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Abstract—Geo-replicated cloud storage provides good 
scalability, availability and fault-tolerance for managing big data 
of high-volume, velocity and variety nature. However, the prickly 
trade-off between consistency, cost and response time, which is 
brought in by geo-replicated cloud storage, poses great challenges 
to big data management. The goal of this work is to allow geo-
replicated cloud storage used in big data management to 
dynamically switch to an appropriate consistency level at runtime 
in the consideration of cost and performance constraints. In this 
paper, we present a hierarchical consistency framework which 
supports the implementations of a strong protocol and a range of 
consistency semantics. The framework adopts a set of consistency 
trade-off strategies at both the data level and the transaction level. 
Based on a probabilistic model, a cost balance formula and a new 
metric Consistency-ResponseTime Efficiency defined in the 
trade-off strategies provides a basis to dynamically switch 
consistency levels by using performance records collected at 
runtime. Our evaluation verifies the effectiveness of our 
hierarchical framework and trade-off strategies.

Keywords—big data management; geo-replicated cloud storage;
consistency hierarchical framework; trade-off strategies; tunable 
consistency

I. INTRODUCTION

With the development of technology and the improvement 
of demand, the data in the corporations and organizations have 
an explosive growth in recent years [1]. EB or even ZB data 
produced in this process is called big data. From an industry 
point of view, beside three ‘V’s of big data [2]: volume, 
velocity and variety, two additional dimensions, i.e. variability 
and complexity, are also considered.

Due to its high availability and scalability, geo-replicated 
cloud storage becomes an effective solution to tackle emerging 
challenges brought by big data. Many corporations, such as 
Google, Amazon and Yahoo! have deployed cloud storage 
systems [3-5] for big data in their large-scale cloud 
infrastructure. Geo-replication is one of the necessary 
technologies for cloud storage systems to solve problems with 
persistence, performance, availability and fault-tolerance. 
Despite its importance, geo-replication results in side effects, 
that is, data consistency [6]. 

Data consistency has been widely studied in distributed 
research and practical community. Different consistency 
guarantees, e.g. causal consistency, read-your-writes 
consistency, etc., had been proposed [7]. In addition to the 

important trade-off between consistency, availability and 
network partitions proposed by the CAP theory [8], there is 
another non-trivial trade-off between high performance, 
reasonable cost and some level of consistencies for geo-
replicated cloud storage used in big data management.  Initially, 
many solutions either provide strong guarantees in a limited 
scale [9] or trade eventual consistency [10] for performance 
and scalability. Though those solutions differ in the degree of 
consistency, there is only a single level of consistency they 
provide. In the era of big data, people gradually come to realize 
that it is difficult for a single consistency level to solve the 
problem once and for all due of the diversity of big data. From 
the perspective of application requirements, due to the 
diversification of big data, different degree of consistency 
requirements for the same data exist with respect to different 
types of services or even the same service at different periods 
of time. From an economic standpoint, users always expect to 
adjust the consistency level in order to control the overall cost, 
including consistency cost and penalty cost of inconsistencies, 
especially in big data management based on geo-replicated 
cloud storage. In terms of performance, the effect of the 
implementation of strong consistency semantics on 
performance should also be taken into account when designing 
geo-replicated cloud storages for big data management.

To achieve high availability and fault tolerance, data is 
usually stored in multiple servers not only within a data center 
but also across data centers in different parts of the world when 
using geo-replicated cloud storages. According to the above 
analysis, a range of factors, such as cost, response time, etc., 
should to be considered carefully when providing a well-
designed consistency solution for big data management in this 
context. In general, designing geo-replicated cloud storages 
providing a particular consistency level is not the silver bullet 
for managing big data. Instead, we see it as fundamental to 
explore a framework that can be tuned to provide different 
levels of consistency at a middleware layer as well as its 
appropriate trade-off strategies for geo-replicated cloud 
storages. In this paper, the goal is to allow geo-replicated cloud 
storage used in big data to dynamically switch to an 
appropriate consistency level at runtime in the consideration of 
cost and performance constraints.

The contributions of this paper are as follows: (a) We 
introduce a consistency hierarchical framework. It supports the 
implementations of a strong consistency protocol, named D-
Paxos [11], which has high write throughput and low average 
read latency under the heavy reads and writes, and a range of 
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consistency semantics. (b) We define a range of consistency 
trade-off strategies. This set of strategies divides data into two 
categories requiring different consistency guarantees at the data 
level. They can also be used to gain a better trade-off between 
consistency, cost and response time at the transaction level. (c)
We propose a cost balance formula and define a new metric 
called Consistency-ResponseTime efficiency, both of which 
are based on probabilistic approaches and can be used as a 
basis to dynamically switch guarantee levels at runtime 
depending on the prediction made by a probabilistic model.

The rest of paper is organized as follows. Section 2 
summarizes related work. A consistency hierarchical 
framework is introduced in Section 3. In Section 4, we present 
our consistency trade-off strategies. Based on our framework, 
Section 5 describes the implementations of those trade-off 
strategies in detail. The effectiveness of our framework and its 
trade-off strategies rules is illustrated by simulation in Section 
6. The conclusion is followed in Section 7. 

II. RELATED WORK

A new transaction paradigm, called consistency rationing is 
proposed in [12], which allows to automatically switch 
consistency guarantees at runtime. Data are divided into three 
categories A, B and C, which are treated differently depending 
on the consistency level they needed. In particular, some 
policies providing probabilistic guarantees are proposed for 
category B, which comprises all the data where the consistency 
requirements vary over time. Using these policies, data in the B
category switch between session consistency and serializability 
at runtime. However, the approach cannot be applied with 
eventual consistency as weaker consistency, since 
inconsistencies considered in consistency rationing are due to 
update conflicts rather than delay of update propagation.

According to in-depth analysis of consistency costs of the 
most common concurrency control protocols, I. Fetai et al. [13] 
present a cost-based concurrency control C3. A set of rules 
specified in C3 can be used to dynamically select the most 
appropriate consistency level, with an aim to minimize the 
overall costs. With C3, the consistency level of a transaction is 
determined before the transaction is effectively executed. 
Developers of transactional systems have to choose the most 
appropriate consistency level for their transactions, which is a 
difficult task. Moreover, the impact of factors, such as the 
timeliness, other than cost on consistency level is not 
considered.

Pileus [14] can be regarded as an extension and 
implementation of the adaptive framework for tunable 
consistency and timeliness using replication. As a replicated 
and scalable key-value storage system, Pileus provides the 
implementation of both strong and eventual consistency as well 
as intermediate guarantees and their interfaces. It also allows 
applications to declare their consistency and latency priorities 
via consistency-based service level agreements [15]. Related 
algorithm is used for selecting a proper target subSLA along 
with the set of nodes that can best meet this subSLA at the 
current time.

Harmony [16] is a novel approach that handles data 
consistency in cloud storage adaptively. In order to provide 

adequate tradeoffs between consistency and both performance 
and availability, Harmony adopts stale reads rate to precisely 
reflect the application requirement and adapt the number of 
replicas involved in the access operation to the requirement. 
Though it is an effective approach to dynamically and 
elastically handle consistency at run time, it does not focus on 
cost.

Techniques that allow more fine-grained tuning as may be 
required to support consistency guarantees through service 
level agreements (SLAs) are also be investigated [17]. A novel 
technique that assigns the consistency level on a per-operation 
basis by choosing randomly between two options (e.g. weak vs. 
strong consistency) with a tunable probability and a known 
technique that uses weak consistency and injects delays into 
storage operations artificially are considered in this work.

III. A CONSISTENCY HIERARCHICAL FRAMEWORK

A. Background and Motivation
In the recent years, many corporations and organizations 

have been migrating their ever-increasing data into geo-
replicated cloud storages, in order to obtain highly scalable, 
highly available and low-cost storage services. However, 
problems with geo-replicated cloud storages are:  (a) From the 
perspective of application requirements, data requiring strong 
consistency are unavoidable obviously. But in turn, it is 
unlikely for big data management applications to provide 
strong consistency guarantees for all data due to requirements 
from a fraction of data, which subjects to higher cost and lower 
performance. (b) Weaker consistency semantics avoid higher 
overall cost caused by more resources and time needed due to 
strong consistency guarantees required and may provide better 
response time, but it is at the risk of potential, extremely high 
penalty cost due to inconsistencies. 

To design a consistency framework for data consistency in 
big data management, the side effects introduced by geo-
replicated cloud storages should also be dealt with carefully. In 
particular, for heavy reads and writes requiring strong 
consistency guarantee, it is an important performance problem 
that how to achieve strong consistency, which has high write 
throughput and low average read latency in the cloud using 
geo-replication. Moreover, the framework should give 
consideration to tunable consistency in exchange for cost 
saving and timely response.

B. An Overview of the Framework
In order to design such a framework mentioned above, we 

should address the following main issues: (a) organize replicas 
in a reasonable way, (b) support for the implementations of 
different consistency semantics, and (c) develop a set of 
consistency trade-off rules, taking into full account influence of 
cost and response time. In this section, we provide our solution
for the first two issues.

In the cloud using geo-replication, data are replicated over 
replicas across multiple data centers. Data centers, replicas and 
clients accessing to replicas are regarded as entities in our 
consistency framework. Our framework is separated into two 
layers, namely, the top layer consisting of all data centers and 
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Figure 1. A Consistency Hierarchical Framework

the bottom layer consisting of all replicas offering the same 
service, both of which are also called the data center layer and 
the replica layer respectively. For each data category requiring 
some level of consistency guarantees, all data centers in the top 
layer are organized logically into two groups: a primary group 
and a secondary group, as shown in Fig. 1. Accordingly, data 
centers in groups are known as primary data centers and 
secondary data centers respectively. Note that, data categories 
requiring different consistency guarantees differ in ways of 
logically grouping data centers in terms of their members and 
number. Moreover, a distinguished replica is elected in each 
data center, called delegator. It ensures consistent states among 
replicas located in the same data center and provides the only 
interface for messaging between data centers.

C. Consistency in Each Data Center
In our framework, consistency guarantees are achieved in 

two layers, i.e. consistency within each data center in the 
replica layer and consistency among data centers in the data 
center layer. Replicas in the same data center are often 
connected through local area networks of high bandwidth and 
low latency, which makes it reasonable to implement strong 
consistency semantics at lower cost in a data center. 
Consequently, we implement strong consistency guarantees for 
replicas with the same data center by adopting Paxos [18]. A 
delegator in each data center serves as the unique leader for 
Paxos instances. Since high wide-area latency among data 
centers is the main bottleneck for geo-replicated cloud storages, 
the key point is to achieve consistency among data centers 
more efficiently. However, achieving consistency within each 
data center proves to be important for implementing an 
effective strong consistency protocol which has high write 
throughput and low average read latency. 

D. Consistency among Data Centers
Consistency among data centers consists of two parts: 

consistency for the primary group and consistency for the
secondary group. Groups differ in the degree of consistency 
they implement: the primary group is used to implement strong 
consistency semantics, whereas the secondary group is used to 
implement tunable consistency semantics.

We assume that there are only two requests sent from 
clients: reads and writes. Writes are only handled by the 
primary group, whereas reads can be handled by both the 
primary and the secondary group. The size of the primary 
group can be tuned to control the cost of implementing strong 
consistency semantics required by writes. Since the secondary 
group does not handle writes, the state of the secondary data 
centers is brought up-to-date through lazy update propagation 

from the primary group after they have handled write requests. 
As a consequence, the secondary group can only provide 
weaker consistency semantics, which is usually reflected 
through the staleness (or degree of the lagged) of states. By 
providing relevant strategies, we can switch consistency 
guarantees in this hierarchical framework, that is, 
implementing tunable consistency. Obviously, reading from the 
primary group can obtain the most up-to-date state, but may 
subject to higher latency, whereas reading from the closest 
secondary data center enables a fast access, at the cost of staled 
state and potential monetary penalty. Note that a non-delegator 
replica from a specified data center in the primary group is 
selected as the lazy update publisher. Although there are many 
protocols can be used, we adopt D-Paxos [11] for our primary 
group, which guarantees all reads and writes being handled by 
all replicas in the same order.

IV. CONSISTENCY TRADE-OFF STRATEGIES

Despite of different choices on what degree of consistency 
should be provided [19, 20], we argue that providing a 
particular consistency level is not the silver bullet for managing 
big data based on geo-replicated cloud storage. In the industry, 
offerings such as Facebook's Cassandra [21] provide more 
choices of different consistency levels for users. In this paper, a 
set of consistency trade-off strategies at both the data level and 
the transaction level is developed in coordination with our 
consistency hierarchical framework. The purpose is to enable 
geo-replicated cloud storage used in big data management to 
dynamically switch to an appropriate consistency level at 
runtime in the consideration of cost and performance
constraints. In simple words, implementing tunable consistency 
semantics when using geo-replication. 

In the strategies, we first divide the data into two categories 
at the data level, namely, S category and T category. The S
category contains data for which strong consistency semantics 
are required and T category contains all the data where the 
consistency requirements vary over time. On this basis, 
influences of cost (consistency cost and penalty cost of 
inconsistency) and response time on the consistency guarantees 
required by T category are further considered at the transaction 
level. For this purpose, a cost balance formula and a new 
metric Consistency-ResponseTime Efficiency are defined. 
Based on the prediction made by a probabilistic model, our 
strategies are able to gain between consistency, cost and 
response time. Below we present our consistency trade-off
strategies in detail. 

Data Level Strategy: Preconditions: (a) the data require 
strong consistency guarantees, no matter how much 
consistency cost need to pay, and (b) the data are provided with 
infinite consistency budget.

In the first precondition, consistency level is a more 
important factor than the monetary cost for making the 
decision. As for the second precondition, choices won't be 
restricted by the cost factor. Hence, strong consistency must be 
selected due to the best data quality it provides. We can get the 
corresponding decision as follows.

Data Level Decision: if one of the above preconditions 
holds, the data is classified as S data and strong semantics are 
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Figure 2. The logical relationships between entities in the primary group

required; otherwise, the data is classified as T data, the desired 
consistency level should be further determined through the 
transaction level strategy 1.

Transaction Level Strategy 1: Precondition: the potential 
penalty cost is higher than the expected savings when using 
tunable consistency for T category. 

Unlike S category, T category may be handled with varying 
consistency levels because of cost concerns. From an economic 
perspective, it is reasonable to balance the expected cost 
savings and potential losses, especially when the overall cost is 
a major concern. The decision is given as below. 

Transaction Level Decision 1: if the precondition holds, T
category should be handled with strong consistency; otherwise, 
the desired consistency level should be further determined 
through the transaction level strategy 2.

The key to implement the above strategy is how to establish 
a formula to compare the expected savings and the potential 
penalty cost. In addition to the cost constraints, response time 
is another factor which should be taken into account. Before 
proposing the transaction level strategy 2, we define a new 
metric Consistency-ResponseTime Efficiency as below. 

Consistency-ResponseTime Efficiency 
= ConsistencyProbability(cl)/ResponseTime (1)

Where cl is the consistency level specified by clients. 
ConsistencyProbability(cl) is the probability that the data 
obtained are of desired consistency level specified, and 
ResponseTime is the time a client takes to receive a response
from the data center which provides the data. Intuitively, a high 
metric value indicates that one data center is able to provide 
with client specified consistency level in a timely manner with 
a high probability. Using this metric, the transaction level 
strategy 2 is expressed as follows.

Transaction Level Strategy 2: Precondition: with 
statistical information obtained about client specified 
consistency levels and response time, it is possible for clients to 
calculate a series of Consistency-ResponseTime Efficiency 
values corresponding to data centers.

Consistency-ResponseTime Efficiency is used by the 
transaction level strategy 2 as a basis to switch consistency 
levels. The object of this strategy is to enable clients to achieve 
as strong semantics as possible in the shortest possible response 
time. Consequently, the decision for this strategy is as follows.

Transaction Level Strategy 2: depending on metric values 
of Consistency-ResponseTime Efficiency calculated, the 
consistency level with the highest metric value is selected as 
the target consistency level for subsequent reads and the data 
center which provides such a metric value is selected as the 
target data center.

V. DESIGN OF PROTOCOL AND STRATEGIES BASED ON THE 
CONSISTENCY HIERARCHICAL FRAMEWORK

In this section, we describe the details of the strong 
protocol designed based on our consistency hierarchical 

framework and formulas used in our consistency trade-off 
strategies and how to obtain the relevant threshold and metric 
values.

A. Obtain Strong Consistency Guarantees for Data Level 
Strategy
Since writes are only handled by the primary group, strong 

consistency guarantees for reads and writes can only be 
provided by the primary group. Unlike the secondary group 
which updates its state through updated state received, the 
primary group strictly orders reads and writes indiscriminately 
in order to maintain the sequential relationship between them, 
and thus providing strong consistency guarantees. Here, we 
concentrate on the design of a protocol which provides strong 
consistency among replicas across multiple data centers in the 
primary group.

In geo-replicated cloud storages, the following problems 
should be considered carefully: (a) high latency for wide area 
messaging. Strong consistency protocols which rely heavily on 
messaging subject to wide area channel with low bandwidth 
and high latency, resulting in poor performance. (b) unbalanced 
link dependency pattern. Protocols which are leader-centric 
usually make most of their networks idle due to their 
unbalanced communication pattern. Besides, the unique 
sequencer in each of those protocols usually become the 
performance bottleneck.

Here, we propose a protocol, called D-Paxos, which 
provide strong consistency guarantees. It can utilize resources 
(network and time) in a more efficient way by means of the 
layered characteristics of our framework. The logical 
relationships between entities in the primary group adopting D-
Paxos are shown in Fig. 2.

The execution stage of D-Paxos between delegators 
reserves some actions like those in Paxos, including suggest (if 
the leader proposes a non-empty proposal), skip (if the leader 
proposes an empty proposal) and revoke (if a recovery phase is 
initiated by another delegator because of the leader's failure). 
D-Paxos and Paxos differ in: (a) D-Paxos adopts a rotating 
leader scheme among delegators from data centers in the top 
layer. Instances executed in this layer are considered to be 
sequential and delegators take turns to be the leader of 
instances coordinated among delegators. The arrow in Fig. 2
indicates the logical sequence between delegators. (b) once 
serving as a leader,  a delegator proposes its pre-ordered 
sequence of requests, which are generated by running a 
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sequence of Paxos instances in its own data center in the 
bottom layer. If the sequence is empty, then the leader takes 
skip action instead. In short, delegators are the main 
participants of D-Paxos and their proposals are pre-ordered
sequences of requests generated in their data centers in the 
bottom layer. To distinguish roles delegators take in the top 
layer between those they take in the bottom layer, leaders of 
Paxos instances executed in data centers in the bottom layer are 
called local leaders, whereas the leaders rotated among 
delegators in the top layer are called rotating leaders.

Each instance of D-Paxos proceeds in two phases: (a) local 
consistency phase in the replica layer: before being the rotating 
leader, a delegator obtains a pre-ordered sequence of requests
by coordinating a sequence of Paxos instances in its own data 
center. (b) global consistency phase in the data center layer: 
when a delegator becomes the rotating leader, it proposes its 
pre-ordered sequence of requests obtained in the local 
consistency phase and waits for acknowledge messages from a 
quorum of delegators. Once receiving acknowledge messages 
from a quorum of delegators, the rotating leader learns that its 
proposal has been chosen and notifies all other delegators. 
Finally, all replicas in all data centers will be synchronized.

The benefits of D-Paxos are obvious. By efficiently 
exploiting resources (idle time left by inherent high wide area 
latency among data centers and high bandwidth available in 
data centers) for generating pre-ordered sequences of requests 
in the local consistency phase and proposing them as batches in 
the global consistency phase, D-Paxos improves the overall 
throughput though batching and reduces the average latency. 
Moreover, with the rotating leader scheme in the data center 
layer, D-Paxos further improves the overall performance in a 
logical pipelining manner and amortizes the coordinating 
overhead over all delegators.

Generally, the cost of write requests can be traded off 
against the cost of strongly consistent read requests [15]. If 
strong consistency guarantees are required by geo-replicated 
storage used in big data management under heavy reads and 
writes, and clients are connected evenly to all data centers, a 
bigger primary group will accelerate the synchronization 
among data centers. When the primary group encompasses all 
data centers, D-Paxos provides high write throughput and low 
average read latency.

B. A Cost Balance Formula in Transaction Level Strategy 1
As mentioned above, the state of the secondary data centers 

is brought up-to-date through updated states propagated from 
the primary group. However, the propagation delay between 
groups leads to a certain degree of staleness of the secondary 
data centers. It's important to note that, although a fixed 
grouping scheme might already be determined for a certain 
category, indicating a relatively stable storage cost for any 
consistency level applied in our framework, enforcing different 
consistency levels still cause different number of messages and 
different lengths of response time, and thus different network 
cost and runtime cost. Our cost balance formula is established 
on the basis of this knowledge.

For T category, some inconsistencies are tolerable, as long 
as inconsistencies are still in the acceptable range of big data 

management applications. Therefore, it is reasonable that there 
is a staleness threshold specified by the client exists, where an 
inconsistent state that is more stale than this staleness threshold 
is thought to cause a penalty cost. In this paper, staleness (the 
number of updated states lagged) is used to reflect the 
consistency level of a data center (and its replicas). 

In our transaction level strategy 1, a probabilistic model-
based cost balance formula is established to compare the 
potential penalty cost of staleness which is more stale than the 
staleness threshold caused by tunable consistency and the 
expected savings of using tunable consistency. We use t to 
denote the time at which client issues a read request to a 
secondary data center, which is also used to denote the time at 
which the target consistency level and target data center are 
determined. Let Si(t) denote the staleness (which also reflect 
the consistency level) of the state of secondary data center i at 
time t, and s be a staleness threshold specified by the client. Let 
P(Si(t s) be the probability that the staleness of the state of 
secondary data center i at time t is within the staleness 
threshold. Let P(S(t s) be the probability that the staleness of 
the states of secondary group containing all secondary data 
centers at time t exceeds the staleness threshold. For P(S(t) > s), 
a higher probability indicating a higher likelihood of all 
secondary data centers at time t being more stale than the 
staleness threshold, indicates that the potential penalty cost of 
staleness caused by using tunable consistency are more likely 
to exceed the expected savings of using tunable consistency. 
Let p be the probability threshold which the penalty cost is 
greater than the expected savings if P(S(t) > s) is greater than p, 
or vice versa.

Let CS be the cost of a write to a record when using strong 
consistency, CT be the cost of a write to a record when using 
tunable consistency and CV be the penalty cost of staleness 
which is more stale than the staleness threshold caused by 
tunable consistency. According to the precondition in the 
transaction level strategy 1, if the potential penalty cost of 
using tunable consistency E(X) is higher than the expected 
savings of using tunable consistency, then: 

 CS – CT E(X)   (2)

If (2) holds, it is better to select strong consistency. 
Assuming the potential penalty cost of using tunable 
consistency E(X) = P(S(t) > s)* CV, (2) becomes:

S T

V

C CP S t s C
      (3)

Hence, the probability threshold, which is used to 
determine whether the potential penalty cost of using tunable 
consistency is greater than the expected savings of using 
tunable consistency or not, can be set to S T

V

C C
C

. 
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C. Estimation of Consistency-ResponseTime Efficiency 
Metric in Transaction Level Strategy 2
To estimate the Consistency-ResponseTime Efficiency, the 

probability that a client obtains data with specified consistency 
level and the response time it takes are estimated respectively.

Let GP denote the primary group and GS denote the 
secondary group. As mentioned in the previous section, Si is 
the random variable denoting the staleness of the state of 
secondary data center i. t denotes the time at which a read 
request is issued. Si(t) denotes the staleness of the state of data 
center i at time t. In this paper, the staleness is used to reflect 
the consistency level. Let cl be the consistency level specified 
by the client. Hence, P(Si(t cl) be the probability that the 
state of data center i at time t is within the consistency level cl. 
The staleness of the secondary data center i at time t is 
considered as the number of write requests received by the 
primary group since the time ti at which the secondary data 
center i received the last lazy update. Let di be the duration 
between t and ti. Si(t) is actually the number of write requests 
received by the primary group from clients in the duration di. 
We assume that the write requests arrival from clients follows a 
Poisson distribution with rate w. Hence, we can obtain

0 !

w i
n d

cl w l
i n

t e
P S t cl

n
          (4)

Since the staleness is used to reflect the consistency level, 
the probability ConsistencyProbability(cl) that a client can 
obtain data with specified consistency level from secondary 
data center i can be calculated in (4). A smaller cl means a 
more strict consistency requirement. The greater the probability, 
the more likely the data center meets the consistency 
requirement. Formula (4) is extended to include the estimation 
of the staleness of state of the primary group. Since the primary 
group implements strong consistency semantics, obviously, the 
probability ConsistencyProbability(cl) for the primary group is 
ConsistencyProbability(cl) = 1.

Since the update propagation from lazy update publisher to 
any secondary data center is independent and the wide area 
latency is variable, we assume that the staleness of state of each 
secondary data center is independent. The probability P(S(t) > s)
in the left side of (3) is given by (5).

0

( ( ) ) 1 ( ( ) ) 1 ( ( ) )

1 ( )!

s

e w i

s

i
i G

n ds w i
n

i G

P S t s P S t s P S t s

d
n

  (5)

Here we describe how to measure the values of parameters 
w, di and the response time. Each delegator records the 

number of requests nc it has received and handled in the 
duration tc between the times at which it become the rotating 
leader. Once it becomes the rotating leader, it sends < nc, tc >
previously recorded to all clients. Therefore, the arrival rate w

can be computed as w = P

j
c

jj G
c

n
t

P
, where P is the number of 

data centers in the primary group. di is the duration between 
the time at which a read request is issued and the time ti at 
which the secondary data center i received the last lazy update, 
so di = t – ti. The delegator in the secondary data center i sends 
its di to clients, which will then be used as input to its 
consistency selection algorithm. To estimate the response time, 
clients keep histories about getting responses from different 
data centers. We assume that the propagation delay Tu from a 
data center u to the client follows the Guass distribution. A 
sliding window with the size of n is used for each data center to
collect samples, and the response time wu can be computed as 
wu =

,1

1 n
u vv

x
n

, where xu,v is a sample value.

VI. EVALUATION

A. Simulation Settings
We construct a simulation environment containing 

multiple data centers. The experimental setup is composed of 
four servers A, B, C and D, each of which simulates a data 
center. Replicas in data centers are emulated by running 
concurrent threads. By default, three threads are started in each 
server, with one of them selected to be the delegator. All data 
centers are connected by an emulated wide area network. The 
propagation delay between A and B is 160ms, between C and 
D is 340ms, between C and A as well as B are both 300ms and 
between D and A as well as B are both 200ms. Clients which 
issue read and write requests are emulated by separate threads. 
In this scenario, the performance bottleneck are network 
bandwidth and latency. The size of read and write requests 
adopted in our experiments is 8KB. 

B. The Effectiveness of The Transaction Level Strategy 1 
In this section, we study the effect of transaction level 

strategy 1 on the trade-off between consistency and cost. The 
setting in scenario (b) described above is applied in this set of 
experiments. Emulated clients run in data center C. To gain 
further insight into this strategy, the overall cost of running the 
workload with tunable consistency following the transaction 
level strategy 1 is compared with the overall cost of running the 
workload with strong consistency as well as the overall cost of
running the workload with weak consistency. In this scenario, 
running the workload with strong consistency or weak 
consistency refers to always reading from the primary group or 
always reading from the secondary group respectively. Since 
the focus is on the effectiveness of strategy 1, a relatively 
reasonable pricing scheme is provided for different levels of 
consistency. The cost when using strong consistency is about 
$0.12 per 1000 requests, the cost when using weak consistency 
is $0.03 per 1000 requests, and the penalty cost of read 
staleness is about $0.18.

Fig. 3 shows the trend of the overall cost with increasing 
number of requests. The curve for strong consistency indicates 
that the overall cost when using strong consistency increases 
linearly with the number of requests. That is because no 
inconsistencies (staleness) occur and no penalty cost caused
when using strong consistency. Consequently, its 
corresponding unit cost to provide strong consistency is 
relatively fixed. The overall cost when using weak consistency 
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Figure 3. The overall cost when using strong consistency, weak 
consistency, tunable consistency, varying the number of requests

Figure 4. The overall cost when using strong consistency, weak 
consistency, tunable consistency, varying the penalty cost

Figure 5. Under different network conditions, metric values of 
Consistency-ResponseTime efficiency provided by different data centers

is lower compared to that when using strong consistency due to 
its lower unit cost. However, the overall cost when using weak 
consistency grows faster and faster with the increasing number 
of requests. The reason is that the increasing number of 
requests cause a busy network, which has more and more 
negative impact on the degree of staleness, and thus increasing 
the overall penalty cost. Using tunable consistency following 
the transaction level strategy 1 has the lowest overall cost in 
this scenario. When the probability that the potential penalty 
cost is higher than the expected savings when using tunable 
consistency exceeds the specified probability threshold, 
consistency level will be switched to strong consistency 
according to the transaction level strategy 1, which avoids high 
penalty cost. Thus, the transaction level strategy 1 finds the 
right balance between weak consistency (to save cost) and 
strong consistency (to avoid penalty cost).

The penalty cost affects the determination of the 
probability threshold defined in our transaction level strategy 1
and has a big influence on the overall cost. Keeping the number 
of requests constant, we observe the effect of the penalty cost
on the overall cost. As shown in Fig. 4, the overall cost when
using strong consistency is constant because all reads are 

handled in the primary group. No staleness occurs and no 
penalty cost exists. When using weak consistency, the overall 
cost is lower in contrast to that when using strong consistency 
at a penalty cost of $0.12. However, the overall cost increases 
very rapidly with an increasing penalty cost and then exceeds 
the overall cost when using strong consistency at a penalty cost 
of about $0.18. When using tunable consistency, the 
probability threshold decreases with the increasing penalty cost. 
To avoid the potential and higher total penalty cost, the 
transaction level strategy 1 enforces more and more reads at 
strong consistency, that is, reading at the primary group. In this 
case, the overall cost converges to the overall cost of using 
strong consistency.

C. The Effectiveness of The Transaction Level Strategy 2 
The goal of this experiment is to verify the effectiveness 

of the transaction level strategy 2. To this end, the penalty cost 
is set to a very small value, so that rather than selecting strong 
consistency immediately in the transaction level strategy 1, the 
desired consistency level will be determined through the 
transaction level strategy 2. In this experiment, the primary 
group only contains data center A while the secondary group 
contains data centers B, C and D. Therefore, no protocol is 
needed to run in the primary group. Moreover, the client runs 
in a remote site simulated by a newly added server rather than 
any data centers included in the primary group or the secondary 
group.

We run the experiment three times, each time the average 
latency from each data centers to the client varies. About 200
seconds into each experiment, we collect sampling data so as to 
calculate the metric values of Consistency-ResponseTime
efficiency provided by data centers. The experimental results 
are given in Fig. 5. Here, for the sake of brevity, only the 
maximum metric values in different cases are identified. As we 
can see, data center C provides the maximum value in case 1, 
which is about 2.51 (with the consistency probability of 0.719 
and the response time 0.286s). Corresponding staleness 
observed subsequently is shown in Fig. 6. In case 1, some 
degree of staleness exists, because the secondary data center C
is selected as the target. It also illustrate that, even if the only 
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Figure 6. Under different network conditions, staleness observed in the 
subsequent period of time

primary data center is able to provide strong consistency 
guarantees, it isn’t selected as the target because of the 
relatively lower metric value it provides due to longer response 
time. This is also true in case 3. As for case 2, the primary data 
center A is selected because of the maximum metric value it 
provides. Since data center A is a primary data center, the client 
is provided with strong consistency semantics. Accordingly, 
staleness 0 is shown in Fig. 6. 

VII. CONCLUSION AND FUTURE WORK

For tackling data consistency challenge in big data 
management based on geo-replicated cloud storage, we present 
a consistency hierarchical framework and a set of consistency 
trade-off strategies in this paper. The proposed framework 
provides support for the implementations of different 
consistency guarantees, including storing consistency and a 
range of tunable consistency semantics. A set of consistency 
trade-off strategies at both the data level and the transaction 
level is proposed and related protocol and formulas used in 
these strategies are also presented. The simulation results 
illustrate the effectiveness of our hierarchical framework and 
trade-off strategies.

For future work, our plan includes: investigating the 
dynamic reconfiguration of primary-secondary groups in our 
framework, exploring better predication models for our trade-
off strategies, and having further analysis on the relationship 
between consistency, performance and cost involved in our 
framework.
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