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1. Introduction

Recent studies show that breast cancer is the most frequent
women's cancer around the world. According to WHO's report
GLOBOCAN 2012 [1]a constantly growing incidence is observed
since 1975 across all woman's age groups (20–80). Consequent-
ly, diagnosis needs to be precise and fast, whereas treatment
needs to be as much personalised as possible.

The most precise examination, in which tissue images are
obtained with high resolution, is magnetic resonance imaging

(MRI). Images from MRI examinations contain information
about breast tissue structures, both shape and physical
properties. MRI data offers information about tissue conditions
that can not be obtained by other popular imaging techniques,
such as mammography, ultrasound or computed tomography
[2]. The most precise examination, in which tissue images are
obtained with high resolution, is magnetic resonance imaging
(MRI). Images from MRI examinations contain information
about breast tissue structures, both shape and physical
properties. MRI data offers information about tissue conditions
that can not be obtained by other popular imaging techniques,
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a b s t r a c t

The exact delineation of tumour boundaries is of utmost importance in the planning of cancer

therapy, either surgery or pre- or post-operative radiation treatment. In the case of breast

cancer one of the most advanced modalities is magnetic resonance imaging (MRI). Although

MRI scans provide wealth of information about the structure of a tumour and the surrounding

tissues, the data obtained represent the patient in a prone position, with breast, in a coil while

surgery is performed in a supine position, on lying breast. There is no doubt that a patient's

breast in both positions has a different shape and that this influences the intra-breast

relations. Our present preliminary study introduces a simple breast model developed from

prone images. The model should be built rapidly and by a simple procedure, based only on

essential structures, and the goal is to prove its usefulness in treatment planning.
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such as mammography, ultrasound or computed tomography.
The bigger the breast, the more its shape differs in each position
[2]. Consequently, sometimes the lack of proper tumour
delineation leads to mastectomy and causes significant
functional deterioration of patient status. An alternative is a
partial, breast preserving wide tumour excision, sometimes
supported by oncoplastic procedures of tissue displacement. In
this case only the tumour and the surrounding tissues are
removed. However, in this case, the region of interest must be
precisely determined. Consequently, the need arises to easily
convert MRI data to the position of the patient during surgery/
radiation therapy which would facilitate the safe and efficient
flow of these procedures. This cannot be obtained by placing
the patient in a supine position for MRI nor in a prone position
during surgery, and therefore the only way to achieve this goal
is by computer image processing. A similar problem was
addressed in [3], where mammogram compression was
simulated based on a simple breast model. MRI image
deformation was discussed in [4], but the model presented
was very complex regarding breast tissues. In recent studies
[5,6] models that consist of four structures: fat, glandular,
cancerous and skin tissues are considered. Building a model for
each patient with such complex structure, extend significantly
computation time and the same, time of diagnosis.

One way to simplify models could be reached by taking into
account that the parameters of fat tissues have a much greater
influence on deformation than those of fibroglandular tissues
[7]. Moreover, experimental data suggested that tumour
stiffness has a minimal effect on breast deformation [7]. It is
also observed, that with age, fibroglandular tissue volume
shrinks compared to fat tissue [8]. Another simplification [9], is
to model skin and fat as one material with the same properties.
To our knowledge, the above simplifications were never
applied in one model.

In this work we present a basic concept for a model of a
breast and its deformation, paying special attention to its
further use in clinical practice. Our study consists of creating a
breast model which transforms prone MRI images as fast as
possible into a supine plane and its comparing the results with
supine images, to prove the feasibility of this technique for
surgical planning support.

2. Material and methods

2.1. Data acquisition

Breast MRI data. MRI is widely used in medical diagnosis, in
particular in breast imaging [10]. T1 and T2-weighted MRI
scans were acquired at the Center of Oncology – Maria
Sklodowska-Curie Memorial Institute, Branch in Gliwice,
Poland on a Siemens scanner MAGNETOM Aera 1.5T.
The data covered approximately 0.7 mm � 0.7 mm � 3 mm
real volume per voxel. Examples of images are shown in
Table 1.

Breast PET-CT data. Positron Emission Tomography with
Computer Tomography (PET-CT) is a fusion of 3D X-ray
structural examination (CT) with metabolic examination
(PET) performed using fluorodeoxyglucose (FDG), an analogue
of glucose, to indicate tissue metabolic activity. PET-CT scans
were acquired at the Center of Oncology – Maria Sklodowska-
Curie Memorial Institute, Branch in Gliwice, Poland on a Philips
GeminiGXL 16 scanner. The data consisted of ca. 280 axial slices
of patients in a supine position covering almost the whole body.
The data covered approximately 1.17 mm � 1.17 mm � 3 mm
real volume per voxel. PET-CT scans were obtained in a supine
position and were used as a reference to validate the computed
deformation. Examples of images are shown in Table 1.

Table 1 – Patient datasets.

Patient 1 Patient 2

Age 29 64
Tumour diameter 1 cm 0.4 cm

MRI image

PET-CT image
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Patient data. Our method was tested on patient's datasets,
i.e. MRI and PET-CT examinations. Table 1 shows examples of
patient images with the tumour diameter. Among many
patients, two with extremely divergent cases were chosen to
represent different types of issue. Patient 1 is a young women
(age 29) with a tumour (1 cm diameter) in relatively low total
breast volume. Patient 2 is an older women (age 64) with a
relatively small tumour (0.4 cm diameter) in relation to breast
volume. The fibroglandular to fat ratio also differs in both
cases.

2.2. Breast modelling

Our approach consisted of several steps which are based on
ANSYS modelling best practices:

Tissue segmentation. Based on the data two classes of tissue
were segmented, muscles with the thorax wall and internal
organs defined as the internal region, and breast volume with
fat and skin surrounding the body as a second, external region
(see Fig. 1a). Segmentation was achieved using Osirix software
tools [11]. Since some parts of images were not segmented
properly, manual correction was needed.

Model building. A volume was created from each segmented
region using Osirix tools and exported as.stl files into ANSYS
software [12]. The internal body region (thorax wall and
muscles) was cut out from the external region (skin with breast
volume) with shearing boundary nodes between each volume.
The volumes created were unruffled to create smoother layers
and simplify mesh creation. Previously published results [13]
showed that tumour shape does not influence significantly
breast displacement. Thus, including a real segmented tumour
is not critical for our line of reasoning. In the external body
region a sphere was created corresponding to the tumour's
location, setting the sphere diameter according to the real
tumour size. As proposed in [5,9,14,15] we used a T4
tetrahedron mesh, which is the most precise to mimic a
natural body deformation. The final mesh is shown in Fig. 1b.

Setting of boundary conditions. To set our model in space we
defined the back side of the internal body region (thorax wall

with muscles) as a fixed support. MRI images represent the
body region from the clavicles to the lower end of the ribcage.
To prevent the external body region (skin with breast tissues)
from sliding out of the region covered by MRI images, a
pressure was introduced at both ends of the model. The
pressure values were introduced by trial and error experi-
ments. The external body region was free to slide on the
internal region.

Setting of material parameters. Based on the simplifications
mentioned in Section 1, we used only three types of tissues in
our model. To simulate the properties of internal body tissues,
a linear model was used, whereas a Neo-Hookean model was
used for the external body regions and the tumour sphere. The
values of the model parameters were set according to [9] (see
Table 2).

Deformation forces setting. The main force considered in the
model is the gravitational force. When a patient is prone this
force acts in a dorsoventral direction, and in order to simulate
the supine position a gravitational force in the opposite
direction needs to be applied. Another force present in the
model simulates arm and ribcage movements which can be
naturally observed during changes of positions.

Deformation analysis. To evaluate deformation results, two
features were taken into account, the tumour sphere displace-
ment and the total deformation of the body surface.

Image comparison. To validate the results we compared the
deformed model with the reference PET-CT images. This
comparison was performed slice by slice, but only slices in
which tumour tissue was visible were taken into account.

Fig. 1 – Visualisation of steps in creating a model; (a) Example of an MRI image with internal and external model green
contours; (b) The final model mesh – intersection through tumour sphere.

Table 2 – Parameters used for modelling tissue regions.

Tissue Model Young
modulus

Poisson
ratio

Density

External part Neo-Hookean 10 kPa 0.47 980 g/cm3

Internal part Linear 100 kPa 0.45 1100 g/cm3

Nodule Neo-Hookean 10 kPa 0.45 1000 g/cm3
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Table 3 – Comparison of patient data with calculated deformation.

Patient 1 Patient 2

PET-CT image

ANSYS deformation

Directional differences X: 1.1 cm X: 0.4 cm
Y: 1.4 cm Y: 0.3 cm
Z: 1.9 cm Z: 1.8 cm

Fig. 3 – Tumour displacement results along the X (mediolateral), Y (dorsoventral) and Z (anteroposterior) axes. Deformation
results represent translation of the tumour sphere.

Fig. 2 – External region deformation model result in transverse plane (anterior term).
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3. Results

3.1. Deformation results

An example of deformation results from skin surface are
shown in a transverse plane in Fig. 2. The tumour displace-
ment is shown as the result of an ANSYS Directional
Deformation, along the X (mediolateral), Y (dorsoventral)
and Z (anteroposterior) axes. Examples of tumour directional
displacements are shown in Fig. 3. According to the previously
mentioned assumptions, the tumour is a sphere, and the
medium values of displacement along the axes represent
the translation of the tumour centre.

3.2. Model validation

Table 3 shows the results obtained for the two examples of
patient data, a PET-CT slice and the final calculated model
intersection with tumour diameter in all images for both
patients. The difference between the location of the centre of
the reference tumour and the calculated centre of the
displaced sphere was ca. 2 cm. Distance differences along
the axes are also shown in Table 3.

4. Conclusions

This work is focused on simplification of breast modelling and
increasing the efficiency of one of the most time-consuming
steps, geometry creation. The simplifications proposed in
[7,9,13] were found attractive and useful when implemented in
single model. Among many patients, two were chosen with
extremely divergent cases to represent different types of issue.
Despite some differences, our method gives acceptable and
comparable results in both cases.

Different modalities of breast imaging are carried out in
different patient positions. Especially, MRI imaging, the most
powerful method nowadays, is acquired in patients lying in
prone body position, with the breast handing down into the
coil. However, majority of therapeutic procedures, like surgery
or radiation therapy are carried out in supine body position,
with significant displacement of breast tissue. Thus, the
simple method of breast deformation modelling will be of
clinical use, even if it is expected that the error of this
modelling will not allow for ideal transposition of image.
However, even rough transformation gives the better estima-
tion of tissue relationships than the routinely carried out
visual assessment, regularly used in the clinic.

Modelling of breast deformation is mainly focused on the
impact of gravitational force on the breast shape. One of the
main challenges is a compromise between model accuracy and
efficient and rapid calculations, and tissue models which are too
complex could never be used in clinical practice since adapting
them to each patient would be too time-consuming. Developing
an automated tool for creating a simplified shell model from
medical images could speed up deformation analysis signifi-
cantly. Analysis using available commercial software (i.e.
ANSYS) gives acceptable results, but implementing a model
inside it is still highly time-consuming. The best solution seems

to be to build a model based directly on medical images, without
using any third-party software. An interesting challenge would
be to implement such a deformation method within the
software used by physicians to create medical images.

Another important issue in model building is proper
tissue segmentation. Segmentation of breast MRI images is
still a difficult job because of complex structures, field non-
homogeneity, and image noise, which need to be overcome
to create automatic finite element models of the breast [7].
Sufficiently efficient, automatic chestwall segmentation
methods were already presented in [16–18]. Since segmen-
tation of the breast shape from the background is simple
enough [19–21] and the only problem is segmentation of the
back side of the chestwall, which is weakly distinguishable
on MRI images due to field non-homogeneity caused by
signal enhancement coils. Models which bypass the back
side of the chestwall while simultaneously preserving other
model properties are the subject of our present studies.

Although our results are preliminary, they show that it is
possible to create a simple model and in a few steps to deform
it in a way useful for treatment planning. Our main goal was to
mimic body displacement in the smallest possible number of
steps, and it is clear that the results obtained have a limited
precision. At the moment the methodology allows to estimate
the procedure error to be approx. 2 cm when distance between
the calculated, hypothetical tumour volume and the peak
metabolic activity is estimated. In future we will seek the
methods to narrow this error to below 1 cm, to allow adequate
application in treatment planning purposes. In PET-CT image,
falls into the tissue region that needs to be removed during
surgery anyway. Even during less invasive surgery (lumpecto-
my), the breast has to be cut and the tumour is removed with
surrounding tissue. The method which we propose here for
fast calculation of deformation may be helpful in minimizing
damage to healthy tissue. In conclusion, our approach
provides one of the first examples of use modelling simplifi-
cation to support breast cancer treatment planning.
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