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The concept of antigenic seniority or
antigenic imprinting is a more ade-
quate model compared with the origi-
nal antigenic sin theory.

Understanding how pre-existing
immunity shapes the antibody
response to conserved epitopes on
influenza virus is critical for the devel-
opment of new influenza virus
vaccines.

Different strategies are being devel-
oped to boost and sustain the produc-
tion of broadly neutralizing stalk-
reactive antibodies over time.

Clinical trials with vaccine candidates
targeting conserved regions on influ-
enza virus are ongoing in humans.
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Antibody responses are essential for protection against influenza virus
infection. Humans are exposed to a multitude of influenza viruses throughout
their lifetime and it is clear that immune history influences the magnitude and
quality of the antibody response. The ‘original antigenic sin’ concept refers to
the impact of the first influenza virus variant encounter on lifelong immunity.
Although this model has been challenged since its discovery, past exposure,
and likely one’s first exposure, clearly affects the epitopes targeted in
subsequent responses. Understanding how previous exposure to influenza
virus shapes antibody responses to vaccination and infection is critical,
especially with the prospect of future pandemics and for the effective
development of a universal influenza vaccine.

Antibody Responses to Influenza
About 250 000–500 000 individuals succumb to influenza virus infection worldwide every year.
Current seasonal influenza virus vaccines offer protection but are often off-target and they have to
be reformulated and readministrated every year due to the phenomenon of antigenic drift (see
Glossary) [1]. The twosurfaceglycoproteins,hemagglutinin (HA)andneuraminidase (NA), are
themain targets of antibody responses. Influenza A viruses are subtyped based on the sequence
and antigenic divergence of the HA and NA proteins. A total of 18 HA and 11 NA subtypes have
been identified.Theclassificationof influenzaviruses into twophylogenetic groups isbasedon the
type ofHAexpressed on the virus (Group 1 includesH1andH5andGroup2 includesH3andH7)
[2–4]. Influenza B viruses are classified as a single influenza virus type, but two antigenically and
genetically distinct lineages circulate, the Victoria-like and the Yamagata-like lineage [5].

Because of antibody pressure, influenza viruses escape the immune system by introducing point
mutations, mainly in the immunodominant and highly plastic globular head of HA. By contrast,
the more conserved stalk domain of HA does not change as often [6]. Antibodies binding to
epitopes on the HA stalk domain are broadly cross-reactive and can neutralize a wide variety of
influenza strains (homosubtypic and heterosubtypic neutralization). Unfortunately, the stalk
domain is immuno-subdominant and seasonal influenza vaccines do not always induce these
broadlyneutralizingantibodies [7]. Inaddition,seasonal vaccinesshow limitedefficacyagainst
novel pandemic influenza virus strains, and producing specific vaccines for these strains in a
timely fashion is challenging [8]. Different strategies have been developed to try to induce these
broadly neutralizing antibodies, including headless HAs constructs for a better availability of the
stalk region and immunizationwith chimeric HAsmadewith ‘exotic’ heads [9,10]. Understanding
how immune history affects the production of such antibodies is crucial for the development of
new vaccines.
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Glossary
Antigenic drift: the introduction of
point mutations, mainly in the
globular head domain of HA, which
allows the influenza virus to
continuously evolve into new strains.
Antigenic seniority: the model by
which the first influenza virus strain a
person is exposed to as a child
takes the most ‘senior’ antigenic
position in the immune repertoire.
This ‘senior’ response will be
continuously boosted upon
sequential exposure to other strains,
which in turn will take progressively
The concept of ‘original antigenic sin’ (OAS) refers to the notion that the first antigenic variant
encountered early in life conditions lifelong immunity. This theory has been constantly
challenged since its description in the early 1950s [11,12]. While it is known that immune
memory acquired by past influenza exposure influences the response to subsequent strains,
how sequential exposure to antigenically distinct influenza strains shapes the antibody
response remains obscure. The terms antigenic seniority or antigen imprinting may more
accurately describe such a phenomenon, as these terms encompass both positive and
negative impacts of past exposure to vaccine efficacy.

This review focuses on how pre-existing immunity influences the generation and mainte-
nance of broadly cross-reactive antibodies in the context of the development of a ‘stalk-based’
universal influenza virus vaccine.
more ‘junior’ positions. Thus, the
more ‘senior’ a strain is, the more
boosted it will be upon infection
and/or vaccination.
Antigenic shift: the reassortment of
gene segments between human
and/or zoological influenza viruses,
which leads to the emergence of
novel strains.
Broadly neutralizing antibody: an
antibody that binds to conserved
epitopes on the influenza virus, thus
being capable of neutralizing multiple
strains.
Epitope masking: the direct
blocking or steric hindrance of an
epitope due to pre-existing
antibodies, which will result in
reduced access to antigen.
Hemagglutinin (HA): influenza virus
surface glycoprotein that mediates
viral entry by binding sialic acid on
host cells. HA is a trimer arranged
into a membrane-distal globular head
domain and a membrane-proximal
stalk domain.
Heterosubtypic strains: influenza
viruses belonging to different
subtypes (e.g., H1N1 and H3N2 are
subtypes of influenza A viruses).
The Concept of Original Antigenic Sin
Around 70 years ago, Thomas Francis Jr and colleagues made the observation that the
antibody response to influenza strains from childhood dominates the anti-influenza virus
antibody response over time [12–14]. Even as a person grows older and acquires antibodies
to other strains, the original antibodies are maintained at the highest levels at all times. Francis
called this phenomenon the OAS, a Biblical reference to how an individual will bear the ‘sin’ of
the first influenza virus exposure for the rest of his life. While OAS is most often applied to
anti-HA responses, convincing evidence of OAS in anti-NA responses is emerging [15]. The key
to understanding the phenomenon of OAS may lie in understanding the nature of the influenza
virus itself. When a strain undergoes antigenic drift, some epitopes remain conserved.
Pre-existing antibodies to such epitopes cross-react to the drifted strain, thus suppressing
the response by reducing antigen levels through Fc-mediated mechanisms and/or epitope
masking [16–20]. This reduction in access to antigen would favor recall of memory over de
novo activation of naïve B cells. This scenario would therefore boost pre-existing influenza virus
antibody responses while the diversity of the overall response is reduced and drifted epitopes
are less well targeted [21]. Consistent with the idea of preferential activation of memory B cells
at sequential exposure are studies showing that antigen relatedness, but not the length of
intervals between exposures, is of great prognostic value for the response to sequential
exposure [22–24]. This model is further supported by evidence of how OAS can be alleviated
by increasing the available antigen, and/or by shifting antigen presentation frommemory B cells
to dendritic cells [25]. The latter can be achieved by using an adjuvanted vaccine, which adds
the benefits of an enhanced cellular response [25].
Homosubtypic strains: influenza
viruses belonging to the same
subtype.
Immune history: the accumulation
of all previous influenza virus
exposures (infection and vaccination).
Immunodominance: the
phenomenon of preferential induction
of immune responses to certain
epitopes due to the unequal
immunogenicity between different
antigens, or between different
epitopes on the same antigen.
Neuraminidase (NA): tetrameric
influenza virus surface glycoprotein
that cleaves sialic acid, thus allowing
release of virions from host cells.
Original antigenic sin: the notion
that the first variant of an influenza
OAS versus Antigenic Seniority
Is it really a ‘sin’ to have immune memory and pre-existing antibodies to the first influenza virus
strain an individual is exposed to? It would only be a true sin if nothing good comes from it, and
although Francis used this term, he also suggested that the concept of OAS could be employed
to induce broader immunity [12]. Perhaps the term ‘antigenic seniority’ better describes the
phenomenon. This more recent model of OAS dictates that strains from childhood are given a
more ‘senior’ antigenic position in our immune repertoire, and that each subsequent strain
takes a more junior position in the response [26–28]. Thus, the relative response to each
individual strain will be determined by its hierarchal position, and previously encountered strains
will be boosted by encounter with strains of the same subtype. Over time, these responses
accumulate, resulting in the highest antibody titers against the strains of childhood. It is also
possible that the response to primary exposure is simply larger than that to subsequent
exposures [21]. A key distinction of this new model is that every new strain gets a place in
the hierarchy, not only the strain of first exposure (Figure 1).
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virus encountered early in life will
dictate lifelong immunity to all
subsequently encountered antigenic
variants of that virus.
Pandemic strain: a novel influenza
strain capable of causing a global
disease outbreak.
Pre-existing immunity: the memory
cells, long-lived plasma cells, and
circulating antibodies that were
generated in a previous immune
response to influenza virus.
Zoonotic strain: an influenza strain
that is transmissible from animals to
humans.
Evidence Supporting or Disproving the OAS Model
Studying the concept of OAS, or antigenic seniority, in the human population is difficult. While
complete vaccination historymay be available for a cohort, a comprehensive history of influenza
virus exposure is not. In fact, most children have been infected with at least one strain by the
age of 3 and adults are reinfected with drifted strains on average every 5–10 years [27,29].
Nevertheless, numerous human epidemiological studies, as well as experimental animal
studies and mathematical modeling, have been conducted on the subject.

There is strong evidence for antigenic seniority, or so-called HA imprinting, where the highest
antibody titers are against influenza virus strains from a persons’ childhood [13,15,26,30,31].
However, whether these titers would have a negative impact on immunological responses to
sequential exposure is less certain. The first observations of OAS made by Francis in the mid-
20th century found no evidence of deleterious effects of previous exposure on the response to
sequential infection with a similar strain [32]. More recent studies provide evidence in favor of a
possible impact of pre-existing memory and antibodies on subsequent exposure. Depending
on birth year, and thus imprinting, different epitopes on the HA from the 2009 pandemic H1N1
are targeted upon exposure, leading to different levels of protection to infection with later drift
variants of the 2009 pandemic H1N1 strain [33–35]. Interestingly, there are indications from
studies in mice and ferrets that OAS is stronger when the first exposure is infection rather than
vaccination [22,36]. Another study in mice indicates that antibodies with an OAS ‘phenotype’
share some level of cross-reactivity between priming and recall viral strains and that B cells
producing these antibodies can be protective when recalled into secondary immune responses
[37]. However, the obvious caveat with studies such as these is the fact that the number of
sequential exposures (vaccinations or infections) is limited and does not accurately mimic the
situation for an adult human.

By contrast, a study on responses to seasonal vaccination in humans showed no evidence of
OAS, as pre-existing antibody titers were not prognostic of the postvaccination response [18].
These findings are also supported by studies from our laboratory, where single B-cell clones
were investigated rather than total serum antibodies [38]. In addition, the emergence of a new
pandemic H1N1 strain in 2009 provided new opportunities to test the OAS hypothesis in
humans. Following the model of OAS rather than antigenic seniority, if the first strain of
childhood was another H1N1 strain, exposure to variants of the new pandemic strain would
lead to a boosted response to old strains, while response to the pandemic strain would be
minimal. However, neither human epidemiological studies nor experimental studies in ferrets
could fully prove this hypothesis [39].

Is OAS Harmful?
Paradoxically, the phenomenon of OAS may be both beneficial and harmful at the same time.
Perhaps the biggest impact of both the dangers and the benefits of OAS lies in the ever-lurking
threat of emerging pandemic and highly pathogenic zoonotic influenza virus strains. These
are novel to the human population, and whenever such a strain emerges it can be deadly for
those who do not have some level of pre-existing cross-protective immunity. However, HA
imprinting with a strain from the same phylogenetic groupmay confer protection against severe
infection. Indeed, the decreased susceptibility of the elderly population to both the 1918 and
the 2009 H1N1 pandemics has been attributed to cross-protection from antibodies generated
to strains encountered in childhood [7,40–42]. Furthermore, heterosubtypic protection to highly
pathogenic avian strains might depend on birth year, and thus which strain dominated during
childhood [30]. Further supporting this notion are studies from our laboratory showing that
seasonal, or 2009 pandemic H1N1, vaccination of persons born after 1968, when H3N2
(Group 2) strains dominated, can induce antibodies that can neutralize Group 2 H7N9 avian
strains [43]. In another series of studies, we showed that people targeted conserved, frequently
Trends in Immunology, Month Year, Vol. xx, No. yy 3
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HA stalk, epitopes on the 2009 pandemic strain [44,45], but upon subsequent exposures the
response was to immunodominant and more specific head epitopes [7]. In addition, OAS can
also negatively affect responses to seasonal strains. Pre-existing memory and antibodies can,
through epitopemasking, force the response to an antigenically similar strain to be focused to a
single epitope [46]. This may indeed be harmful if that epitope experiences antigenic drift,
whereby all capability of recognizing the drift variant is lost. It is possible that the influenza virus
can use this aspect of OAS as a potential way of escaping from the host’s immune system [22].

Toward a Universal Influenza Vaccine: Targeting Conserved Epitopes
Most protective antibodies generated in response to influenza target the HA protein, a trimeric
surface glycoprotein composed of the HA1 and HA2 domains. The majority of the HA1 chain
forms the globular head, which contains the receptor-binding site, while the HA stalk (or stem) is
predominantly composed of the HA2 domain (plus the N and C terminus of HA1) [47]. Despite
the fact that the HA head is highly plastic and subjected to mutations, cross-reactive antibodies
targeting conserved epitopes on the head have been described [48–54]. Nonetheless, the
majority of broadly neutralizing antibodies target epitopes on the stalk domain, as the level of
conservation across influenza virus strains is much higher [6,55–57]. The breadth of cross-
reactivity observed is diverse; antibodies targeting protective epitopes conserved within Group
1 or within Group 2 strains have been described [45,55,56,58–62]. In addition, protective
epitopes on influenza A virus conserved betweenGroups 1 and 2 [43,63–65] and even between
influenza A and B strains have been reported as well [49].

Broadly neutralizing stalk antibodies are induced following natural influenza infection
[45,66–68]. Although it was previously thought that seasonal influenza virus vaccines rarely
induced such antibodies, more recent studies demonstrated that they were not uncommon
and that their generation is boosted upon exposure to antigenically divergent HA head domains
[43,69–73]. Based on this, two strategies to induce stalk broadly neutralizing antibodies have
been developed (Figure 2). The first focuses on removal of the entire head domain to construct
headless HAs, while the second is based on chimeric HAs [74,75]. While the first strategy
seemed an obvious solution, headless HAs may lack important conformational epitopes, thus
inducing antibodies that may be unable to bind prefusion HA and sowill not be able to neutralize
viral infectivity [57,75]. Several constructs based on the stalk domain have been developed and
vaccination with recombinantly expressed protein provided protection against viral challenge in
a mouse model [76–79]. More recently, two studies improved the stabilization of the stalk
domain and increased immunogenicity [80,81]. Both constructs induced stalk-reactive
antibodies in animal models and protected from viral challenge, but neutralizing antibody titers
Figure 1. Antibody Responses to Influenza Virus and Antigenic Seniority. (A) Primary exposure to an influenza virus (early in childhood) induces activation of
influenza virus-reactive naïve B cells. After antigen encounter and T-cell help, naïve B cells enter a germinal center (GC) reaction where they class-switch and affinity
mature by somatic hypermutation. The majority of the B cells will recognize epitopes on the immunodominant head domain of HA (in orange) but a few might recognize
the more conserved stalk region (in blue). After 7–10 days, influenza-reactive short-lived antibody secreting cells (ASCs) or plasmablasts are present in circulation and
secrete antibodies. The generation of influenza-reactive memory B cells and long-lived plasma cells also occurs from the GC and reflects the B cells that have been
activated, with the majority of the antibody specificity being directed toward the HA head domain. (B) During secondary exposure to influenza virus/vaccine, memory B
cells generated from the first exposure will be reactivated. However, different outcomeswill occur if the second exposure (infection or vaccination) is a seasonal influenza
virus strain or a pandemic strain. In the case of a seasonal virus, antigenic drift happens from year to year resulting in small changes in the globular head. The pool of
memory B cells generated from previous exposure will recognize these drifted epitopes on the head, cells will be reactivated, and some of them will adapt in the GC by
somatic hypermutation to increase binding to the drifted epitope (in red). Short-lived ASCs, long-lived plasma cells, and memory B cells will be generated and the
antibody specificity will be a mixture of the senior strain and the more junior strain epitopes (antigenic imprinting) but mainly targeting the head. Thus, previously
encountered strains will be boosted by encounter with strains of the same subtype and over time, these responses accumulate. The less frequent memory B cells
targeting conserved epitopes will not be boosted and will be diluted out. In the OAS model, the reduction in access to antigen because of pre-existing cross-reactive
antibodies (epitopemasking) is what would favor recall of memory over de novo activation of naïve B cells. In the case of a pandemic influenza virus (shifted), themajority
of the epitopes on the head domain are new (in purple), whereas conserved epitopes on the HA stalk remain the same. Cross-reactive memory B cells specific to the HA
stalk (in blue) are being reactivated and now the product of the GC reaction is an antibody response targeting mainly the stalk domain of HA. Naïve responses to the
novel epitopes on the head domain are also induced butmost likely participate at a lower significance to the overall response. HA, hemagglutinin; OAS, original antigenic
sin.
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Figure 2. Strategies to Boost Broadly Neutralizing Stalk Antibodies. The first strategy focuses on headless HAs, with the removal of the entire head domain to
make the stalk domain more ‘available’ and thus induce antibody responses against the stalk domain. The second strategy uses chimeric HAs consisting of the stalk
domain from H1, H3, or influenza B viruses (here H1N1 as an example) in combination with head domains of exotic influenza virus strains (avian strains for the majority).
Sequential exposure with such chimeric HAs elicits boosted responses against the conserved stalk domain. Structures are based on PDB ID 4M4Y and visualized using
PyMOL. HA, hemagglutinin.
were low (using homosubtypic viruses) or almost undetectable (using heterosubtypic viruses).
A new study describing the use of a Group 1 HA ministem showed protection against both
Group 1 and Group 2 viruses [82].

The second strategy uses sequential exposure with chimeric HAs consisting of the stalk
domain from H1, H3, or influenza B viruses in combination with head domains of exotic
influenza virus strains (mostly avian strains) [75]. Multiple studies in mice and ferrets have
demonstrated that it is feasible to concentrate the immune response toward the stalk domain
using sequential immunization with chimeric HAs that have different head domains but the
same stalk domain [83–86]. Moreover, different adjuvants and routes of immunization were
proven effective in boosting antistalk antibodies and enhancing the longevity of the response in
mice using chimeric HAs [87].

Universal influenza virus vaccines that target the conserved stalk domain using chimeric HAs
are in late preclinical development. In addition, vaccines that target other conserved regions of
the influenza virus including the ectodomain of the M2 ion channel or the internal matrix and
nucleoproteins are in clinical development [88].

Pre-existing Immunity and Broadly Neutralizing Stalk Antibodies
Both strategies to enhance stalk-antibody responses have so far been tested only in animal
models. A major difference between ferrets/mice and humans is that humans have pre-existing
immunity to influenza viruses. Humans are continuously exposed to antigenically distinct
6 Trends in Immunology, Month Year, Vol. xx, No. yy



TREIMM 1421 No. of Pages 10

Outstanding Questions
What is the best strategy for preferen-
tially boosting and maintaining HA
stalk-reactive and broadly neutralizing
antibodies over time?

Are there other (better?) conserved
epitopes, besides those on the HA
stalk, that can be targeted to induce
sustainable broadly neutralizing
responses?

What is the ideal timing for administer-
ing a universal influenza virus vaccine?
Should it be given to children before
first exposure by natural infection?

What is the most optimal vaccination
strategy for already influenza virus-
primed individuals? Can OAS/anti-
genic seniority be overcome by, for
example, increasing the antigen
amount in the vaccine?

Would long-term protection by anti-
genic imprinting be altered if the first
exposure were by vaccination rather
than by natural infection?

How are T-cell responses affected by
OAS/antigenic seniority? What role
does ‘T-cell OAS’ play in the shaping
of the antibody response?
influenza virus strains (by infection or vaccination), containing both novel and immune experi-
enced epitopes [27,29]. How stalk-reactive antibodies are maintained over time and to which
extent they can be boosted upon sequential exposures to distinct HA subtypes is of major
interest. The direct analysis of human serological data presents an opportunity to assess and
understand immune responses in the context of pre-existing immunity. A longitudinal analysis
of antibody titers against various pandemic and seasonal strains of influenza virus spanning a
20-year period showed that titers of stalk cross-reactive antibodies rose modestly over time
[28]. These results are consistent with another study reporting an increase in serum titers of
broadly neutralizing HA stalk-reactive antibodies with age [89]. However, both studies pointed
out the relative weakness of Group 2 anti-HA stalk antibodies compared with Group 1, mainly
due to the absence of major antigenic shifts in Group 2 viruses. Another argument for this
weakness is the glycosylation on the Asn38 residue on HA of Group 2 viruses, which could
affect the development of broadly neutralizing stalk antibodies [56,59,63,64]. In addition, recent
work reconstructing influenza A virus exposure by year of birth highlighted the persistence of
Group 1 imprinting in older adults, despite decades of natural exposure to H3N2 after 1968.
This suggests that HA exposures later in life do not substantially change broadly protective
responses in individuals already imprinted to a particular HA group [30]. However, there is some
evidence suggesting that if an already imprinted individual is exposed to a new pandemic strain
before the age of approximately 20 years, the hierarchy can be ‘re-set’ to that strain [90]. This
leads to a question concerning timing of the delivery: should a universal influenza virus vaccine
be administered to children before natural infection? Would a universal influenza virus vaccine
change the individual long-term protection if given before natural infection? What about
individuals that are already primed?

Another key aspect of influenza immune history is the reliance on memory B cells (Figure 1). A
secondary exposure to an antigen results in the activation and differentiation of memory B cells.
It is well accepted that the B-cell response to influenza virus in adults is principally a secondary
immune response mediated through activation of memory B cells [38,44,45]. In fact, we found
that at the single-cell level, almost half of the plasmablasts recalled over two consecutive years
were from the same clonal progenitors [7]. Understanding how an evolving pathogen such as
influenza virus shapes the memory B-cell repertoire is central to designing a universal influenza
virus vaccine and boosting stalk-reactive antibodies in primed individuals. A recent longitudinal
analysis of the plasmablasts, memory, and serological response upon vaccination in individuals
between 2006 and 2013 demonstrated that B cells specific for more variant strains are
preferentially activated, while revaccination with similar strains produces a relatively weak
response [91]. In accordance with this, we reported that only individuals with low pre-existing
serological levels of 2009 pandemic H1N1-specific antibodies generated a broadly neutralizing
plasmablast response directed toward the HA stalk domain. However, repeated vaccination
with the pandemic H1N1 strain resulted in head-specific responses [7]. These studies
demonstrate how serological antibody levels allow exposure to various influenza virus strains
to diversify the memory B-cell precursor pool and provide overall improved protection to
evolving pathogens such as influenza viruses. Additional evidence comes from clinical studies
using H5 or H7 subtype vaccines (novel head domain epitopes combined with conserved stalk
domain epitopes), to which individuals are naïve. They all showed significantly boosted antistalk
antibody titers [92,93] and the reactivation of stalk-reactive memory B cells [73,94].

Concluding Remarks
The concept of antigenic seniority or antigenic imprinting is a more adequate description for the
hierarchical nature of antibody responses to previously encountered influenza virus strains
rather than the OAS doctrine. Understanding the impact of pre-existing immunity on antibody
responses to conserved influenza virus epitopes is critical for the induction of broadly
stalk-reactive antibodies and their sustainability over time. Multiple strategies are currently
Trends in Immunology, Month Year, Vol. xx, No. yy 7
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being explored to boost such responses and ongoing clinical trials with vaccine candidates in
humans will demonstrate how feasible a universal influenza virus vaccine is (see Outstanding
Questions). Further, this concept has potential implications for other viruses, such as dengue
and HIV.
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