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Abstract 

Analyzing and improving the productivity of labor-intensive manufacturing and assembly operations remains a crucial task for 
industrial companies. Because of the heterogeneous causes for productivity losses, the analysis requires a comprehensive data 
acquisition and evaluation. With this paper we introduce a state-oriented approach providing the possibility to identify and 
prioritize the different impacts on labor productivity for subsequent process enhancements. With a case study, we show how to 
visualize and evaluate state data of an assembly cell to establish a goal-oriented improvement process. 
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1. Introduction 

Especially companies with manufacturing and 
assembly processes aim at adapting methods and tools 
provided through the lean production philosophy and 
other classical approaches to analyze and optimize their 
production [1]. A common goal is to establish a 
continuous improvement process to achieve the same 
added value with reduced resource utilization [2]. The 
decision on which optimization approaches are to be 
used as well as the order of their application is often 
based on the management’s experience or actual trends 
in the practice of production management or lean 
production. This lack of transparency is a reason for 
ineffective improvement processes, applying methods 
and tools to selected areas of a production site without 
previous prioritization [3].  

These shortcomings lead to the question, how 
transparency over productivity losses can be achieved in 
a way that enables the production manager to decide 
which problems should be approached with priority. 
This article presents a method for the comprehensive 
analysis of labor productivity in manufacturing or 
assembly environments. 

2. Productivity analysis 

The productivity is defined as relation between the 
output and the input of a production process [4]. The 
labor productivity as a partial productivity index 
typically describes the relation of the output of a process 
to the used capacity given in time units or the number of 
persons involved. The productivity management cycle 
formulated by Sink [5] consists of the four phases 
Measurement, Evaluation, Planning, and Improvement. 
For the purpose of this research work, productivity 
analysis is assigned to the first two phases. 

Common productivity measurement techniques 
include productivity indices, econometric models and 
linear programming [6]. Measuring the total or partial 
factor productivity with indices enables the implicit 
description of a production function of any industrial 
company. The factor quantities and corresponding 
weighting coefficients may be determined empirically 
[7]. Econometric models also belong to the parametric 
measurement methods. In these models, specific 
characteristics for a company are formulated through 
altered error terms and both systematic and random 
deviations from an average production function [8].  
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With nonparametric approaches, in particular the data 

envelopment analysis (DEA), the production function is 
derived from empirically collected input/output data and 
subsequent linear programming [9]. 

A problem with total and partial productivity indices 
is that the optimization potential is not indicated. 
Econometric models are equally based on assumptions 
regarding the form of the production function and 
require estimations of mathematical terms for company-
specific adaptations. The data evaluation as part of the 
DEA is not suitable for prioritization of improvement 
projects without further considerable analysis effort.  

Beside the named measurement methods, the relative 
productivity of a company may be determined through 
benchmark studies based on the analysis of financial key 
figures and through extensive acquisition of empirical 
data [10]. Transferring the introduced approaches to 
manufacturing systems is generally possible and has 
been done for example by Wan using the DEA [11]. 

However, two main disadvantages regarding the 
practical implementation of the methods remain: they 
yield abstract results through theoretic assumptions, i.e. 
assigning identified productivity losses to optimization 
fields is suggestive, and, with a low level of detail, they 
are only suitable for the mid-term and long-term 
adaptation of production processes. 

In contrast, operational methods for the analysis and 
optimization of production processes rely on a high level 
of detail. A selection of methods includes predetermined 
time systems, set-up time analysis, sickness records, and 
breakdown time analysis. The approaches enable 
detailed analyses and, to some extent, the operational 
optimization of labor-intensive production environments 
with respect to productivity. However, these methods do 
not provide the data required for a comprehensive 
analysis of the labor productivity. 

In summary, the two groups of methods yield results 
that are either too superficial or too focused. 
Additionally, both necessitate high effort for the data 
acquisition and evaluation. The designated method thus 
is designed for productivity analyses based on data with 
an above-average level of detail and a reduced level of 
data acquisition and analysis effort (see Fig. 1). 

For a structured implementation of the designated 
method, an analysis framework has been developed. The 
scope of this paper includes the methodical elements 
data acquisition, data aggregation and data evaluation. 

3. State-oriented modeling 

State-oriented modeling focuses on the analysis of input 
data, i.e. the activities of the personnel employed in the 
production processes measured in time units. For a 
comprehensive description of the input in the form of 
human work, the concept of worker states is introduced.  

Fig. 1. Classification of the analysis approach 

Worker states represent any planned or unplanned 
activities occurring for each person engaged in a 
production process. So far, state-oriented efficiency or 
productivity analyses have mainly been applied to 
machines or interlinked manufacturing systems [12, 13].  

To realize a comprehensive analysis, the worker 
states need to cover the whole time span the personnel is 
paid by the company. Value-adding tasks as well as for 
example waiting and repair times can equally be a 
source for reduced labor productivity.  

As a fundamental structure, a state hierarchy has been 
formulated to differentiate between certain types of 
worker states. They are grouped into four categories: 
cycle-bound, batch-bound, periodical, and irregular. In 
Table 1 the state categories are specified.  

Table 1. Specification of worker state categories 

State 
category 

Description Example 

Cycle-
bound 

Represents all activities 
of workers occurring 
within one working 
cycle 

Manual assembly step 
in a paced production 
line 

Batch-
bound 

Represents all activities 
of workers occurring for 
each produced batch 

Transport of material 
before and after the 
production of a batch 

Periodical Represents all activities 
of workers occurring 
periodically 

Group meetings or 
planned breaks 

Irregular Represents all activities 
of workers occurring 
irregularly 

Waiting time caused by 
equipment breakdown; 
absenteeism 

 
Each category contains typical worker states. The 

worker state may be refined to enable the data 
acquisition and evaluation with a variable level of detail. 
The hierarchy of selected worker states of the cycle-
bound category is depicted in Fig. 2. The sum of the 
state durations per category plus a term for not recorded 
activities equals the paid working time (equation 1). 
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Fig.2. Hierarchy of cycle-bound worker states  

Tpaid = Tcyc + Tbat + Tper + Tirr + TNR  (1) 

Tpaid paid working time [hrs] 

Tcyc cumulative duration of cycle-bound states [hrs] 

Tbat cumulative duration of batch-bound states [hrs] 

Tper cumulative duration of periodical states [hrs] 

Tirr  cumulative duration of irregular states [hrs] 

TNR  duration of not recorded activities [hrs] 

A comprehensive data acquisition aims at minimizing 
the term TNR. Based on the state-oriented approach, the 
data acquisition method is described in the following. 

4. Data acquisition 

Acquiring time data for serial production processes is 
typically done to establish detailed working plans. For 
every production step, target times must be defined. 
Common analysis techniques include time studies and 
predetermined time systems which both require high 
acquisition efforts [14]. The method of work sampling is 
particularly applicable to non-repetitive or irregularly 
occurring activities [15]. In general, the aforementioned 
three techniques measure activities related directly to the 
workplace. For a comprehensive analysis, additional 
data must be documented for which the above mentioned 
methods are not suitable. For example, times for group 
meetings, planned breaks, absenteeism or waiting caused 
by equipment downtime need to be determined. 

4.1. Recording modes 

For the acquisition of state data, an integral approach 
has been defined, comprising the following recording 
modes: 
 Reduced time studies (RTS) 
 Self-recording (SR) 
 Operating and machine data (OMD) 

Combining these modes offers the possibility to 
gather data with reduced effort. It provides alternatives 
for the user who can choose a mix of appropriate 

methods depending on the availability of data and 
specific procedures applied within a company. The 
recording modes are described in the following. 

As one part of the data acquisition, the actual 
durations of operations directly related to the workplace 
need to be measured. A reduced variant of time studies 
offers the possibility to gather these data with lowered 
effort. Compared to classical time studies employed for 
detailed work descriptions, the effort for setting up time 
standards is omitted and the sample size n can be 
reduced. The desired accuracy may be evaluated by 
calculating confidence intervals for small sample sizes 
(n < 30) using the t-distribution: 

Tcyc,i,m - t 
s

 n
 , Tcyc,i,m + t 

s
 n

   (2) 

Tcyc,i,m mean duration of cycle-bound state i [hrs] 

t t-distribution value [-] 

s sample standard deviation [hrs] 

n sample size [-] 

Among the recording modes described, self-recording 
is probably the most conventional technique. The 
workers themselves document activities or events with 
effect on the labor productivity. Especially when there 
are no information systems employed, this mode is a 
useful means to record irregular states such as waiting 
times due to equipment breakdowns or absence of 
workers due to further qualification. 

Many manufacturing companies today use 
information systems to gather and evaluate production 
data. Manufacturing Execution Systems typically 
comprise a variety of data, e.g. regarding labor, 
machines, tools or material [16]. Operation and machine 
data may be extracted and incorporated in the 
productivity analysis. Times of labor attendance and 
product volumes as data basis are typically available. 

4.2. Acquisition procedure 

In every case, cycle-bound state data is documented 
manually with reduced time studies for single 
workplaces or workers, depending on the production 
process. This recording mode is also applicable to states 
belonging to the batch-bound category. Other state data 
are rather captured through self-recording and operating 
and machine data systems. The acquisition procedure 
consists of the following steps: 

 
1. Selection of the area to be analyzed 
2. ABC-analysis of the product portfolio  
3. Selection of a product group or variant 
4. Assignment of recording modes to state categories 
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5. Recording plan for reduced time studies 
6. Reduced time studies per work station or worker 
7. Documentation of self-recording data 
8. Documentation of operating and machine data 

 
After an area is selected, an ABC-analysis may be 

used to select a product group or single variants to be 
analyzed. To start the analysis for the most relevant 
products, useful criteria are the output quantity or the 
sales volume per product. A low profit margin might 
also indicate the need for analysis. The assignment of 
recording modes requires an estimation of which state 
categories are expected. The recording plan for reduced 
time studies includes the definition of sample sizes per 
work station or worker. Data collected through self-
recording and operating and machine data must be 
considered. The procedure then generates cycle-bound 
or batch-bound data related to a certain product group or 
variant plus documentations or extracts of data captured 
by company data systems or the personnel. 

4.3. Horizontal data aggregation 

The data acquisition yields the durations per state for 
a work system. To minimize the acquisition effort, the 
states can be differentiated by the regularity of their 
appearance (see also Table 1):  
 State appears with the processing of every part 
 State appears once for each batch 
 State appears periodically 

There are two possibilities for horizontal aggregation 
of data, i.e. the aggregation of state durations over the 
paid working time.  

Firstly, if the states have been recorded in samples, 
the duration per sample is multiplied with the 
appearance frequency of the specific state within the 
selected time period. For cycle-bound states this is 
usually the number of produced items (see equation 3), 
for batch-bound states the number of batches 
accomplished, and for periodically arising states for 
example the number of shifts in the evaluation period. 
To aggregate these state durations within a certain state 
category, they need to be summed up across all states 
belonging to that category, as equation 4 describes for 
cycle-bound states. 

Tcyc,i = Tcyc,i,m · OUTact  (3) 

Tcyc = 
i=1

v
 Tcyc,i,m · OUTact = 

i=1

v
 Tcyc,i  (4) 

Tcyc,i cumulative duration of cycle-bound state i [hrs] 

Tcyc,i,m mean duration of cycle-bound state i [hrs/pc.] 

OUTact actual output [pcs.] 

Tcyc cumulative duration of cycle-bound states [hrs] 

v number of cycle-bound states [-] 

Secondly, if m states are documented through self-
recording or extracted from operation or machine data 
systems, they simply add up to the cumulative state 
duration of a category. This is exemplified for 
irregularly appearing states with equation 5. 

Tirr = 
i=1

m
 Tirr,i   (5) 

Tirr cumulative duration of irregular states [hrs] 

Tirr,i cumulative duration of irregular state i [hrs] 

m number of irregularly appearing states [-] 

Having determined the cumulative state durations per 
category, they can be integrated using equation 1. If the 
data acquisition considers all product variants produced, 
the duration of not recorded activities TNR can be 
calculated. If only selected variants are included, as 
determined by the ABC-analysis, durations for 
unconsidered variants need to be estimated. 

4.4. Vertical data aggregation 

The vertical aggregation of state data means to 
condense data to higher system levels. Above the 
workplace level, the cell or line level may be next, 
followed by the production area and the plant level. The 
levels are formally assigned by the index e, with e = 0 
representing the lowest. Equation 6 describes the vertical 
aggregation of batch-bound state data across system 
levels. 

Tbat,i,q,e = 
p=1

r
 Tbat,i,p,e-1       ;  e  ≥  1 (6) 

Tbat,i,q,e duration of batch-bound state i in work system 
 q on system level e [hrs] 

Tbat,i,p,e-1 duration of batch-bound state i in work system 
 p (sub-system of q) on system level e-1[hrs] 

r number of sub-systems of work system q [-] 

It has to be considered, that the data required may be 
not available on the lowest system level. This means that 
the integral analysis of aggregated data then is only 
possible from level 1. 
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5. Data evaluation 

For the evaluation, the collected data need to be 
processed and illustrated. Few but meaningful standard 
key figures and diagrams allow to determine priorities 
and to derive improvement projects through subsequent 
root cause analysis. Because of the comprehensive 
character of the data acquisition and the horizontal and 
vertical aggregation, the same diagrams and key figures 
can be used on different system levels. Two main key 
figures are introduced in the following. 

The state portion SPi gives the percentage of the paid 
working time used for a specific activity (equation 7). 

SPi = 
Ti

 Tpaid
  (7) 

SPi time portion of state i [-] 

Ti cumulative duration of a state i [hrs] 

Tpaid paid working time [hrs] 

This enables prioritization of the largest time 
portions, independent of their category affiliation. If the 
data acquisition covers selected variants, the certain state 
durations can be related to the sum of all durations. 

While SPi describes the portion of any state, the 
portion of irregular activities per piece Iirr relates 
irregular state durations to the number of completed 
parts within the evaluation period (equation 8). 

Iirr = 
Tirr

 OUTact
   (8) 

Iirr portion of irregular activities per piece [hrs/pc.] 

Tirr  cumulative duration of irregular states [hrs] 

OUTact actual output [pcs.] 

The category of irregular states includes activities as 
rework, idle times through machine breakdowns, or 
unplanned absence of personnel. Evaluating these state 
durations with respect to the output provides further 
details regarding productivity losses.  

Furthermore, the worker state distribution can be 
displayed with a ranking list to show the pareto values or 
as circle diagram indicating the duration of not recorded 
activities. Both diagrams are included in the following 
case study. 

6. Case study 

The proposed method has been applied to an 
assembly cell producing motor-driven devices. The cell 
consists of 13 workstations, additional two stations for 
inspection and testing as well as one workplace for  

Fig. 3. Pareto ranking of state durations in the case study 

packaging. Nine workers including one line leader build 
the assembly team, producing devices in a one-piece 
flow as described by Black and Chen [17] as Rabbit 
Chase. The product portfolio is limited to two variants, 
each built by the same assembly steps.  

The worker state hierarchy has been tailored on the 
basis of working plans for the respective workstations. 
Accordingly, the three data acquisition modes have been 
assigned. 

Reduced time studies (RTS) have been done for each 
workstation. A software tool was used that included the 
worker states as predefined structure. Other data have 
been self-recorded (SR), such as the time for cell 
feeding, or taken from the company’s production data 
system (OMD), such as the times of presence and 
absence. 

The evaluation period was one calendar month. The 
state data recorded through reduced time studies have 
been horizontally aggregated over the output quantity 
within the chosen month and vertically integrated on the 
cell level. The data acquisition required an effort of three 
eight-hour working days, including the adaptation of the 
state hierarchy and a first data visualization and 
evaluation. SR and OMD state data had been prepared 
by the company. Once the state hierarchy had been 
tailored to the observed work system, the acquisition 
effort with RTS was significantly reduced. 

Fig. 3 shows the pareto ranking of the recorded states 
for the assembly cell. The reduced time studies have 
been done with four samples for each work station. 
Assuming a t-distribution of the recorded states, an 
analysis of the confidence intervals has shown no 
ranking permutation from rank 1 to 7 with an error 
probability of 5%. 

The data evaluation explicitly includes all activities, 
value-adding and non value-adding, since all of them are 
sources for productivity losses. From the data it can be 
seen, that the highest state portions SPi are the ones for 
manual assembly and screwing operations with 24 %  
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Fig. 4. Integral state distribution in the case study 

and 14.1 % of the paid working time, respectively. The 
sickness rate for the evaluated assembly cell is very high 
with a value of 12.4 %. On the cell level, these states 
would be addressed with highest priority through 
subsequent root cause analysis. 

The time portion of irregular activities for the case 
example has been calculated to 7.2 minutes per piece. 
Non value-adding states might also be analyzed. The 
portion of non value-adding states adds up to 56 %.  

Fig. 4 shows the state distribution in the form of a 
circle diagram displaying the time portion of not 
recorded activities. In the case example TNR is 4.1 %, 
showing that the approach is capable to cover a 
relatively high portion of the paid working time. 

For the definition of improvement activities, the 
cycle-bound data can also be evaluated on the work 
station level. A subsequent root cause analysis enables 
the production manager to establish an effective and 
efficient improvement process, addressing the states 
with adequate priority. 

7. Conclusion 

We have introduced a method for the integral analysis 
of labor productivity for prioritization of optimization 
fields using a state-oriented approach. With the proposed 
method production managers can enhance the 
effectiveness and efficiency of their improvement 
activities, once a suitable worker state hierarchy is 
defined. The approach enables the user to conduct a 
comprehensive analysis of worker states using different 
data sources depending on the acquisition methods and 
specific procedures applied within a company. It leads to 
high transparency over productivity potentials with a 
relatively low data acquisition effort. Its applicability has 
been shown with a case example. The ongoing studies at 
the IPMT include the definition of an accurate sample 

size for reduced time studies. Furthermore, the 
evaluation is to be done with other industrial partners to 
cover different types of production, such as multi-
machine operations and tact-based assembly lines. A 
next research step will be to link obtained state 
distributions with standard optimization methods as 
decision aid for production managers. 
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