under Grant No.
GDKJQQ20161201 (036100KK52160049).

2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference

on Embedded and Ubiquitous Computing (EUC)

978-1-5386-3221-5/17 $31.00 © 2017 IEEE

DOI 10.1109/CSE-EUC.2017.40

183

2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference

on Embedded and Ubiquitous Computing (EUC)

978-1-5386-3221-5/17 $31.00 © 2017 IEEE

DOI 10.1109/CSE-EUC.2017.40

183

2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference

on Embedded and Ubiquitous Computing (EUC)

978-1-5386-3221-5/17 $31.00 © 2017 IEEE

DOI 10.1109/CSE-EUC.2017.40

183

2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference

on Embedded and Ubiquitous Computing (EUC)

978-1-5386-3221-5/17 $31.00 © 2017 IEEE

DOI 10.1109/CSE-EUC.2017.40

183

consistency semantics. (b) We define a range of consistency
trade-off strategies. This set of strategies divides data into two
categories requiring different consistency guarantees at the data
level. They can also be used to gain a better trade-off between
consistency, cost and response time at the transaction level. (c)
We propose a cost balance formula and define a new metric
called Consistency-ResponseTime efficiency, both of which
are based on probabilistic approaches and can be used as a
basis to dynamically switch guarantee levels at runtime
depending on the prediction made by a probabilistic model.

The rest of paper is organized as follows. Section 2
summarizes related work. A consistency hierarchical
framework is introduced in Section 3. In Section 4, we present
our consistency trade-off strategies. Based on our framework,
Section 5 describes the implementations of those trade-off
strategies in detail. The effectiveness of our framework and its
trade-off strategies rules is illustrated by simulation in Section
6. The conclusion is followed in Section 7.

II. RELATED WORK

A new transaction paradigm, called consistency rationing is
proposed in [12], which allows to automatically switch
consistency guarantees at runtime. Data are divided into three
categories A, B and C, which are treated differently depending
on the consistency level they needed. In particular, some
policies providing probabilistic guarantees are proposed for
category B, which comprises all the data where the consistency
requirements vary over time. Using these policies, data in the B
category switch between session consistency and serializability
at runtime. However, the approach cannot be applied with
eventual consistency as weaker consistency, since
inconsistencies considered in consistency rationing are due to
update conflicts rather than delay of update propagation.

According to in-depth analysis of consistency costs of the
most common concurrency control protocols, I. Fetai et al. [13]
present a cost-based concurrency control C3. A set of rules
specified in C3 can be used to dynamically select the most
appropriate consistency level, with an aim to minimize the
overall costs. With C3, the consistency level of a transaction is
determined before the transaction is effectively executed.
Developers of transactional systems have to choose the most
appropriate consistency level for their transactions, which is a
difficult task. Moreover, the impact of factors, such as the
timeliness, other than cost on consistency level is not
considered.

Pileus [14] can be regarded as an extension and
implementation of the adaptive framework for tunable
consistency and timeliness using replication. As a replicated
and scalable key-value storage system, Pileus provides the
implementation of both strong and eventual consistency as well
as intermediate guarantees and their interfaces. It also allows
applications to declare their consistency and latency priorities
via consistency-based service level agreements [15]. Related
algorithm is used for selecting a proper target subSLA along
with the set of nodes that can best meet this subSLA at the
current time.

Harmony [16] is a novel approach that handles data
consistency in cloud storage adaptively. In order to provide

adequate tradeoffs between consistency and both performance
and availability, Harmony adopts stale reads rate to precisely
reflect the application requirement and adapt the number of
replicas involved in the access operation to the requirement.
Though it is an effective approach to dynamically and
elastically handle consistency at run time, it does not focus on
cost.

Techniques that allow more fine-grained tuning as may be
required to support consistency guarantees through service
level agreements (SLAs) are also be investigated [17]. A novel
technique that assigns the consistency level on a per-operation
basis by choosing randomly between two options (e.g. weak vs.
strong consistency) with a tunable probability and a known
technique that uses weak consistency and injects delays into
storage operations artificially are considered in this work.

III. A CONSISTENCY HIERARCHICAL FRAMEWORK

A. Background and Motivation
In the recent years, many corporations and organizations

have been migrating their ever-increasing data into geo-
replicated cloud storages, in order to obtain highly scalable,
highly available and low-cost storage services. However,
problems with geo-replicated cloud storages are: (a) From the
perspective of application requirements, data requiring strong
consistency are unavoidable obviously. But in turn, it is
unlikely for big data management applications to provide
strong consistency guarantees for all data due to requirements
from a fraction of data, which subjects to higher cost and lower
performance. (b) Weaker consistency semantics avoid higher
overall cost caused by more resources and time needed due to
strong consistency guarantees required and may provide better
response time, but it is at the risk of potential, extremely high
penalty cost due to inconsistencies.

To design a consistency framework for data consistency in
big data management, the side effects introduced by geo-
replicated cloud storages should also be dealt with carefully. In
particular, for heavy reads and writes requiring strong
consistency guarantee, it is an important performance problem
that how to achieve strong consistency, which has high write
throughput and low average read latency in the cloud using
geo-replication. Moreover, the framework should give
consideration to tunable consistency in exchange for cost
saving and timely response.

B. An Overview of the Framework
In order to design such a framework mentioned above, we

should address the following main issues: (a) organize replicas
in a reasonable way, (b) support for the implementations of
different consistency semantics, and (c) develop a set of
consistency trade-off rules, taking into full account influence of
cost and response time. In this section, we provide our solution
for the first two issues.

In the cloud using geo-replication, data are replicated over
replicas across multiple data centers. Data centers, replicas and
clients accessing to replicas are regarded as entities in our
consistency framework. Our framework is separated into two
layers, namely, the top layer consisting of all data centers and

184184184184

Figure 1. A Consistency Hierarchical Framework

the bottom layer consisting of all replicas offering the same
service, both of which are also called the data center layer and
the replica layer respectively. For each data category requiring
some level of consistency guarantees, all data centers in the top
layer are organized logically into two groups: a primary group
and a secondary group, as shown in Fig. 1. Accordingly, data
centers in groups are known as primary data centers and
secondary data centers respectively. Note that, data categories
requiring different consistency guarantees differ in ways of
logically grouping data centers in terms of their members and
number. Moreover, a distinguished replica is elected in each
data center, called delegator. It ensures consistent states among
replicas located in the same data center and provides the only
interface for messaging between data centers.

C. Consistency in Each Data Center
In our framework, consistency guarantees are achieved in

two layers, i.e. consistency within each data center in the
replica layer and consistency among data centers in the data
center layer. Replicas in the same data center are often
connected through local area networks of high bandwidth and
low latency, which makes it reasonable to implement strong
consistency semantics at lower cost in a data center.
Consequently, we implement strong consistency guarantees for
replicas with the same data center by adopting Paxos [18]. A
delegator in each data center serves as the unique leader for
Paxos instances. Since high wide-area latency among data
centers is the main bottleneck for geo-replicated cloud storages,
the key point is to achieve consistency among data centers
more efficiently. However, achieving consistency within each
data center proves to be important for implementing an
effective strong consistency protocol which has high write
throughput and low average read latency.

D. Consistency among Data Centers
Consistency among data centers consists of two parts:

consistency for the primary group and consistency for the
secondary group. Groups differ in the degree of consistency
they implement: the primary group is used to implement strong
consistency semantics, whereas the secondary group is used to
implement tunable consistency semantics.

We assume that there are only two requests sent from
clients: reads and writes. Writes are only handled by the
primary group, whereas reads can be handled by both the
primary and the secondary group. The size of the primary
group can be tuned to control the cost of implementing strong
consistency semantics required by writes. Since the secondary
group does not handle writes, the state of the secondary data
centers is brought up-to-date through lazy update propagation

from the primary group after they have handled write requests.
As a consequence, the secondary group can only provide
weaker consistency semantics, which is usually reflected
through the staleness (or degree of the lagged) of states. By
providing relevant strategies, we can switch consistency
guarantees in this hierarchical framework, that is,
implementing tunable consistency. Obviously, reading from the
primary group can obtain the most up-to-date state, but may
subject to higher latency, whereas reading from the closest
secondary data center enables a fast access, at the cost of staled
state and potential monetary penalty. Note that a non-delegator
replica from a specified data center in the primary group is
selected as the lazy update publisher. Although there are many
protocols can be used, we adopt D-Paxos [11] for our primary
group, which guarantees all reads and writes being handled by
all replicas in the same order.

IV. CONSISTENCY TRADE-OFF STRATEGIES

Despite of different choices on what degree of consistency
should be provided [19, 20], we argue that providing a
particular consistency level is not the silver bullet for managing
big data based on geo-replicated cloud storage. In the industry,
offerings such as Facebook's Cassandra [21] provide more
choices of different consistency levels for users. In this paper, a
set of consistency trade-off strategies at both the data level and
the transaction level is developed in coordination with our
consistency hierarchical framework. The purpose is to enable
geo-replicated cloud storage used in big data management to
dynamically switch to an appropriate consistency level at
runtime in the consideration of cost and performance
constraints. In simple words, implementing tunable consistency
semantics when using geo-replication.

In the strategies, we first divide the data into two categories
at the data level, namely, S category and T category. The S
category contains data for which strong consistency semantics
are required and T category contains all the data where the
consistency requirements vary over time. On this basis,
influences of cost (consistency cost and penalty cost of
inconsistency) and response time on the consistency guarantees
required by T category are further considered at the transaction
level. For this purpose, a cost balance formula and a new
metric Consistency-ResponseTime Efficiency are defined.
Based on the prediction made by a probabilistic model, our
strategies are able to gain between consistency, cost and
response time. Below we present our consistency trade-off
strategies in detail.

Data Level Strategy: Preconditions: (a) the data require
strong consistency guarantees, no matter how much
consistency cost need to pay, and (b) the data are provided with
infinite consistency budget.

In the first precondition, consistency level is a more
important factor than the monetary cost for making the
decision. As for the second precondition, choices won't be
restricted by the cost factor. Hence, strong consistency must be
selected due to the best data quality it provides. We can get the
corresponding decision as follows.

Data Level Decision: if one of the above preconditions
holds, the data is classified as S data and strong semantics are

185185185185

Figure 2. The logical relationships between entities in the primary group

required; otherwise, the data is classified as T data, the desired
consistency level should be further determined through the
transaction level strategy 1.

Transaction Level Strategy 1: Precondition: the potential
penalty cost is higher than the expected savings when using
tunable consistency for T category.

Unlike S category, T category may be handled with varying
consistency levels because of cost concerns. From an economic
perspective, it is reasonable to balance the expected cost
savings and potential losses, especially when the overall cost is
a major concern. The decision is given as below.

Transaction Level Decision 1: if the precondition holds, T
category should be handled with strong consistency; otherwise,
the desired consistency level should be further determined
through the transaction level strategy 2.

The key to implement the above strategy is how to establish
a formula to compare the expected savings and the potential
penalty cost. In addition to the cost constraints, response time
is another factor which should be taken into account. Before
proposing the transaction level strategy 2, we define a new
metric Consistency-ResponseTime Efficiency as below.

Consistency-ResponseTime Efficiency
= ConsistencyProbability(cl)/ResponseTime (1)

Where cl is the consistency level specified by clients.
ConsistencyProbability(cl) is the probability that the data
obtained are of desired consistency level specified, and
ResponseTime is the time a client takes to receive a response
from the data center which provides the data. Intuitively, a high
metric value indicates that one data center is able to provide
with client specified consistency level in a timely manner with
a high probability. Using this metric, the transaction level
strategy 2 is expressed as follows.

Transaction Level Strategy 2: Precondition: with
statistical information obtained about client specified
consistency levels and response time, it is possible for clients to
calculate a series of Consistency-ResponseTime Efficiency
values corresponding to data centers.

Consistency-ResponseTime Efficiency is used by the
transaction level strategy 2 as a basis to switch consistency
levels. The object of this strategy is to enable clients to achieve
as strong semantics as possible in the shortest possible response
time. Consequently, the decision for this strategy is as follows.

Transaction Level Strategy 2: depending on metric values
of Consistency-ResponseTime Efficiency calculated, the
consistency level with the highest metric value is selected as
the target consistency level for subsequent reads and the data
center which provides such a metric value is selected as the
target data center.

V. DESIGN OF PROTOCOL AND STRATEGIES BASED ON THE
CONSISTENCY HIERARCHICAL FRAMEWORK

In this section, we describe the details of the strong
protocol designed based on our consistency hierarchical

framework and formulas used in our consistency trade-off
strategies and how to obtain the relevant threshold and metric
values.

A. Obtain Strong Consistency Guarantees for Data Level
Strategy
Since writes are only handled by the primary group, strong

consistency guarantees for reads and writes can only be
provided by the primary group. Unlike the secondary group
which updates its state through updated state received, the
primary group strictly orders reads and writes indiscriminately
in order to maintain the sequential relationship between them,
and thus providing strong consistency guarantees. Here, we
concentrate on the design of a protocol which provides strong
consistency among replicas across multiple data centers in the
primary group.

In geo-replicated cloud storages, the following problems
should be considered carefully: (a) high latency for wide area
messaging. Strong consistency protocols which rely heavily on
messaging subject to wide area channel with low bandwidth
and high latency, resulting in poor performance. (b) unbalanced
link dependency pattern. Protocols which are leader-centric
usually make most of their networks idle due to their
unbalanced communication pattern. Besides, the unique
sequencer in each of those protocols usually become the
performance bottleneck.

Here, we propose a protocol, called D-Paxos, which
provide strong consistency guarantees. It can utilize resources
(network and time) in a more efficient way by means of the
layered characteristics of our framework. The logical
relationships between entities in the primary group adopting D-
Paxos are shown in Fig. 2.

The execution stage of D-Paxos between delegators
reserves some actions like those in Paxos, including suggest (if
the leader proposes a non-empty proposal), skip (if the leader
proposes an empty proposal) and revoke (if a recovery phase is
initiated by another delegator because of the leader's failure).
D-Paxos and Paxos differ in: (a) D-Paxos adopts a rotating
leader scheme among delegators from data centers in the top
layer. Instances executed in this layer are considered to be
sequential and delegators take turns to be the leader of
instances coordinated among delegators. The arrow in Fig. 2
indicates the logical sequence between delegators. (b) once
serving as a leader, a delegator proposes its pre-ordered
sequence of requests, which are generated by running a

186186186186

sequence of Paxos instances in its own data center in the
bottom layer. If the sequence is empty, then the leader takes
skip action instead. In short, delegators are the main
participants of D-Paxos and their proposals are pre-ordered
sequences of requests generated in their data centers in the
bottom layer. To distinguish roles delegators take in the top
layer between those they take in the bottom layer, leaders of
Paxos instances executed in data centers in the bottom layer are
called local leaders, whereas the leaders rotated among
delegators in the top layer are called rotating leaders.

Each instance of D-Paxos proceeds in two phases: (a) local
consistency phase in the replica layer: before being the rotating
leader, a delegator obtains a pre-ordered sequence of requests
by coordinating a sequence of Paxos instances in its own data
center. (b) global consistency phase in the data center layer:
when a delegator becomes the rotating leader, it proposes its
pre-ordered sequence of requests obtained in the local
consistency phase and waits for acknowledge messages from a
quorum of delegators. Once receiving acknowledge messages
from a quorum of delegators, the rotating leader learns that its
proposal has been chosen and notifies all other delegators.
Finally, all replicas in all data centers will be synchronized.

The benefits of D-Paxos are obvious. By efficiently
exploiting resources (idle time left by inherent high wide area
latency among data centers and high bandwidth available in
data centers) for generating pre-ordered sequences of requests
in the local consistency phase and proposing them as batches in
the global consistency phase, D-Paxos improves the overall
throughput though batching and reduces the average latency.
Moreover, with the rotating leader scheme in the data center
layer, D-Paxos further improves the overall performance in a
logical pipelining manner and amortizes the coordinating
overhead over all delegators.

Generally, the cost of write requests can be traded off
against the cost of strongly consistent read requests [15]. If
strong consistency guarantees are required by geo-replicated
storage used in big data management under heavy reads and
writes, and clients are connected evenly to all data centers, a
bigger primary group will accelerate the synchronization
among data centers. When the primary group encompasses all
data centers, D-Paxos provides high write throughput and low
average read latency.

B. A Cost Balance Formula in Transaction Level Strategy 1
As mentioned above, the state of the secondary data centers

is brought up-to-date through updated states propagated from
the primary group. However, the propagation delay between
groups leads to a certain degree of staleness of the secondary
data centers. It's important to note that, although a fixed
grouping scheme might already be determined for a certain
category, indicating a relatively stable storage cost for any
consistency level applied in our framework, enforcing different
consistency levels still cause different number of messages and
different lengths of response time, and thus different network
cost and runtime cost. Our cost balance formula is established
on the basis of this knowledge.

For T category, some inconsistencies are tolerable, as long
as inconsistencies are still in the acceptable range of big data

management applications. Therefore, it is reasonable that there
is a staleness threshold specified by the client exists, where an
inconsistent state that is more stale than this staleness threshold
is thought to cause a penalty cost. In this paper, staleness (the
number of updated states lagged) is used to reflect the
consistency level of a data center (and its replicas).

In our transaction level strategy 1, a probabilistic model-
based cost balance formula is established to compare the
potential penalty cost of staleness which is more stale than the
staleness threshold caused by tunable consistency and the
expected savings of using tunable consistency. We use t to
denote the time at which client issues a read request to a
secondary data center, which is also used to denote the time at
which the target consistency level and target data center are
determined. Let Si(t) denote the staleness (which also reflect
the consistency level) of the state of secondary data center i at
time t, and s be a staleness threshold specified by the client. Let
P(Si(t s) be the probability that the staleness of the state of
secondary data center i at time t is within the staleness
threshold. Let P(S(t s) be the probability that the staleness of
the states of secondary group containing all secondary data
centers at time t exceeds the staleness threshold. For P(S(t) > s),
a higher probability indicating a higher likelihood of all
secondary data centers at time t being more stale than the
staleness threshold, indicates that the potential penalty cost of
staleness caused by using tunable consistency are more likely
to exceed the expected savings of using tunable consistency.
Let p be the probability threshold which the penalty cost is
greater than the expected savings if P(S(t) > s) is greater than p,
or vice versa.

Let CS be the cost of a write to a record when using strong
consistency, CT be the cost of a write to a record when using
tunable consistency and CV be the penalty cost of staleness
which is more stale than the staleness threshold caused by
tunable consistency. According to the precondition in the
transaction level strategy 1, if the potential penalty cost of
using tunable consistency E(X) is higher than the expected
savings of using tunable consistency, then:

 CS – CT E(X) (2)

If (2) holds, it is better to select strong consistency.
Assuming the potential penalty cost of using tunable
consistency E(X) = P(S(t) > s)* CV, (2) becomes:

S T

V

C CP S t s C
 (3)

Hence, the probability threshold, which is used to
determine whether the potential penalty cost of using tunable
consistency is greater than the expected savings of using
tunable consistency or not, can be set to S T

V

C C
C

.

187187187187

C. Estimation of Consistency-ResponseTime Efficiency
Metric in Transaction Level Strategy 2
To estimate the Consistency-ResponseTime Efficiency, the

probability that a client obtains data with specified consistency
level and the response time it takes are estimated respectively.

Let GP denote the primary group and GS denote the
secondary group. As mentioned in the previous section, Si is
the random variable denoting the staleness of the state of
secondary data center i. t denotes the time at which a read
request is issued. Si(t) denotes the staleness of the state of data
center i at time t. In this paper, the staleness is used to reflect
the consistency level. Let cl be the consistency level specified
by the client. Hence, P(Si(t cl) be the probability that the
state of data center i at time t is within the consistency level cl.
The staleness of the secondary data center i at time t is
considered as the number of write requests received by the
primary group since the time ti at which the secondary data
center i received the last lazy update. Let di be the duration
between t and ti. Si(t) is actually the number of write requests
received by the primary group from clients in the duration di.
We assume that the write requests arrival from clients follows a
Poisson distribution with rate w. Hence, we can obtain

0 !

w i
n d

cl w l
i n

t e
P S t cl

n
 (4)

Since the staleness is used to reflect the consistency level,
the probability ConsistencyProbability(cl) that a client can
obtain data with specified consistency level from secondary
data center i can be calculated in (4). A smaller cl means a
more strict consistency requirement. The greater the probability,
the more likely the data center meets the consistency
requirement. Formula (4) is extended to include the estimation
of the staleness of state of the primary group. Since the primary
group implements strong consistency semantics, obviously, the
probability ConsistencyProbability(cl) for the primary group is
ConsistencyProbability(cl) = 1.

Since the update propagation from lazy update publisher to
any secondary data center is independent and the wide area
latency is variable, we assume that the staleness of state of each
secondary data center is independent. The probability P(S(t) > s)
in the left side of (3) is given by (5).

0

(()) 1 (()) 1 (())

1 ()!

s

e w i

s

i
i G

n ds w i
n

i G

P S t s P S t s P S t s

d
n

 (5)

Here we describe how to measure the values of parameters
w, di and the response time. Each delegator records the

number of requests nc it has received and handled in the
duration tc between the times at which it become the rotating
leader. Once it becomes the rotating leader, it sends < nc, tc >
previously recorded to all clients. Therefore, the arrival rate w

can be computed as w = P

j
c

jj G
c

n
t

P
, where P is the number of

data centers in the primary group. di is the duration between
the time at which a read request is issued and the time ti at
which the secondary data center i received the last lazy update,
so di = t – ti. The delegator in the secondary data center i sends
its di to clients, which will then be used as input to its
consistency selection algorithm. To estimate the response time,
clients keep histories about getting responses from different
data centers. We assume that the propagation delay Tu from a
data center u to the client follows the Guass distribution. A
sliding window with the size of n is used for each data center to
collect samples, and the response time wu can be computed as
wu =

,1

1 n
u vv

x
n

, where xu,v is a sample value.

VI. EVALUATION

A. Simulation Settings
We construct a simulation environment containing

multiple data centers. The experimental setup is composed of
four servers A, B, C and D, each of which simulates a data
center. Replicas in data centers are emulated by running
concurrent threads. By default, three threads are started in each
server, with one of them selected to be the delegator. All data
centers are connected by an emulated wide area network. The
propagation delay between A and B is 160ms, between C and
D is 340ms, between C and A as well as B are both 300ms and
between D and A as well as B are both 200ms. Clients which
issue read and write requests are emulated by separate threads.
In this scenario, the performance bottleneck are network
bandwidth and latency. The size of read and write requests
adopted in our experiments is 8KB.

B. The Effectiveness of The Transaction Level Strategy 1
In this section, we study the effect of transaction level

strategy 1 on the trade-off between consistency and cost. The
setting in scenario (b) described above is applied in this set of
experiments. Emulated clients run in data center C. To gain
further insight into this strategy, the overall cost of running the
workload with tunable consistency following the transaction
level strategy 1 is compared with the overall cost of running the
workload with strong consistency as well as the overall cost of
running the workload with weak consistency. In this scenario,
running the workload with strong consistency or weak
consistency refers to always reading from the primary group or
always reading from the secondary group respectively. Since
the focus is on the effectiveness of strategy 1, a relatively
reasonable pricing scheme is provided for different levels of
consistency. The cost when using strong consistency is about
$0.12 per 1000 requests, the cost when using weak consistency
is $0.03 per 1000 requests, and the penalty cost of read
staleness is about $0.18.

Fig. 3 shows the trend of the overall cost with increasing
number of requests. The curve for strong consistency indicates
that the overall cost when using strong consistency increases
linearly with the number of requests. That is because no
inconsistencies (staleness) occur and no penalty cost caused
when using strong consistency. Consequently, its
corresponding unit cost to provide strong consistency is
relatively fixed. The overall cost when using weak consistency

188188188188

Figure 3. The overall cost when using strong consistency, weak
consistency, tunable consistency, varying the number of requests

Figure 4. The overall cost when using strong consistency, weak
consistency, tunable consistency, varying the penalty cost

Figure 5. Under different network conditions, metric values of
Consistency-ResponseTime efficiency provided by different data centers

is lower compared to that when using strong consistency due to
its lower unit cost. However, the overall cost when using weak
consistency grows faster and faster with the increasing number
of requests. The reason is that the increasing number of
requests cause a busy network, which has more and more
negative impact on the degree of staleness, and thus increasing
the overall penalty cost. Using tunable consistency following
the transaction level strategy 1 has the lowest overall cost in
this scenario. When the probability that the potential penalty
cost is higher than the expected savings when using tunable
consistency exceeds the specified probability threshold,
consistency level will be switched to strong consistency
according to the transaction level strategy 1, which avoids high
penalty cost. Thus, the transaction level strategy 1 finds the
right balance between weak consistency (to save cost) and
strong consistency (to avoid penalty cost).

The penalty cost affects the determination of the
probability threshold defined in our transaction level strategy 1
and has a big influence on the overall cost. Keeping the number
of requests constant, we observe the effect of the penalty cost
on the overall cost. As shown in Fig. 4, the overall cost when
using strong consistency is constant because all reads are

handled in the primary group. No staleness occurs and no
penalty cost exists. When using weak consistency, the overall
cost is lower in contrast to that when using strong consistency
at a penalty cost of $0.12. However, the overall cost increases
very rapidly with an increasing penalty cost and then exceeds
the overall cost when using strong consistency at a penalty cost
of about $0.18. When using tunable consistency, the
probability threshold decreases with the increasing penalty cost.
To avoid the potential and higher total penalty cost, the
transaction level strategy 1 enforces more and more reads at
strong consistency, that is, reading at the primary group. In this
case, the overall cost converges to the overall cost of using
strong consistency.

C. The Effectiveness of The Transaction Level Strategy 2
The goal of this experiment is to verify the effectiveness

of the transaction level strategy 2. To this end, the penalty cost
is set to a very small value, so that rather than selecting strong
consistency immediately in the transaction level strategy 1, the
desired consistency level will be determined through the
transaction level strategy 2. In this experiment, the primary
group only contains data center A while the secondary group
contains data centers B, C and D. Therefore, no protocol is
needed to run in the primary group. Moreover, the client runs
in a remote site simulated by a newly added server rather than
any data centers included in the primary group or the secondary
group.

We run the experiment three times, each time the average
latency from each data centers to the client varies. About 200
seconds into each experiment, we collect sampling data so as to
calculate the metric values of Consistency-ResponseTime
efficiency provided by data centers. The experimental results
are given in Fig. 5. Here, for the sake of brevity, only the
maximum metric values in different cases are identified. As we
can see, data center C provides the maximum value in case 1,
which is about 2.51 (with the consistency probability of 0.719
and the response time 0.286s). Corresponding staleness
observed subsequently is shown in Fig. 6. In case 1, some
degree of staleness exists, because the secondary data center C
is selected as the target. It also illustrate that, even if the only

189189189189

Figure 6. Under different network conditions, staleness observed in the
subsequent period of time

primary data center is able to provide strong consistency
guarantees, it isn’t selected as the target because of the
relatively lower metric value it provides due to longer response
time. This is also true in case 3. As for case 2, the primary data
center A is selected because of the maximum metric value it
provides. Since data center A is a primary data center, the client
is provided with strong consistency semantics. Accordingly,
staleness 0 is shown in Fig. 6.

VII. CONCLUSION AND FUTURE WORK

For tackling data consistency challenge in big data
management based on geo-replicated cloud storage, we present
a consistency hierarchical framework and a set of consistency
trade-off strategies in this paper. The proposed framework
provides support for the implementations of different
consistency guarantees, including storing consistency and a
range of tunable consistency semantics. A set of consistency
trade-off strategies at both the data level and the transaction
level is proposed and related protocol and formulas used in
these strategies are also presented. The simulation results
illustrate the effectiveness of our hierarchical framework and
trade-off strategies.

For future work, our plan includes: investigating the
dynamic reconfiguration of primary-secondary groups in our
framework, exploring better predication models for our trade-
off strategies, and having further analysis on the relationship
between consistency, performance and cost involved in our
framework.

REFERENCES

[1] World's data will grow by 50X in next decade, IDC study predicts.
Available:
http://www.computerworld.com/s/article/9217988/World_s_data_will_g
row_by_50X_in_next_decade_IDC_study_predicts

[2] A. V. S. S. R. Rao and R. D. Lakshmi, “A survey on challenges in
integrating big data,” in Proc. 2nd Intern. Conf. Intell. Comput. and
Appl., Singapore, 2017, pp. 571-581.

[3] P. Gupta and N. Tyagi, “An approach towards big data — A review,” in
Proc. Intern. Conf. Comput., Commun. & Autom., Noida, India, 2015,
pp. 118-123.

[4] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.
Pilchin, et al., “Dynamo: amazon's highly available key-value store,” in
Proc. ACM SIGOPS Symp. Oper. Syst. Princ., Stevenson, WA, 2007,
pp. 205-220.

[5] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, et al.,
“Spanner: google's globally-distributed database, ” in Proc. Usenix Conf.
Oper. Syst. Des.and Implement., Hollywood, CA, USA, 2013, pp. 251-
264.

[6] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H. A. Jacobsen, et al., “PNUTS: yahoo!'s hosted data serving
platform,” in Proc. Vldb Endow., vol. 1, pp. 1277-1288, Aug. 2008.

[7] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin, J. Larson, et al.,
“Megastore: providing scalable, highly available storage for interactive
services,” in 5th Bienn. Conf. Innov. Data Syst. Res., Asilomar, CA,
USA, 2011, pp. 223-234.

[8] L. Wu, L. Yuan, and J. You, “Survey of large-scale data management
systems for big data applications,” J. Comput. Sci. Technol., vol. 30, pp.
163-183, Jan. 2015.

[9] S. Gilbert and N. Lynch, “Brewer's conjecture and the feasibility of
consistent, available, partition-tolerant web services,” ACM SIGACT
News, vol. 33, pp. 51-59, Jun. 2002.

[10] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: wait-free
coordination for internet-scale systems,” in Proc. the 2010 USENIX
Conf. USENIX Annu. Tech. Conf., Boston, MA, USA, 2010, pp. 653-
710.

[11] W. Vogels, “Eventually consistent,” Commun. of the ACM, vol. 52, pp.
14-19, Oct. 2008.

[12] F. Liu and Y. Yang, “D-Paxos: building hierarchical replicated state
machine for cloud environments,” IEICE Trans. on Inf. & Syst., vol.
E99.D, pp. 1485-1501, Jan. 2016.

[13] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency
rationing in the cloud: Pay only when it matters,” in Proc. Vldb Endow.,
vol. 2, pp. 253-264, Aug. 2009.

[14] I. Fetai and H. Schuldt, “Cost-based data consistency in a data-as-a-
service cloud environment,” in Proc. IEEE Fifth Intern.Conf. Cloud
Comput., Honolulu, Hawaii, USA, 2012, pp. 526-533.

[15] R. Kotla, M. Balakrishnan, D. Terry, and M. K. Aguilera, “Transactions
with consistency choices on geo-replicated cloud storage,” 2013.

[16] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera,
and H. Abu-Libdeh, “Consistency-based service level agreements for
cloud storage,” in Proc. 24th ACM Symp. Oper. Syst. Princ., Farminton,
Pennsylvania, 2013, pp. 309-324.

[17] H. E. Chihoub, S. Ibrahim, G. Antoniu, and M. S. Perez, “Harmony:
towards automated self-adaptive consistency in cloud storage,” in Proc.
IEEE Intern. Conf. CLUSTER Comput., Beijing, China, 2012, pp. 293-
301.

[18] M. Mckenzie, H. Fan, and W. Golab, “Fine-tuning the consistency-
latency trade-off in quorum-replicated distributed storage systems,” in
Proc. IEEE Intern. Conf. Big Data, Santa Clara, CA, USA, 2015, pp.
1708-1717.

[19] L. Lamport, “Paxos Made Simple," ACM SIGACT News, vol. 32, Jan.
2001.

[20] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Stronger semantics for low-latency geo-replicated storage,” in Proc.
10th USENIX Conf. Netw. Syst. Des. and Implement., Lombard, IL,
USA, 2013, pp. 313-328.

[21] C. Li, Leit, O. Jo, A. Clement, Pregui, A. Nuno, et al., “Automating the
choice of consistency levels in replicated systems,” in Proc. 2014
USENIX Conf. USENIX Annu. Tech. Conf., Philadelphia, PA, USA,
2014, pp. 281-292.

[22] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Oper. Syst. Rev., vol. 44, pp. 35-40,
Apr. 2010.

190190190190

