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Age-related declines in motor and cognitive function have been associated with increases in oxidative stress. Ac-
cordingly, interventions capable of reducing the oxidative burden would be capable of preventing or reducing
functional declines occurring during aging. Popular interventions such as antioxidant intake and moderate exer-
cise are often recommended to attain healthy aging and have the capacity to alter redox burden. This review is

intended to summarize the outcomes of antioxidant supplementation (more specifically of vitamins C and E)
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and exercise training on motor and cognitive declines during aging, and on measures of oxidative stress. Addi-
tionally, we will address whether co-implementation of these two types of interventions can potentially further
their individual benefits. Together, these studies highlight the importance of using translationally-relevant pa-
rameters for interventions and to study their combined outcomes on healthy brain aging.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Aging is associated with a decline in neurophysiological functions in-
cluding but not limited to motor coordination and activity, memory,
cognitive flexibility, and problem-solving ability (Rusinek et al., 2003;
Seidler, 2006; Seidler et al., 2010). While the underlying mechanisms
associated with declining motor and cognitive function remain unclear,
it is known that the brain is particularly vulnerable to oxidative stress
due to its high aerobic metabolism rate, abundance of redox modifiable
substrates like iron and polyunsaturated fatty acids, relatively low anti-
oxidant capacity, and limited cell turnover and neuroplasticity (Evans,
1993; Klempin and Kempermann, 2007). While some controversy has
emerged (Perez et al.,, 2009), the oxidative stress theory remains an ac-
tive explanation of the mechanisms underlying aging processes in mul-
tiple species and systems (Ferguson and Bridge, 2016; Huang et al.,
2015; Sohal and Forster, 2014). In humans and in rodents, studies
have provided evidence of increased oxidative stress and oxidative
damage in the aging brain (Grimm et al., 2011; Perluigi et al., 2010),
and that damage accumulation varied in different regions of the brain
(Dubey et al., 1996). Furthermore, protein oxidative damage in the cere-
bral cortex and in the cerebellum of old mice was found to vary directly
with the severity of their cognitive (water maze acquisition) and motor
(bridge walking) impairments, respectively (Forster et al., 1996). More
recent experiments have used shifts in the redox state of glutathione
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(GSH:GSSG; reduced glutathione:oxidized glutathione) as a more sensi-
tive indicator of cellular oxidative stress (Sohal and Orr, 2012), and have
indicated progressive pro-oxidizing shifts in several brain regions that
began as early as 6 months of age (Rebrin et al., 2007). This degree of
pro-oxidizing shift seems sufficient to produce redox-dependent cellu-
lar dysfunction (Droge and Schipper, 2007), leading to age-related de-
clines in brain function.

According to this hypothesized mechanism, an intervention capable
of reducing the oxidative burden or the pro-oxidizing shift would also
prevent or delay age-related functional deficits. One dietary interven-
tion that has received extensive scrutiny over several decades and has
been shown to reduce oxidative stress and improve brain function is ca-
loric restriction (CR). While these observations have been extensively
found in rodents and other species (Dubey et al., 1996; Ingram, 1991),
the benefits of CR remain contradictory in humans and non-human pri-
mates (Gillette-Guyonnet et al., 2013; Ingram et al., 2007). Additional
studies of CR in humans and non-human primates are undergoing and
are needed to fully determine the efficacy of CR to improve brain
aging. Whereas CR is a promising intervention, its practicality and pop-
ularity remain questionable and has led researchers to seek out alter-
nate strategies, such as other lifestyle changes, to improve brain
function during aging. Popular interventions such as antioxidant intake
and moderate exercise are often recommended to attain healthy brain
aging. Both types of intervention have the ability through both shared
and independent mechanisms to reduce oxidative stress and improve
brain function.

While many antioxidants have been studied, this review will focus
primarily on vitamins C and E, as they are readily available, affordable,
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frequently taken as supplements and have been used, alone or in com-
bination, in many studies of brain aging. Furthermore, they have other
advantages when used together: (i) they each protect a different cellu-
lar fraction (membrane vs. cytosol), and (ii) there exists a recycling
mechanism in which oxidized vitamin E is reduced by vitamin C. The ef-
fects of moderate exercise on age-related declines in motor and cogni-
tive function will also be described. Finally, this review will highlight
the current findings on the outcomes of combining antioxidant intake
with moderate exercise and whether precautions should be taken
when implementing interventions to delay age-related declines in
motor and cognitive function.

2. Antioxidant intake and moderate exercise as interventions against
brain aging

2.1. Single antioxidant supplementation

Vitamin E, or a-tocopherol (the most commonly used form), is the
most potent antioxidant found in the cellular membrane capable of
stopping the propagation of lipid peroxidation, and has been shown to
accumulate in brain tissues upon supplementation (Sumien et al.,
2003). Over the years, studies of vitamin E supplementation have led
to the overall conclusion that vitamin E alone does not infer much pro-
tection against brain aging and neurodegenerative diseases. However, it
is important to highlight that differences in studies may explain the dis-
parities in outcomes, and the lack of translation in randomized clinical
trials (RCTs). In rodents, differential outcomes may be explained by
the use of different isoforms of a-tocopherol (synthetic (Sumien et al.,
2004) vs. natural (Shetty et al., 2014)), and by the age at which the sup-
plementation was started. Indeed, when vitamin E is introduced in
younger subjects and maintained into advanced age, improvements in
cognitive and motor performance as well as decrease in oxidative stress
were observed (Joseph et al., 1998); however senescence-initiated vita-
min E supplementation did not reverse oxidative damage or improve
brain function (Sumien et al., 2004). In human studies, the outcomes
of vitamin E supplementation were also disappointing with little to no
effect reported in RCTs (Gilgun-Sherki et al., 2001). However, with ad-
vancement in the understanding of the biochemistry and roles of vita-
min E (Joshi and Pratico, 2012), along with reconsidering basic
interventional studies parameters (use of translational relevance in set-
ting dosage and timing), more studies will be needed prior to reaching a
final conclusion on the usability of vitamin E to improve brain function.

Vitamin C, or ascorbic acid, a potent water-soluble antioxidant found
in the cytosol, is responsible for quenching different types of radicals,
has the capability to regenerate other antioxidants such as vitamin E
and glutathione, and is highly concentrated in the brain (Harrison et
al., 2014). Studies on the effects of vitamin C on oxidative stress and
brain function in aging and neurodegenerative diseases have also led
to inconclusive data on its suitability as an intervention to delay age-re-
lated decline in brain function. In rodents, studies have suggested that
ascorbic acid supplementation can facilitate learning and memory in
old mice (Arzi et al, 2004), and models of Alzheimer's disease
(Harrison et al., 2009a; Harrison et al., 2009b). While ascorbic acid's
role as an antioxidant has been under scrutiny due to its potential to be-
come a pro-oxidant by means of the Fenton reaction in the presence of
metal ions, in vivo studies have vastly supported an antioxidant role
(Carr and Frei, 1999; Halliwell, 1996). Animal and humans studies
have supported that a deficiency in ascorbic acid was associated with in-
creased oxidative stress (Harrison et al., 2014). Epidemiological studies
remain inconclusive on whether dietary intake might affect cognitive
status, with some studies showed delay in development of Alzheimer's
disease and others reported no effect. The inconclusive nature of these
studies is in part due the unreliability of the vitamin C intake reports,
as most are self-reported and do not reflect lifetime dietary habits,
and might be affected by recall ability which is diminished by age and
presence of neurodegenerative diseases (Harrison et al., 2014). Further

studies on the association of ascorbic acid with cognitive and motor sta-
tus will require more reliable measurements of vitamin C intake, such as
plasma and cerebrospinal fluid (CSF) levels. CSF:plasma ratio has been
predictive of cognitive declines in Alzheimer's disease patients, and
more research will be needed to determine the factors influencing the
brain's capacity to keep this ratio high and delay functional declines
(Bowman, 2012).

Whereas results with individual antioxidant compounds have been
relatively disappointing, supplementation involving multiple antioxi-
dants or antioxidant-rich food has consistently yielded positive out-
comes (Joseph et al., 2009; Willis et al., 2009). Even combinations of
just two or three antioxidants have led to increased beneficial outcomes
on learning and to decreased oxidative stress (McDonald et al., 2005;
Shetty et al., 2014) when compared to each antioxidant alone. The
basic rationale for combining vitamin E and vitamin C stems from
their different mechanisms and loci of action, and their interaction
within a redox network. Alpha-tocopherol (vitamin E) is found in all bi-
ological membranes and is involved in a chain-breaking mechanism to
prevent further lipid peroxidation by scavenging peroxyl radicals. In
the process, a-tocopherol becomes oxidized to a-tocopheroxyl radical,
which can in turn become very damaging. Based on redox potential and
availability of the radical located at the membrane water interface,
ascorbate, a lipophilic co-antioxidant, can reduce back the tocopheroxyl
radical to tocopherol. Ascorbate is then oxidized and is recycled with the
help of enzyme systems using NADH or NADPH (Buettner, 1993). The
plasma concentrations of vitamins C and E, along with other antioxi-
dants, were found to be depleted in patients with mild cognitive impair-
ments and with Alzheimer's disease (Rinaldi et al., 2003). In rodents, the
combination of vitamins C and E has been shown to prevent homocys-
teine-induced functional impairments (Reis et al., 2002), to reduce
age-associated impairments in cognitive function (Arzi et al., 2004), to
decrease oxidative stress in the brain of old diabetic rats (Naziroglu et
al,, 2011), and to protect against intermittent cold exposure-induced
oxidative stress in the hypothalamus and cortex of old rats (Asha Devi
and Manjula, 2014; Asha Devi et al,, 2012). While these studies demon-
strated that the combination of the two vitamins is effective in improv-
ing brain function and decreasing oxidative stress, most do not
systematically compare the stand alone intervention with their combi-
nation and therefore do not provide evidence of an additive or synergis-
tic effect. More studies are needed to determine the nature of the
interactions between antioxidants on cellular redox state and resulting
brain function during aging.

2.2. Physical exercise

The World Health Organization has recommended that older indi-
viduals exercise for at least 150 min at moderate intensity or 75 min
at vigorous intensity per week to obtain overall health benefits (WHO,
2012). More recently, attention has shifted toward its potential to
offer protection against motor and cognitive declines associated with
aging. Rodent studies have consistently shown that motor and cognitive
declines can be delayed or reversed with regular physical activity. In ro-
dents, exercise has been associated with enhanced muscular function,
increased strength, delayed age-related muscular decline, improved
cognitive function (Boveris and Navarro, 2008; Merritt and Rhodes,
2015), and enhanced neural plasticity (Cotman et al., 2007). Meta-anal-
yses on exercise outcomes have suggested that endurance and/or
strength training improve physical and cognitive functions in elderly
adults (Heyn et al., 2004, 2008). Other studies have associated hippo-
campal plasticity and reversal of the age-related loss of hippocampal
volume with exercise training (Duzel et al., 2016; Erickson et al.,
2011). Whereas high individual variations are inherent to the response
to exercise, most studies have reported that exercise can attenuate
motor and cognitive declines associated with aging and dementia
(Ahlskog et al., 2011; Kramer et al., 2006; Lautenschlager et al., 2012).
While most of these studies have focused on aerobic training, other
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work suggests that resistance training can also improve cognition in ro-
dents (Cassilhas et al., 2012) and humans (Ozkaya et al., 2005), and
ameliorate muscular strength in humans (Melov et al., 2007) though
the underlying mechanisms might diverge (Cassilhas et al., 2012). A
varied-mode style of training regimen might be most beneficial
(Barnes, 2015), however more studies will be needed to determine
the optimal balance of aerobic, strength and flexibility exercise desired
to reverse or delay age-related declines in brain function.

While the mechanisms underlying the beneficial effects of exercise
on brain function remain to be elucidated, research suggests a strong in-
volvement of neurotrophins, adaptation in vascular physiology, and im-
proved neurovascular coupling (Duzel et al., 2016). Exercise can also act
as a mild stressor that promotes adaptations leading to antioxidant de-
fense system fortification, improved mitochondrial function, and in-
duced redox remodeling (Cobley et al., 2015; Navarro et al., 2004;
Ristow and Schmeisser, 2014; Tung et al,, 2015).

Exercise is a very promising intervention, but can we further en-
hance its benefits by adding-on other strategies such as cognitive train-
ing or other lifestyle interventions?. Previous studies have indicated
that the beneficial effects of exercise were enhanced with the co-imple-
mentation of cognitive stimulation (Anderson-Hanley et al., 2012;
Lautenschlager and Cox, 2013). Plant polyphenols and fatty acids aug-
ment the effects of exercise and may involve common cellular mecha-
nisms (van Praag, 2009). Together, previous research suggests that
combining of exercise with other therapeutics may provide additional
protection.

3. Does combining antioxidant intake and exercise lead to further
benefits?

Based on the anticipation of added or synergistic benefits, health
conscious individuals may complement their exercise regimen with an-
tioxidant intake (vitamins E and C for the focus of this mini-review) to
improve health and retard the effects of aging. However, the nature of
the interaction between these two types of interventions remain con-
troversial, and the literature on their combined effect on brain function
during aging is rather limited in both humans and rodents (Schattin et
al,, 2016).

On one hand, the combination of vitamins E with moderate aerobic
exercise was associated with a higher increase of antioxidant enzyme
activities in the cortex and hippocampus of aged rats than when each
intervention was implemented alone (Devi and Kiran, 2004). This
same combination also further decreased oxidative damage of proteins
and lipids in the brain (Jolitha et al., 2006), and further improved learn-
ing in aged rats (Jolitha et al,, 2009). Swim training and vitamin E intake
co-implementation have also led to improvements in the lipid profile
and increased endurance for old rats (Asha Devi et al., 2003). The com-
bination of swimming with a phytotherapeutic enriched in vitamin C re-
duced oxidative stress and inflammation, and improved learning in a
brain injury rat model (Toldy et al.,, 2005). Together, these studies sup-
port a beneficial additive interaction between antioxidants (vitamins C
and E) and exercise.

On the other hand, other studies have found either no additive ef-
fects of the combination or a negative interaction in which antioxidant
supplementation seems to block the beneficial effects of exercise. In
adult female rats, lipid peroxidation in the brain was augmented after
chronic exercise and vitamin C injections (Coskun et al., 2005). In stud-
ies of mice expressing the human apolipoprotein E4, no additive effect
were found on cognitive and affective function (Chaudhari et al.,
2014) and an antagonistic interaction on strength measurement was
detected in young mice (Chaudhari et al., 2016). The benefits of exercise
were blocked by antioxidant intake on arterial atherosclerosis in old
mice (Meilhac et al., 2001). In humans, the intake of vitamins blunted
the beneficial effects of exercise on type 2 diabetes mellitus and insulin
resistance (Ristow et al., 2009), and on endothelial function and blood
pressure in mildly hypertensive men (Wray et al., 2009). In summary,

the studies indicate that antioxidant intake may limit exercise-induced
adaptations and prevent improvements in health.

4. Concluding remarks

With the graying of the world and its increased burden on quality of
life and increased health care costs, it is important to identify strategies
that increase healthspan by slowing down aging and lowering the inci-
dence of age-associated diseases. Historically, effects from many pre-
clinical studies did not translate into clinical settings, especially with an-
tioxidants studies. Some of these false-positive intervention strategies
might have been due to an oversight on factors that may have major ef-
fects on the outcomes of such interventions. Such factors that will re-
quire more attention in future pre-clinical studies are sex, age,
duration of the intervention, dosage and formulation of the antioxi-
dants, intensity and mode of exercise, and genetic background (pres-
ence or absence of some genes may interact with interventions as
seen with APOE4 and exercise (Brown et al., 2013)). In closing, future
studies should focus on the functional outcomes and cellular mecha-
nisms underlying the outcomes of combining interventions (i.e. antiox-
idants and exercise, caloric restriction and exercise) to determine the
nature of the interactions between interventions and identify optimal
prevention strategies that are easily and readily implemented to reduce
the effects of aging and neurodegenerative diseases.
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