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Geotechnical Engineering Reliability: How Well Do We Know
What We Are Doing? *

John T. Christian, Hon.M.ASCE?

Abstract: Uncertainty and risk are central features of geotechnical and geological engineering. Engineers can deal with uncertainty by
ignoring it, by being conservative, by using the observational method, or by quantifying it. In recent years, reliability analysis and
probabilistic methods have found wide application in geotechnical engineering and related fields. The tools are well known, including
methods of reliability analysis and decision trees. Analytical models for deterministic geotechnical applications are also widely available,
even if their underlying reliability is sometimes suspect. The major issues involve input and output. In order to develop appropriate input,
the engineer must understand the nature of uncertainty and probability. Most geotechnical uncertainty reflects lack of knowledge, ant
probability based on the engineer’'s degree of belief comes closest to the profession’s practical approach. Bayesian approaches &
especially powerful because they provide probabilities on the state of nature rather than on the observations. The first point in developin
a model from geotechnical data is that the distinction between the trend or systematic error and the spatial error is a modeling choice, nc
a property of nature. Second, properties estimated from small samples may be seriously in error, whether they are used probabilisticall
or deterministically. Third, experts generally estimate mean trends well but tend to underestimate uncertainty and to be overconfident i
their estimates. In this context, engineering judgment should be based on a demonstrable chain of reasoning and not on speculation. O
difficulty in interpreting results is that most people, including engineers, have difficulty establishing an allowable probability of failure or
dealing with low values of probability. Th&E—N plot is one useful vehicle for comparing calculated probabilities with observed
frequencies of failure of comparable facilities. In any comparison it must be noted that a calculated probability is a lower bound because
it must fail to incorporate the factors that are ignored in the analysis. It is useful to compare probabilities of failure for alternative designs,
and the reliability methods reveal the contributions of different components to the uncertainty in the probability of failure. Probability is
not a property of the world but a state of mind; geotechnical uncertainty is primarily epistemic, Bayesian, and belief based. The current
challenges to the profession are to make use of probabilistic methods in practice and to sharpen our investigations and analyses so tt
each additional data point provides maximal information.
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Introduction practice for “.. blindly trusting in purely statistical relations with
an extraordinary wide range of deviation to both sides from the

Uncertainty and re||ab|||[y have a |Ong history in geotechnica| aVerage. As most of the teX.tbOOkS fa|| to Ca”.the attention of the
engineering. Even before there was a distinct discipline of geo- feaders to th_e great uncertainty ass_omated with the rules of deS|_gn
technical engineering, engineers who dealt with soils, rocks, andPased on this practice, many engineers engaged in dam design
geological phenomena knew they were involved in an uncertain have an exaggerated conception of the reliability of their methods

venture and that they had to provide for untoward developments.Of pr(_)cedure and as a c?nsequence, progress in th'_s field Same
They have also been the focus of controversy. One of Terzaghi’spracuca"y to a standstill.” He reco_m_m_ended that designers "as-
most famous early pape¢$erzaghi 1929 emphasizes the impor- sume.. the.mgst. unfavorable pgssmllmes. .
. - . ; . As the discipline developed, it became clear that it was seldom
tance of minor geologic details—that is, features that differ from . . . .
i e technically or economically possible to design for the most unfa-
the expected or mean conditions. He criticized then current S o
vorable possibilities, and Terzaghi himself proposed what he
called the “learn-as-you-go” approach. Pgt®69 codified and
The Thirty-Ninth Terzaghi Lecture presented at the ASCE 2003 Civil expand?d the qpprpach. which he .named the ”observa’ugnal
Engineering Conference and Exposition, Nashville, Tenn., November. Method” and which is now an essential feature of geotechnical
2Consulting Engineer, 23 Fredana Rd., Waban, MA 02468. practice, especially for large or difficult projects. The observa-
Note. _Discussic_m open until March 1, 2005. Separate _discussions musttional method is a practical way to deal with uncertainty that is
be submltteq for individual papers. To e_xtend the closing de_ite by_one closely related to the techniques of Bayesian updating. The envi-
month, a written request must be filed with the ASCE Managing Editor. . mantal management community has developed a similar tech-
The manuscript for this paper was submitted for review and possible ni lled “adaptive man ment.” in which the desian n-
publication on November 18, 2003; approved on March 29, 2004. This que_’ calle ap .e a age. ent, ¢ _e . esig i CO
paper is part of theJournal of Geotechnical and Geoenvironmental ~ Struction, and operation of environmental remediation facilities

Engineering Vol. 130, No. 10, October 1, 2004. ©ASCE, ISSN 1090- are madified during the course of the project as additional obser-
0241/2004/10-985-1003/$18.00. vations become available. All of these approaches—the observa-
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tional method, Bayesian updating, adaptive management—require
that the project managers acknowledge uncertainty from the be-
ginning and that the public accept the existence of uncertainty.

Although the geotechnical community long ago learned prac-
tical ways to deal with uncertainty, it has been reluctant to em-
brace the more formal and rational approaches of reliability
theory while other fields of civil engineering have made major
commitments to probabilistic approaches. Nevertheless, over the
last ten or fifteen years several researchers have made major ad-
vances in applying probabilistic methods to geotechnical prob-
lems. The author is indebted to their work and to many discus-
sions with most of them. In particular, he acknowledges his debt
to, in alphabetical order, G. B. Baecher, C. A. Cornell, H. E.
Einstein, M. E. Harr, F. L. Kulhawy, P. Lumb, W. H. Tang, E.
Vanmarcke, D. Veneziano, S. G. Vick, and T. H. Wu. The present
work has also benefited enormously from the collaboration with
Professor Baecher that went into writing our recently published
book (Baecher and Christian 2008Questions of risk and reli-
ability have been the basis of at least three previous Terzaghi
lectures (Casagrande 1965; Whitman 1984; S. Lacasse, 2001
Terzaghi Lecture, unpublishgd

Uncertainty in Geotechnical Engineering

Blaise Pascal, the first major contributor to probability theory, set
out in the 17th century the fundamental principle underlying re-
liability analysis: “We ought to fear or hope for an event not only
in proportion to the advantage or disadvantage but also with some
consideration of the likelihood of the occurrencéacking
1975. Most people find this idea intuitively reasonable. We
should concern ourselves with situations that have large conse-
quences but also with those that are most likely to take place.
How to distribute our attention over the full range of insignifican

engineers to deal with uncertainty in situations for which
simple conservatism is unsatisfactofyeck 1969 It in-
volves (1) considering possible modes of unsatisfactory per-
formance or other undesirable developme(@2$;developing
plans for dealing with each such developmei), making

field measurements during construction and operation to es-
tablish whether the developments are occurring; @hde-
acting to the observed behavior by changing the design or
construction process. While the observational method has
made it possible to carry out many projects that would have
been impossible under conventional conservative procedures,
it has limitations. The engineer must have access to the de-
cision maker if the design or construction sequence is to be
changed in mid-project, the usual applications do not con-
sider explicitly the relative likelihood of the undesirable oc-
currences, and field measurements are expensive. Another
factor limiting wider use of both the observational method
and reliability-base approaches is that some regulatory agen-
cies and the public often demand what they consider cer-
tainty at the outset of a project.

Quantifying uncertaintyThis is the purpose of reliability ap-
proaches. Quantifying the uncertainty is consistent with the
philosophy of the observational method; it might be consid-
ered a logical extension of the observational method that
accommodates modern developments in probabilistic meth-
ods. It is central to this lecture.

Other disciplines have developed techniques that closely re-
semble the observational method with or without probabilistic
input. An especially notable case is the already mentioned adap-
tive management approach widely used in environmental and
t ecological management. Whatever they are called, such methods

to significant events with small to large likelihood of occurrence "equire carefully thought out programs for field measurements
is, of course, an essential engineering problem. Put another wayand explicit determination of what the measurements are going to
much of engineering is about how to deal with uncertainty, al- achieve. Lepg1987 explained

though one does not always need to understand uncertainty to

deal with it.

Geotechnical engineers, like engineers in other disciplines,
have developed several strategies for dealing with uncertainty.
They include:

1. Ignoring it. While on its face such a head-in-the-sand ap-
proach would seem insupportable, it is surprisingly wide-
spread. There are many stories of agencies and corporations
that willfully ignored warnings that the assumptions under-
lying their decisions were fraught with uncertainty. Surely
one of the earliest involved the British and Dutch govern-
ments, who in the 17th and 18th centuries sold annuities to
finance their expensasisually warg and dismissed out of

Probably the only reasonable role for monitoring systems is
to provide confirmation or denial of the routine performance
characteristics anticipated in design. The often discussed role
of providing advanced warning of impending failure is, in
the present writer’s judgment, simply impractical for several
reasons, the most important of which being that it is usually
totally impossible to pinpoint where failure may begin. The
second and overwhelmingly important point is that if one
actually thinks he knows where failure is most apt to occur,
he is completely derelict if he has not provided a design
which would eliminate such possibility.

Perhaps the first significant attempt to document an approach

hand the objections of early statisticians that the annuities for dealing with uncertainty and risk in geotechnical engineering

were actuarially unsoungsigerenzer et al. 1989
2. Being conservativeThis is an obvious and frequently sound

was Arthur Casagrande’s 1964 Terzaghi lecture, which was pub-
lished in 1965. He reported that he looked carefully into the vari-

approach. Rather than get involved in the details of how o5 gefinitions of calculated risk that had been proposed over the

often undesirable things might happen and what their conse-
guences might be, the engineer makes the structure or syste
so robust that it will resist anything. While this works in
many cases, it is usually expensive, it may drag the project
out to unacceptable completion times, and in some cases it
may simply not be possible. Eventually one must ask how 2.
conservative is conservative enough.

3. Using the observational method@he observational method

ears and settled on the following:

The use of imperfect knowledge, guided by judgment and

experience, to estimate the probable ranges for all pertinent
quantities that enter into the solution of a problem; and

The decision on an appropriate margin of safety, or degree of
risk, taking into consideration economic factors and the mul-

titude of losses that would result from failure.

has established itself as the preferred way for geotechnical That definition is adopted here.
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Current Geotechnical Applications of Probabilistic
Methods Q

Although many geotechnical professionals have been reluctant to
embrace probabilistic methods, the techniques have found appli-
cation in many areas. Prominent among these are

Design, Construction, and Operation of Offshore
Platforms for Petroleum Industry

probability density function (pdf)

There is a large literature on the subject, and Suzanne Lacasse’s
Terzaghi lecturgS. Lacasse, 2001 Terzaghi Lecture, unpublighed
provides an up-to-date summary of the state of the art. Among the
seminal contributions have been those of B899 and the
group at the Norwegian Geotechnical Instituteacasse and
Nadim 1996.

Value of Ror Q

Fig. 1. General configuration in which loa@ and resistanc® are
uncertain, where both have normal distributions, but that is not nec-
essarily always case

Studies of Safety of Dams, Dikes, and Embankments
Limit State Design or Load and Resistance Factor

These range from detailed evaluations of the probability of failure Design

or selection of appropriate factors of safety for particular slopes
(Christian et al. 1994; EI-Ramly et al. 2003b studies of various =~ These methodologies represent attempts to apply probabilistically

failure modes for dam system®on Thun 1996; Vick 2002 based methods to routine design procedures. They have been used
Studies of the stability of specific slopes, or sets of slopes, gen-successfully in structural engineering, but their application in geo-
erally use one of the methods that lead to a reliability infleand technical engineering, especially foundation engineering, has

a probability of failurep;. The analysis of complete dam systems been controversial. A great deal of research is underway, and
usually employs event trees or fault trees. Often the results ofthere has been much discussion between researchers and practi-
reliability analyses of individual components are used as input to tioners. This is a topic that deserves extensive treatment, but
the branches of the event or fault trees. It is worth noting that space and time do not permit further discussion here.

some agencies, such as the U.S. Bureau of Reclamation and BC

Hydro, have embraced probabilistic safety analysis of their dams

to the extent that it can be carried out defensibly, while others, Tools of Reliability Analysis

such as the U.S. Federal Energy Regulatory Commission, remain

adamantly opposed to probabilistic analysis. Other agencies, no-The tools available to the engineer for performing a reliability
tably the U.S. Army Corps of Engineers, have adopted policies analysis fall into three broad categories. First are the methods of
that fall somewhere between these two positions. direct reliability analysis. These propagate the uncertainties in
properties, geometries, loads, water levels, etc. through analytical
models to obtain probabilistic descriptions of the behavior of a
structure or system. The second includes event trees, fault trees,
Today almost all estimates of seismic hazard, whether developedand influence diagrams, which describe the interaction among
for a specific project or presented in the form of maps for use in events and conditions in an engineering system. The third in-
developing building codes, are based on probabilistic approachescludes other statistical techniques. In particular, some problems
Most analyses use the basic approach developed by Cornellare so poorly defined that it is useless to try to formulate mechani-
(1968, often with considerable elaboration to incorporate the cal models and the engineer must rely on simple statistics. Ex-
elicitation of expert opiniorgBudnitz et al. 1997, 1998Although amples are extrapolation of landslide incidence in broad areas and
these analyses provide probabilistic descriptions of the seismicstudies of the behavior of Karst terrains. In practice, analysis of a
hazard, it is ironic that the results are usually used deterministi- specific system or structure usually involves a combination of

Probabilistic Seismic Hazard Analysis

cally in subsequent engineering analyses. methods appropriate to the problem at hand. Baecher and Chris-
tian (2003b provide detailed descriptions of how these tech-
Mining niques operate.

Designs of open pit mine slopes and underground excavations - ]

have always involved tradeoffs between cost on the one hand and?irect Reliability Analysis

reliability on the other. Hoek1998 provides a brief exposition of |t there are a loadin@ and a resistand®, the margin of safety
reliability methods suitable for underground openings. Riela et al. jg

(1999 and Calderon et al2003 describe the application of re-

liability methods for studying the stability of open pit mines. M=R-Q D

o If both Q andR are uncertain, so 8! (Fig. 1). Elementary prob-
Nuclear Waste Repositories ability theory then provides that the meafps) and the standard

Probabilistic estimates of potential future behavior of the waste deviations(s) are related by

repositories have been central to their evaluation. There is a large N

literature on the subjeatU.S. Nuclear Regulatory Commission Bm=Hr™ Mo @
1975.
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Fig. 2. Distribution of margin of safetyM(=R-Q): (a) probability
density function and definition of reliability indef; (b) cumulative
distribution function. Probability of failure is shaded areaanand
intersection of cumulative distribution function with vertical axis in

(b).
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in which por=correlation betweei® andR. If Q andR are not
correlated, the last equation reduces to

oY =04+ O'é (3

It is often more convenient to work with the logarithms@fand
R. Then the factor of safetl is the ratioR/Q, so
INnF=InR-InQ (4)

Since this is similar to Eq(1), we can work with the logarithms
of the variables provided we use Fhand the logarithms of the
variables. It is customary to defineand{ as the mean and the
standard deviation of the logarithms of a variable. It follows that,
for any distribution(Aitchison and Brown 1960

2
g2:|n(1+%>

12
K:|nu—§§

5

p=-—2 @)

[2, 2
Vor+og

or, for the case of the logarithms of uncorrelated variables

_ e phg _ In[(a/g) V(1 +03)/(1+0F)]
VER+ 5 VIn[(1+Q3)/(1+03)]

in which Q (=o/w)=coefficient of variation. As Fig. @) shows,
the probability of failure is the area under the probability density
function of M lying to the left of M=0.

Now, if Q andR are both Normally distributed, so M. Then
it follows that the probability of failure is

pr=P(-B) 9

where® =cumulative distribution functioGCDF) of the standard
normal distribution and is defined by Eq(7). If Q andR are
lognormally distributed, so idM, and Eq.(9) again applies, only
with B defined by Eq.8). In the past, evaluating the CDF re-
quired interpolation in tables, but today the CDF is a library func-
tion in spreadsheets and in mathematical software packages like
Mathcador Matlab.

While the model described by Figs. 1 and 2 and E@s«9) is
conceptually straightforward, calculating the various means and
standard deviations is anything but simple. Furthermore, distribu-
tions other than normal or lognormal arise often in practice. In
situations where finite minimum and maximum values exist, one
of the Beta distributions may be appropriate; problems involving
recurrence of events usually lead to distributions like the expo-
nential or Poisson. Methodologies based on normal or lognormal
distributions must be modified when other distributions exist, but
the underlying theory remains similar even while the details be-
come more complicated.

Several methods for dealing with reliability models have
evolved over the years:

®

First Order Second Moment Methods

The idea here is that, if we know the means and the variatices
second momen}f the variables that enter into the evaluation of
a function such a$/, we can estimate the mean and variance of
M using only first order terms in a Taylor expansi@@ornell
1969

Hom = MR s - ok
(10)

n
IM |2
Ufﬂzzl(g) o2

in which the x;=uncertain variables. Eq10) applies when the
variables are uncorrelated; a somewhat more complicated expres-
sion is used when some of the variables are correlated. When it is
difficult to evaluate the partial derivatives directly, central divided
partial differences usually provide sufficient accuracy.

The essence of reliability methods is to recognize that the condi- First Order Reliability Method

tion M=0 (or In F=0) corresponds to failure, so the problem is to
find the probability thatM <0. As illustrated in Fig. 2, we now
define a reliability index3 as

p=tM (6)

Owm

It follows that, if we are working with uncorrelated variables

One shortcoming of the first order second mom@®SM) ap-
proach is that the results depend on the particular values of the
variablesx; at which the partial derivatives are calculated. Ha-
sofer and Lind1974) proposed to resolve this difficulty by evalu-
ating the derivatives at the critical point on the failure surface.
Finding this point usually requires iteration, but the process tends
to converge rapidly. If the variables are all normalized by dividing
them by their respective standard deviations, the distance between
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the failure point and the point defined by their normalized means Initiating Event System 1 System 2 Accident
is the reliability indexB. This method assumes normal distribu- Sequences
tions and must be modified to accommodate other distributions. Success State 15.5.)
S, 1

) ) Success State ©2) ’
Point—-Estimate Methods S) _
The variance of a function—or any of its moments—is essentially —%ﬁ— (IS,F,)
the result of integration. Rosenblugtt®75, 1981 proposed that ﬂ&"('lg)lfve%nt z
an accurate approxmatlo_n is obtalne_d by evaluating the function Success State )
M at a set of discrete points and using those values to compute ] (s, 2
the desired moments. In practice, for uncorrelated variables, the Fa"”(f )Sta'e
points are usually taken at plus or minus one standard deviation ! Failure State (F.F.)
from the mean of each of the variables. Other schemes can be ) v

used, especially when the variables are correlated or skewed. The

method is a form of Gaussian quadratg@hristian and Baecher Fig. 3. Simple, generic event tree. Tree for actual S|tuat|oq wpuld
1999. have many more branch&®).S. Nuclear Regulatory Commission

1975

Monte Carlo Simulation

Monte Carlo simulation enjoys a long history and a rich literature. have been used to study the reliability of dafuick and Stewart
Each continuous variable is replaced by a large number of dis-1996; Von Thun 1996 tank farms on liquefiable soi{T. W.
crete values generated from the underlying distribution; these val-| ambe & Associates 1982, 198%&nd other engineered systems.
ues are used to compute a large number of values of funiion Fault trees(Fig. 4) start with the failure and work backward.
and its distribution. The large numbers of computations once pre-The tree contains the conditions that must be met for the failure to
sented a constraint on the use of this method, but cheap modermyccur. There are two basic situations. If all the conditions must be
computers have largely removed this obstacle. There are also sevmet, they are connected to the event by an “and” gate; if the event
eral serious questions of convergence and of randomness in theyill occur if one or more of the conditions are met, they are
generated variables. Several so-called variance reduction schemegonnected by an “or” gate. The analyst develops the tree from the
can be effective in improving convergence and reducing compu- top down, moving from condition to condition. In the usual for-
tational effort. Fishmari1999 provides one of many treatments mulation, the conditions at each stage must be independent and
of the method. Monte Carlo simulation with variance reduction is must encompass all the conditions that could lead to the next
particularly helpful in improving the accuracy of first order reli-  stage. To compute the probability of failure, the analyst works
ability method(FORM) results(Baecher and Christian 2008b from the bottom up. The effect of an “and” gate is that the prob-
ability of occurrence of a stage is the product of the probabilities
Others for events feeding into the gatep=p;p,---p,). The effect of an
Perhaps the most significant methods other than those just de<«gr” gate is that the probability of occurrence of a stage is 1
scribed are the second order second moment and second ordesinus the product of the probabilities of nonoccurrence of the
reliability method, which provide higher order approximations events leading into the gatfp=1-(1-p,)(1-p,)---(1-p,)].
than those underlying FOSM and FORM. While these have found Fault trees have also been used in geotechnical pragtizezyl
some applications in structural reliability studies, they have not et al. 1996.
found much application in geotechnical work. The influence diagrantFig. 5) displays the relations between
various events and conditions in a system. The direction of the
arrows and other conventions represent the dependencies between
the objects.
Event trees, fault trees, and influence diagrams are techniques for
describing the logical interactions among a complex set of events, .
. ; . . Other Techniques

conditions, physical parameters, and physical states. In this con-
text, there is no logical difference between an “event,” such as the Many other statistical and probabilistic tools exist, and most will
occurrence of an earthquake or of a large storm, and a “condi-find some applications in geotechnical engineering. One impor-
tion,” such as the existence of a liquefiable layer of soil or the tant case arises when the mechanics of a problem are not under-
presence of erodible material in an earth dam. stood well enough to permit detailed modeling. The detailed

Event treegFig. 3) start with an initiating event, such as, say, mechanisms of failures of slopes along highway rights of way or
the occurrence of an earthquake. Then the analyst develops a sét a Karst terrain are not really responsive to conventional slope
of events that could follow; say the peak ground acceleration stability analysis. The probability of failure is best estimated by
could fall within a certain range. Associated with each range is a compiling statistics on the numbers and magnitudes of failures
conditional probability; for example, for the range 0.05-0.10 g that have been observed over time and developing a probability
the conditional probability could be 25%. These events must be distribution that describes the observations.
exhaustive—that is, all possible outcomes are included—and
exclusive—that is, no possible result could fall within more than
one outcome. The analysis then proceeds along each path tdRequirements for Reliability Analysis
evaluate the next outcomes, and so on and so forth. At each stage
the probabilities are conditional; that is, they are the probabilities An engineer faced with the task of evaluating the reliability of a
of the current event if all preceding events in that branch have facility, structure, or system must address four issues: the nature
occurred. At the end of the tree, the probability of each outcome of the input uncertainties, the methodology for reliability analysis,
is simply the product of the conditional probabilities. Event trees the geotechnical analytical models, and interpreting the output.

Event Trees, Fault Trees, and Influence Diagrams
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Fig. 4. Fault tree for analysis of dam breaching due to overtopgéitgr Parr and Cullen 1988

The previous sections contain a brief description of the techniquesclined loading, depth of embedment, base tilt, and ground slope
for reliability analysis—techniques that are well established and (Meyerhof 1953, 1963; Vesic 1973, 197Fhe uncertainties and
thoroughly described in the literature. In general, the methodolo- ranges of validity in the three basic factors and fifteen correction
gies for reliability analysis are robust, their strengths and limita- factors are poorly understood, and it is far from clear that multi-
tions well established. plying them together gives accurate results. Serious questions can
The tools of geotechn?cal analysis for most pract_ical problems o raised about the errors introduced by many other common
are also well known. While some are well founded in theory and analytical models. Suffice it to say that anyone using an analytical

practlce. and will introduce little model error into the reliability tool should be aware of the potential for error due solely to the
calculations, others have large—and largely unknown—errors. . :
inadequacies of the model.

For example, the widely used shallow bearing capacity equations . . ) .
depend on some dubious assumptions about plastic strains asso- Attention will now be directed at the first and fourth of the

ciated with the Mohr—Coulomb yield equation and on combining rgquirements for rgliability anfilysis: input and output. The discus-
minimal solutions for three different facto€hristian and Urzua ~ Sion of input requires some introduction to the meanings of un-
1996. Furthermore, each of these factors is multiplied by up to Certainty and probability and the difficulties involved in describ-
five correction factors to account for shape and eccentricity, in- iNg what we know. The discussion of output centers on how to
understand what the output means and what can be learned from
its details.
Sag&
Lens
Exists

Input—What are Uncertainty and Probability?

L égrfoémnce The input to any reliability analysis includes descriptions of the

Geological ( Data from - . .
Evidence [, ‘Borings relevant parameters describing physical properties, loads, and ge-

= ‘ ometry and of their uncertainties. Usually these are in the form of
means and variances or standard deviations or probabilities of
Docioron Declds occurrence. However, before the engineer seizes values of the
toactor s, probabilistic parameters and leaps into the mechanics of a reli-

drill . . .
ability analysis, he or she should have some understanding of the

_ _ _ . issues that have been raised about the nature of uncertainty and
Fig. 5. Influence diagram for two-stage exploration decision, based propability and how these issues affect the way one deals with
on forthcoming Canadian Electricity Association Guide to Dam yncertainty. Many of these issues arise again in interpreting the
Safety Risk Management output of a reliability analysis.
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Table 1. Terms Used in Literature to Describe Dual Meaning of Uncertainty, after Baecher and Chi281G81)

Uncertainty due to naturally Uncertainty due to lack of

variable phenomena in time knowledge or understanding

or space of nature Reference citation
Aleatory uncertainty Epistemic uncertainty Hacking 1975; McCann 1999
Natural variability Knowledge uncertainty National Research Council 2000
Random or stochastic variability Functional uncertainty Stedinger et al. 1996
Objective uncertainty Subjective uncertainty Chow et al. 1988
External uncertainty Internal uncertainty Chow et al. 1988
Statistical uncertainty Inductive probability Carnap 1936

Chance Probability Poisson, Courribtacking 197%
Nature of Uncertainty Meaning of Probability

What exactly do we mean when we say that something is uncer- The mathematical theory of probability is an algebra that can be
tain? Do we mean that the thing occurs at random in some un-derived from three simple axioms
predictable way, like the roll of a set of dice? That is, is the thing
so unpredictable that additional knowledge or analysis will not PlA]=0
affect our ability to estimate it?This type of uncertainty is now
known as aleatory, after the Latin word for gambler or dice P[A] =1 meansA is certain (11)
thrower (Hacking 197%. Alternatively, we might mean that the
thing is uncertain only in the sense that we do not know enough  p[aA U B] = P[A] + P[B] if A andB are mutually exclusive
about it. For example, after a deck of playing cards is shuffled, the
arrangement of the cards is fixed but unknown. We could discover
the arrangement by simply examining each card in turn. However,
that is precisely what we are not allowed to do, so the strategy in
a game such as Bridge is to discover the arrangement by obser
vation and induction. The uncertainty is due to lack of knowledge.
This type of uncertainty is called epistemic, after the Greek word
for knowledge(Hacking 1975%. Table 1, based on a table com-
piled for analysis of flood riskNational Research Council 1995
presents seven pairs of alternate definitions proposed over th
years(Baecher and Christian 2008brhe words “aleatory” and
“epistemic” have achieved wide circulation and application, so
they will be used here.

It will immediately be clear that the problem of establishing
the geometry and properties of geologic deposits is closer to that
of determining the arrangement of a deck of cards than it is to

However, none of this describes what probability is. Does it
describe the relative frequency with which something happens?
Or does it describe the degree of belief that something happens or
exists? The relative frequency view implies that there is some
underlying frequency with which things happen and that repeated
trials or experiments will reveal it. The degree-of-belief view ar-
gues that most important questions do not admit of repeated trials
and that most practical applications of probabilistic methods em-
é)loy probability as a measure of confidence in an uncertain out-
tome. The frequentist argues that probability is inherent in the
state of nature and that the analyst’'s job is to estimate it. The
adherent to the degree-of-belief school argues that probability is
in the mind of the individual and the analyst’s job is to elicit it.

It should be noted that it is possible for the two approaches to
apply to the same transaction. The insurance company prices its

- ; products as a frequentist. It employs actuaries to calculate the
predicting the throw of a set of dice. Jens@f97) was one of the 5405 of occurrence of various events from observed frequencies.

first to point out the analogy between the configuration of geo- |hqeeq, it has great difficulty pricing insurance for an event for
logic formations and the order of cards in a deck. In effect, the \hich it does not have much actuarial data. On the other hand, the
problem facing the geotechnical or geological engineer is ,rchaser of insurance buys it on the basis of his or her degree of
epistemic rather than aleatory; it follows more from a lack of pgjief. Each of us has one life and a limited number of houses,
knowledge about materials and geometries than from inherentcars, pusinesses, and so on. Our decisions whether to buy insur-
randomness in them. ance, how much, and what sort are informed by our own particu-
Aleatory and epistemic uncertainties must be treated differ- |3 circumstances, the exposure we are willing to undertake, and
ently. If something is uncertain in the epistemic sense, the uncer-the steps we have taken to minimize risk. Thus, the insurance
tainty may be reduced by additional information. Closer attention company is a frequentist, and we are degree-of-beliefers.
to the bidding and play of the hand in Bridge or additional explo-  when the geotechnical engineer processes laboratory data
ration and testing in geotechnical engineering may reduce thefrom many tests to obtain estimates of the properties of geological
epistemic uncertainty. It may not eliminate it, and the cost of materials, the engineer is acting like a frequentist. The results are
reducing it below some level may not be worth it, but, in general, often expressed as means and standard deviations, and there is an
more information tends to reduce epistemic uncertainty. Con- implication that the distributions of properties observed in the
versely, more information will not reduce aleatory uncertainty, laboratory apply in the field. However, when carrying out an ex-
although it may establish more precisely the parameters govern-ploration program, geotechnical engineers are trying to sharpen
ing that uncertainty. Venezian@995 has described the implica-  their degree of belief in a model of the geologic conditions at the
tions of the distinction between aleatory and epistemic uncer- site. The author would argue that, in geotechnical engineering, the
tainty and how these affect the trade-offs that must be made inmost important issues involve the engineer’s degree of belief,
analysis. especially when engineering judgment is employed.
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O Non-liq ability distribution; that is, the analyst must first estimate the state
® Lig of nature before the new data are introduced. The data then pro-
08 7 —p=02 I vide an update to the probability of the state of nature. Additional
/ ~— ~Logit (C&S) data make possible further updates and better estimates of the
s state of nature. The basic idea is an extension of Jacques Bernoul-
/ li's comment, “Even the stupidest of men, by some instinct of
nature, is convinced on his own that with more observations his
04 a d / risk of failure is diminished.”(Bernoulli 1713 As De Finetti
. ° / o (1972 wrote: “Data never speak for themselves.” They only tell
«® e o o us how to update what we thought before we saw the data to what
02 | 9 ‘3@0 py " 5 o We.loglcally thllnk afterwards. The procedure is most easily ex-
Wc plained by a simple example that nonetheless illustrates some of
5. g¢ the insights that arise from Bayesian analysis.
| Consider the problem of determining whether a liquefiable
0 10 20 30 40 50 60 zone exists under a proposed facifitfhe field data are based on
(N1)60 results of either the standard penetration test or cone penetration

Fia. 6. Cvelic st i lized bl s, inst test, and the design earthquake has been specified in advance. The
Ig. 6. CycCliC slress ratio versus normalize OwW counts, Instances questions to be answered are

of liguefaction and nonliquefaction, and 20% separation lines deter- What is the probability that a liquefiable zone exists?

mined by discriminant analysiesolid line) and logistic regression . . - .
(dashed ling Data are taken from database used by Christian and : HOW Is this probability affected by the results of successive
Swiger (1975, 1976 borings?
! - ¢ Are more borings justified?
Let the probability of finding the zone, if it exists, be 0.3 for any
_ ] o one boring; hence the probability of not finding it, if it exists, is
Frequentist versus Bayesian Statistics 0.7. Also, it is possible to get a false positive when no liquefiable

One outgrowth of the historical arguments between frequentist ZON€ exists, so let the probability of the false positive be 0.05.
and degree-of-belief schools of probability is the distinction be- This implies that the probability of not finding it if it does not
tween frequentistor classical and Bayesian statistiésFrequen- exist is 0.95._ IfF indicates that the zone is fo_urEl,mdlcateS that

tist or classical statistics are described in most statistics textbooksthe zone exists, and a superposed bar indicates the complement,
and college courses. The essential thrust of classical statistics is tghen the conventional probability notation is

answer the question, “If a particular hypothesis is true, what is the

probability that the data | have before me could have been gen- P[FIE]=0.3 p[E|E] =07

erated?” In other words, it addresses the probability of the data (12)

given the state of nature, or, in mathematical notation, — ——

P[datdstate of nature Geostatistics, logistic regression, and dis- P[F|E]=0.05 P[F|E]=0.95
criminant analysis are examples of classical statistical methods.
Fig. 6 shows the 20% curves resulting from discriminant and
logistic regression analysis of the modified ground acceleration
and standard penetration data for liquefaction and nonliquefaction
cases used by Christian and Swige975, 1976.2 The results are
nearly identical, as they should be. Users first coming across this
type of plot are inclined to believe that a site whose data fall - PLF|E]P([E]

. . ” : P,[E[F] ——
below and to the right of the line has a 20% probability of lique- P[F|E]P,[E] + P[F|E]P,[E]
faction. This is precisely the wrong interpretation. The actual
meaning of the plot is that, if a new site were to liquefy during an The posterior probability that it exists if it is not found in one
earthquake, there is 20% probability that its data would fall below boring is
and to the right of the curve. Similarly the probabilities associated

1 f Bayesian analysis starts with a prior probability or prior prob-
!
)
/

0.6

CSR
~

0

The basic form of Bayes’ Theorem states that, if there is some
prior estimate of the probability that the zone exi$g,E], the
posterior probability that it exists if the zone is “found” in one
boring, P,[E|F], is

13

with locations of curves in a geostatistical analysis are not the . P[E|E]P [E]
probabilities that the lines are located correctly but the probabili- P,EIF]=——= S (14
ties that the data used in the analysis would be observed if the P[F|E]P([E] + P[F|E]P[E]

lines were correcfBaecher and Christian 2003a )

Bayesian analysis addresses the converse question, “If | haveNOW, let us suppose that we are of two equal minds about whether
before me a set of data, what is now the probability that my view OF not the zone exists; we really do not know and would not be
of the subject is true?” That is, it gives the probability of the state surprised to find that it does or does not exist. This is equivalent
of nature given the data, or, in mathematical notati®fstate of to
naturédatd. The approach was first proposed by the Reverend
Thomas Bayes in 1763 and independently discovered by Marquis P[E] = p[E] =05 (15)
Pierre Simon de Laplace in 178%elman et al. 1995 Bayes
received the credit, but the version of the theory now commonly Further, let the result of the first boring be that it “finds” the zone,

used is due to LaplaceSivia (1996 and Gelman et al1995), but this could be a false positive. We want the probability that the
among others, have written excellent introductions to Bayesian zone exists if the boring seems to find it. Inserting the appropriate
analysis. numbers into Eq(13) gives
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Bayesian Updating of Results . Effect of Initial Estimate of P[E]
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Fig. 7. Posterior probability of existence of liquefiable zone by Baye- Fig. 9. Posterior probabilities of existence of liquefiable zone versus

sian updating on basis of three borings when initial prior probability injtial prior probabilities after three borings for all possible initial
is 0.5. At each fork upper branch corresponds to “find” and lower to priors and all outcomes of boring program
“not find.”

(0.3(0.5 _ The analysis can be repeated for a range of initial prior prob-
(0.3(0.5) + (0.05(0.5) =0.86 (16 abilities, with the results plotted in Fig. 9. The horizontal axis
o . ) . represents the initial probability; the vertical axis is the ultimate
which indicates a sharp increase in the degree of belief that theposterior probability after three borings. The four lines corre-

P,[E|F]=

zone exists. If the boring had not found the zone, @¢) would spond to the four possible outcomes: three, two, one, or no hits.
give Again, if there are two or three hits, the data overwhelm the prior
— (0.7)(0.5) probabilities. If there are one or no hits, there is an effect on the

P.[E|F]= =0.42 17 posterior probabilities, but it is not nearly so strong. In particular,

(0.7(0.5 +(0.95(0.5 failure to find the zone in three borings does not lend much sup-
indicating that the degree of belief in the existence of the zone hasport to the belief that the zone does not exist. This conforms to the
decreased, but not by much. not-uncommon experience of encountering undesirable conditions
As results from additional borings are obtained, the probability during construction despite the exploration programs carried out
of existence of the zone can be updated by treating the posteriorduring design.
result of the previous updating as the prior result for the next. Fig.
7 shows all possible results for three borings when the initial prior
probability of existence is 0.5. Fig. 8 shows the corresponding
results when the initial probability is 0.25. Four observations that A central problem facing the geotechnical engineer is to establish

Estimating Geotechnical Properties

conform to our intuitive experience are apparent: the properties of soils and rocks that will be used in analysis,
1. The order of the results makes no difference; whether that analysis is probabilistic or deterministic. Fig. 10 is a
2. Two or three positive results lead to near certainty that the plot of the soil profile for one section of the James Bay dikes
zone exists for this set of parameters; (Christian et al. 199% An engineer wishing to estimate the vane
3. Two or three negative results reduce the belief that the zoneshear strength of the Marine Clayhe middle layer would be
exists, but not by much; and justified in choosing a value that was constant with depth and fell

4. As more data accumulate, the probabilities move from the approximately at the mean of the measured d&é.course, the
prior assignment to values that reflect the data more strongly. value should be corrected for the effect of the plasticity index, but
that is another issueThe engineer would make such a choice
regardless of whether the strength was to be used deterministi-

. Bayesian Updating of Results F cally or probabilistically. There is some scatter about the mean in
= </I the data. The situation for the Lacustrine C{éhe lowest layeris
F not F not so straightforward. The vane shear strength varies with depth,
0.8 .
F so there would be substantial scatter about a constant mean value.
o8 /'/*‘F The engineer might choose a description of the strength that var-
o F not ¥ ied linearly with depth, or maybe a more complicated trend line
= o4 F such as a sine wave would be appropriate. The data would fall
' F closer to the trend line, so the scatter about the trend would be
-/\WF not F reduced. Unfortunately, the uncertainty in the location of the trend
02 not F is correspondingly increased. The scatter about the trend line is
. called data scatter, and the uncertainty in the location of the trend

is called systematic error. The choice of the shape and location of
Trial Number the trend line is not an artifact of nature; it is a modeling decision
i . ) made by the engineer. Thus, the separation between data scatter
Fig. 8. Results for same analysis as that represented by Fig. 7 exceplng systematic error is also a modeling decision. This is true even

that initial prior probability is 0.25 if the results are used entirely deterministically. Put another way,

o
-
[
w
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Fig. 10. Soil profile for James Bay dikes, after Christian et(4B94

the model for soil properties is a choice made by the modeler andThere are other situations, such as those governed by a single
is not a simple reflection of the realities of nature. plane of weakness or potential seepage path, in which the larger

Fig. 11, also from Christian et al1994), depicts the di- the volume the more likely the critical feature is to be found. In
chotomy between data scatter and systematic error. It shows thasuch cases the data scatter does not average out and is more
data scatter can be further divided into actual spatial or temporalimportant than the systematic error.
variation and random measurement error. It is desirable to remove  Another problem arises from the use of small numbers of test
the random measurement error from further analysis. The mostresults. Much of statistical theory is based on the Law of Large
common ways to do this are the method of moments and the Numbers, which can be summarized in a mathematically non-
method of maximum likelihood estimators, which have been de- rigorous way by the statement that, if there is a large enough
scribed in detail by De Groot and Baecli2893. The systematic number of data points, statistical properties can be estimated with
error can also be divided into systematic error in the trend and an arbitrary degree of accuracy. In the real world, and certainly in
bias in the measurement procedures. The classic example of thgeotechnical engineering, there are often far from enough data to
latter is the correction to the vane shear data to account for thesatisfy the conditions of the Law of Large Numbers. Tversky and
plasticity index of the clayBjerrum 1972; Terzaghi et al. 1996 Kahneman(1971) observed that, despite the fact that people often

It is important to bear in mind that data scatter and systematic do not have enough data to make valid inferences, they behave as
error have different effects on a reliability analysis. In many prob- though they did. They called this the “Law of Small Numbers.”
lems, such as conventional slope stability analyses in which the Consider a data set consisting of six values of shear wave veloc-
contributions of shear strength are summed along a failure sur-ity: 229, 224, 229, 217, 200, and 241 m/s. For these data the
face, the scatter in the value of the shear strength averages out, csample mean is 223 m/s, the standard deviation is 13.9 m/s, and
nearly does so. The contribution of the scatter in the shearthe standard error of the mean is 5.7 m/s. In fact, these are not
strength to the uncertainty of the result is thus greatly reduced asmeasured values, but the first six values created by a random
the geometry of the problem gets larg€hristian et al. 1994; number generator from an underlying normal distribution with
El-Ramly et al. 2002, 2003a; Duncan et al. 2p03n the other mean of 240 m/s and standard deviation of 24 m/s. Fig. 12 com-
hand, the systematic error propagates throughout the analysispares the underlying distribution with a normal distribution in-
ferred from the observed values. It is clear that the inferences
drawn from the small sample of six values are not valid. Unfor-
tunately, the same problem of inadequate numbers of data arises
in many geotechnical problems, except that the underlying distri-
I bution is not known. Basing estimates of geotechnical properties

on small numbers of data points, which is the case in many geo-

! technical projects, can lead to significant and unknown biases in
those estimates. This is true regardless of whether the estimates
are used in probabilistic or deterministic analyses.

Statistical sampling theory provides some guidance when one
is dealing with small numbers of data points. A well-known result

Uncertainty in Properties

Data Scatter

L

Systematic Error

T

Fig. 11. Conceptual separation of uncertainty into its components for

geotechnical applicationEhristian et al. 1994

is that the standard error of the mean or the standard deviation of

Real Spatial Random Statistical Bias in . ..
or Temporal Testing Error inthe | | Measurement the estimate of the mean equals the standard deviation of the
Variation Errors Trend Procedures

sample divided by the square root of the number of data points.
However, this applies only in a statistical sense. In the present
example, the standard error is 5.7. It is clear, however, that the
actual mean of the underlying distribution does not fall within the
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The literature on eliciting expert opinion generally arrives at
two conclusions. First, real experts tend to be good at estimating
mean or median values or trends. That is, they get the expected
AN values right. Furthermore, the average of the opinions of several
J experts tends to be even better. Second, experts are usually too

: . confident in their estimates and tend to underestimate the uncer-
tainty in their estimates.

; : The last points are illustrated nicely by results published by
J Hynes and Vanmarcké€l976. An embankment had been built
north of Boston, Mass., for a highway project that was later aban-
doned. In 1974 a team from the Massachusetts Institute of Tech-
nology placed additional fill on the embankment to bring it to
failure in conjunction with an international workshop at which
seven acknowledged experts were invited to make predictions of

-l . S . the behavior of the embankment. Each was asked to predict how
150 200 250 300 350 much additional fill it would take to cause the embankment to fail
Vs (mis) and to provide a range within which the expert’s confidence of the

Fig. 12. Actual underlying probability distribution function for shear @ilure was 50%, also known as the interquartile range The re-

wave velocity example and normal distribution estimated from six Sults, modified from Hynes and Vanmarcke's paper, are in shown
data points Fig. 13. The large square points are the experts’ best estimates;

the vertical lines are the interquartile ranges. The dashed line
represents the actual amount of fill that caused failure, 18.7 ft.
The average of the seven experts’ best estimates was 15.6 ft. This
range 223+6 m/s. The actual results in a specific case may notis a good estimate of the actual event, especially since the critical
conform to statistical expectations. Anomalies can and do occur. parameter leading to failure is the total height of the embankment,
not the last increment. However, the figure also shows that in no
case did the actual amount of fill to cause failure fall within an
expert's 50% confidence limits. Pure chance would predict that, if
In view of the limited number of field and experimental data the 50% confidence estimates really represent the uncertainties in
usually available, the geotechnical engineer often has to rely onthe experts’ judgments, half the vertical ling€., 3 or 4 would
the opinions of experts and engineering judgment to establish theintersect the observed value of 18.7 ft. Thus, the experts per-
values and ranges of engineering properties. Obtaining relevantformed well on the average, but each expert was too confident of
information from experts, or, to use the technical term of art, his own estimate.
“elicitation” of expert opinion, has been the subject of extensive Fig. 14 shows the results when the audience was asked to
study in the management and psychological communities. Mor- estimate the required additional fill. Twenty-six people submitted
gan and Henriori1990 and Vick (2002 provide accessible sum-  estimates. Once again, the best estimates were distributed ap-
maries of the issues. These can become quite complicated, so thgiroximately evenly about the actual result, but in this case sixteen
elicitation of expert opinion is seldom the straightforward process of the 50% confidence estimates intersected the observed value.
imagined by those who have never worked on it. As evidence of Thus, the audience, which had much less time to do its work,
this statement, the Senior Seismic Hazard Analysis Committeemanaged to include the correct value within the interquartile
report(Budnitz et al. 199y dealing largely with eliciting expert  range 62% of the time. In this case, the experts performed less
input for seismic hazard analysis runs to 256 pages plus sevenwell than their audience. It is not clear why this is so. The inter-
appendices totaling over 850 additional pages. The utility of the quartile rages in Figs. 13 and 14 are approximately equal, so the
methodology is called into question by the need for such volumi- experts and the audience were equally confident of their esti-
nous explication. mates. The reason for the better performance of the audience
The first problem is identifying an expert. Who is an expert, cannot be that it was more humble and less confident. Since there
and how well qualified is the expert? Obviously, the expert’s own were no detailed studies of the psychology of the experts or au-
opinion of his or her own worth may be too high or too low, so dience, the reason for the discrepancy must remain a mystery.
procedures have to be developed to establish the range of the Another interesting result appears in Fig. 15. The seven ex-
expert’'s expertise. Furthermore, an expert trained in one disci- perts were asked to provide, in addition to the interquartile range,
pline may not appreciate the statistical implications of an opinion. the minimum and maximum values of the additional height of fill.
Some feedback and iteration is needed to address this problem. Irin only three cases did the actual additional height of fill fall
one of the early probabilistic seismic hazard evaluations for a within an expert's minimum to maximum range. In many cases
nuclear facility, one of the evaluators for the U.S. Nuclear Regu- the minimum to maximum range is virtually identical to or less
latory Commission asked one the experts on seismicity, “Do you than the interquartile range. Hynes and Vanmarcke concluded, “It
realize that your model implies that there ought to be a magnitudeis clear that there are wide differences among engineers in the
5 earthquake or higher at the plant boundary every 10 years?” Theway they interpret the terms “minimum” and “maximum.” These
expert replied that he was not aware of the implication and did widely used terms are essentially meaningless unless related to
not believe that such a series of events would occur. The two of relative likelihood or probability.”
them then worked out a probabilistic description of the seismicity =~ Kondziolka and Kandarig1996 described another study of
that was more consistent with the expert’s real opinions about theexpert elicitation in geotechnical engineering. Nine engineers of
seismicity. In a basic sense, the expert had not understood thevarious degrees of expertise were asked to design six transmission
question he was being asked. tower footings against uplift, and the footings were then built and

Expert Elicitation and Engineering Judgment
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Fig. 13. Seven experts’ estimates of additional height of fill to cause failure of 1-95 embankment. Square points are experts’ best estimates, ant
vertical bars are their 50% confidence bouiidgnes and Vanmarke 19Y.6

tested to failure. The design capacity is designa®edand the with a particular designer’s performance. The two best performers
actual failure load). Fig. 16 presents the results in termsRIiQ had 14 and 30 years of experience, respectively, but the worst had
for each designer. The square points are the averages over all si22. Designers with advanced degrees fell into Positions 4—-8. As a
footings, and the lines indicate the range of results. A value of general rule, the more boxes checked in Table 2, the better the
P/Q of unity indicates exact prediction of the actual result; values designer performed. However, the third best designer had limited
less than unity are conservative in the sense that the predictecexperience and no advanced degrees. One of the lessons to be
capacity is less than that observed. Kondziolka and Kandarislearned from this example is that it is difficult to predict an ex-
numbered the designers in decreasing order of average goodnesgsert’s performance on the basis of credentials and experience.

of their predictions. Except for the first three designers, they  These and similar results are relevant to the question of how

tended to be quite conservative. The range of valueB/6j for much reliance should be placed on engineering judgment. There
each designer is large. For example, the range for the best deare those who argue that, in the last analysis, judgment is the basis
signer, number 1, is from 0.6B3% conservativeto 1.2 (20% for all geotechnical engineering and that, from the start of their

unconservative Table 2 presents the experience and education of careers, engineers should be encouraged to use it. Others argue
the participants. It is not clear how this information correlates that judgment must be based on something other than intuition.
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Fig. 14. Audience’s estimates of additional height of fill to cause failure of 1-95 embankment. Square points are audience members’ best
estimates, and vertical bars are their 50% confidence baithdees and Vanmarke 19Y.6
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35
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actual fill adde¢d at
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Fig. 15. Seven experts’ estimates of additional height of fill to cause failure of 1-95 embankment. Square points are experts’ best estimates, ant

vertical bars are their minimum and maximum estimdtégnes and Vanmarke 19Y.6

For example(Hartford 2000 proposes that engineering judgment
must be based on a chain of reasoning explicitly laid out for
Accuracy of Predictions inspection. Studies like the two just described and the literature of

1"21' | expert elicitation indicate that good judgment requires not only
P | ] knowledge and experience but also evaluated experience. It also
c 08 T f + l | requires that the engineer be able to demonstrate how the clear
o 06 *—H—*—t chain of reasoning led to the conclusions. That is, it requires that
0.4 | the expert not only have devoted time and effort to learn the topic
02 at hand but also have studied the results of earlier predictions and
0 1 2 3 4 5 6 7 8 9 evaluated what worked and what did ﬁot
Designer

Fig. 16. Ratio of predicted uplift capacityP) to measured uplift Selecting Parametric Values

capacity(Q) for six transmission tower foundations evaluated by nine The above examples suggest certain conclusions about selecting
designers. Each square point represents average of six valtéQof  parametric values, whether they will be used in probabilistic or
for each designer. Vertical bar represents range of each designer'yeterministic analyses. Among these are:
results. Plotted from results presented by Kondziolka and Kandaris 1 Dividing uncertainty between spatial and systematic compo-
(1996. nents is fundamentally a modeling choice and not a fact of
nature.
2. Spatial and systematic uncertainties contribute differently to

Table 2. Experience and Education of Participants in Transmission Tower Foundation Uplift Project, after Kondziolka and Ka@€éyis

Designer

Experience or education 1 2 3 4 5 6 7 8 9
Previous full scale uplift test experience X — — X — — — — —
Previous uplift foundation design experience X X — X X X X — —
Transmission line tower project experience X X X — — — — — —
Regional geotechnical design experience X X X X X X — — —
Previous involvement with geotech investigations X X — X X X X — X
Drilled pier foundation construction experience X X X X — X
Professional engineer X X X — — —
Bachelor’s degree X X X X —
Master’s degree — — — X X X X —
Doctorate — — — X — — X — —
Years of experience 14 30 8 5 10 10 5 0 22
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Subjective Probability of Error

Fig. 17. Actual error frequency versus subjective estimate of probability of error for three groups of subjects asked questions of varying difficulty
on variety of subjects. Original results developed by Fischhoff et1897 and also presented by VigR002).

uncertainty analyses; in particular, spatial uncertainties tend Two mechanisms for presenting the results of probabilistic
to average out. analyses in a form that can be grasped intuitively and used in
3. Values computed from small samples can be misleading.  decision-making are thE-N andF—N diagrams, the latter being
4. Experts tend to be more confident than they should be; thatthe cumulative form of the latter. Fig. 18 is a typical example of
is, they underestimate the variances. the f—N diagram(Baecher 198R The plot has on the horizontal
5. Engineering judgment is invaluable if it is based on evalu- axis either cost in dollars or lives lo$fThe vertical axis is the
ated experience and a demonstrable chain of reasoning; itobserved annual frequency of the losses for various activities.
should never be used as a euphemism for speculation orBoth axes are logarithmic. The results plot along a broad swath
guessing. running from the upper leftsmall costs and high frequency of
failure) to lower right(high costs and low frequency of failyre
This is an experimental result; it reveals the rates of failure and
Output—Interpreting Results costs that society—or at least some operating part of society—has

After a reliability analysis is complete, the results, like any analy-
sis, must be interpreted. What do the probabilities mean? How are LIVES LOST
they to be used? What does the analysis reveal about the impor-
tance of the various parameters and their uncertainties?

Absolute Probability of Failure

Most people do not understand what a probability means, espe-
cially if it is a small probability. Fischoff et al(1997). developed

the original form of Fig. 17; it has been reproduced by other
authors(Vick 2002). Three groups of subjects were asked ques-
tions of varying difficulty and asked to provide estimates of the
probability of error in their answers. Fig. 17 compares these esti-
mated, subjective probabilities of error with the actual frequency
of error. When the actual error rates were greater than 0.2, the
subjective estimates agreed well with the actual rates. However,
when the actual error rates fell below 0.2, the subjective rates
dropped precipitously. At the extreme left side of the figure, when
the actual rates were between 0.04 and 0.1, the subjects thought 107 i | [ ! | "'.I

their error rates were 16 In words, the subjects were overcon- 10* 10° 10° 10° 10° 10° 10%

fident by 5 orders of magnitude! In a similar vein, people are & LOST

notoriously more frightened of accidents on commercial airliners _ ) . .
than on the highways, despite an abundance of widely publicized Fig. 18. One version of —N plot annual risk cost or number of lives.

data that show that air travel is many times safer than driving on In this plot both cost and lives are shown; it is customary to use one
the highways. or the other rather than both on same gB&aecher 198
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Fig. 20. F—N diagram proposed for Netherlands for planning and
10° design(Versteeg 198y “Prompt fatalities” is term used in original

reference and refers to failures that occur in short term rather than

1 10 100 1000 10,000 because of lingering effects.

Number of Fatalities, N

Fig. 19. F—N diagram adopted by Hong Kong Planning Department

for planning purposegHong Kong Government Planning Depart- to be bound by the bright lines separating the regions but to use
ment 1994. “ALARP” stands for “as low as reasonably practicable.” them as guidelines. Regardless of how the figures are developed,
they are convenient tools for comparing the results of reliability
. ) analyses with acceptable levels of risk.

implicitly found acceptable. Of course, asked in a referendum  \yhenever one is working with a computed probability of fail-
what risks are acceptable, society might choose a different acceptyre it must be borne in mind that the probability of failure com-

able risk, but Fig. 18 represents what we live with now. Some ,teq with best estimates of the statistical parameters is likely to
activities, such as commercial aviation, fall well below the trend,

and this conforms to the general perception that commercial air
travel is relatively safe. Others, such as mobile drilling rigs, fall 102
above the trend; it is not surprising that mobile drilling rigs are l
dangerous places to work. Any other risk can be plotted on the Unacceptable
same figure to see how it compares to other activities. For ex-
ample, there have been at this writing 22 years of National Aeu-
ronautics and Space Administration space shuttle missions, two of
which failed costing seven lives each and untold dollars. If one
plots a point for seven lives and an annual failure rate of 0.09, the
point falls well above the trend line. This confirms that astronauts
on the space shuttle are exposed to high risks. It also indicates
that the technology is not yet so reliable that people from the
general public, such as schoolteachers, should be invited to par-
ticipate.

Several organizations that deal with public policy and safety
have adopte&—N plots as aids in decision-making. Fig. 19 is the
version adopted by the Hong Kong Planning Departnieiung
Kong Government Planning Department 1998ig. 20 was de-
veloped in the Netherlandd/ersteeg 198)f The Australia New

103

Limit
<+ \ \
10 \ N\
10° \ ALARP N\
\
Very high
consequence dam

De minimjs region \

-6
10 \
Objective

107 Acceptable \

Frequency of accidents with N or more fatalities

Zealand Committee on Large Dar®&NCOLD 1994 proposed \

Fig. 21. Von Thun(1996 presented a somewhat more compli-

cated figure proposed for the Bureau of Reclamation. Three points 10

of clarification must be emphasized. First, the vertical axis in Fig. 0 1 10 100 1000

18 is the number of events occurring in a year, but the vertical
axis in Figs. 19-21 is the annual rate of occurrenc®l @r more ] ] i ]
events. Second, locations of the lines separating the regions aré9- 21. F~N diagram proposed by Australia New Zealand Commit-
not the same in all the figures; the locations reflect negotiations €€ 0N Large DaméANCOLD 1994. "ALARP" stands for “as low

among the designers of the figures. Third, current practice is notS reasonably practicable.”

Number of Fatalities, N
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Table 3. Comparative Probabilities of Failure for James Bay Dikes, after Contributions to Error in FS for Multistage Dike
Christian et al(1994

Case E[F] Ps 0.014 ORest of spa. Var.
_ H Ave. spatial var.

H=6 m, single stage 1.58 2.5x1072 0.012 - 7 Systematic error
H=12 m, single stage 1.53 4.7x10°3
H=23 m, multiple stage 1.50 7.1x10%

0.010 4

0.008 4

be a lower bound. The computed value necessarily does not in-
clude the effects of factors that were not included in the analysis.
Since things that were ignored during design and construction
cause many failures, engineers should be wary of placing too
much confidence in the absolute values of the computed prob- 0.002 -
abilities of failure. As Leps{1987 statement quoted earlier em-
phasizes, if the designer knows of something that could cause a 0.000
failure, he or she should fix it. Of course, a probability of failure ;Tfﬁt) 'sllt(af)t C:m)' ng(sl_")'- phifil  wnitwe. fil
computed with conservatism piled on conservatism is not neces-
sarily a lower bound, but it is also not clear what the computed Fig. 22. Contributions of each of six different uncertain factors to
probabilities mean. variance of factor of safety of the 23 m high multistage dike for
James Bay projediChristian et al. 1994

0.006

Variance Contribution

0.004 ~

bzl

Comparative Probability of Failure

It is often more useful to compare probabilities of failure for

different alternative courses of action than to rely on the absolute ) .

probability of failure. In the previous sentence the word “com- certal_nty average out_over the larger failure Sl_Jrfac_es that apply for

pare” is used deliberately. As Gigerenz2002 stresses, relative the higher dlkgs. This reduces the uncertainty in .the factor of

probabilities can be misleading. He gives the example of a screen-Safety. Such might not be the case for another design problem.

ing procedure that reduces the risk of dying of breast cancer from

4 per 1,000 patients to 3 per 1,000. The absolute effect is to contributions of Components

reduce the risk by 1 per 1,000, but the relative effect is 25%

reduction in risk. He Writesl “Relative risks do not carry informa- Another useful result from re“ablllty analyses is the contribution

tion about the absolute benefits of treatment.” of the various factors to the probablllty of failure. Flg 22, also

Christian et al(1994) give an example of the use of compara- from the James Bay studfhristian et al. 1994 shows the con-

tive probabilities. Three heights of dikes were proposed for the tribution of each of six uncertain factors contributing to the vari-

James Bay project: 6, 12, and 23 m. The first two are single stageance in the factor of safety for the 23 m high dike. The factors are

dikes; the last, a composite dike built in stages. Table 3 gives thethe shear strength of the intact marine clay, the intact lacustrine

estimated factors of Safety and probabi]ities of failure for the Clay, the consolidated marine Clay, and the consolidated lacustrine

three designs. Although the factors of safety are similar, the prob- clay; the friction angle of the fill; and the unit weight of the fill.

abilities of failure are quite different. The 23 m dike has a lower Each bar has three parts: the contribution of the systematic error,

probability of failure, which is not reflected in the factor of safety. the contribution of the spatial error after it has been averaged over

Another way to look at these results is to consider the desirablethe failure surface, and the additional contribution of the spatial

target probabilities of failure. On the basis of the historical behav- €rTor that is removed by averaging. The plot shows clearly that

ior of dikes of this type, an annual probability of failure of 0.001 the strength of the lacustrine clay and the unit weight of the fill

was established as a reasonable target for typical dikes such as theontribute much more to the variance of the factor of safety than

12 m dikes. The consequences of failure for the lower 6 m dikes the other three factors. One implication is that to reduce the un-

would be smaller, so a larger probability of failure of 0.01 was certainty in the factor of safety, and hence the probability of fail-

chosen. The greater size and importance of the 23 m multistagetre, the engineer would be well advised to concentrate on improv-

dike led to a reduced target of 0.0001. Working through the ana- ing the knowledge of the strength of the lacustrine clay and the

lytical results led to the target estimated factors of safety corre- unit weight of the fill.

sponding to these target probabilities and listed in Table 4. These

could then be used for design calculations. It' is interesting that the Factor of Safety and Reliability

values of the target factors of safety are in inverse order to what

would be expected intuitively. The reason for this reversal of The preceding paragraphs could give the erroneous impression

expectations is primarily that the spatial contributions to the un- that there is an inherent conflict between approaches using a fac-
tor of safety and those based on reliability theory. This is not the
case. The factor of safety is a value computed by well-known

Table 4. Target Design Factors of Safety for James Bay Dikes, after methods that provides a measure of the expected performance of

Christian et al(1994 a slope. For other problems, other computed values are appropri-
Case Targetpy TargetFS ate, such as estimated settlement, uplift pressures, bending mo-
H=6 m, single stage 001 163 ments, and so forth. Reliability theory does not invalidate such

calculations. It extends them by giving them a context and by
giving additional information to help the engineer interpret the
results.

H=12 m, single stage 0.001 1.53
H=23 m, multiple stage 0.0001 1.43
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Conclusions projects that deal with geology and the environment. Modern
probabilistic methods now provide an additional tool for describ-

Many conclusions can be drawn from the applications of prob- ing and dealing with that uncertainty.
ability to geotechnical problems. This paper has concentrated on
the imperfections in our knowledge and how they affect our abil-
ity to make decisions. It is clear that our knowledge of the geo-
logical and environmental factors affecting geotechnical engineer- Acknowledgments
ing is imperfect and that it will remain so. Although modern
developments in remote sensing and information technology Many engineers and researchers, including the reviewers, have
promise to ameliorate this situation, we are not likely ever to have contributed to developing probabilistic methods for geotechnical
as much or as reliable information as we would like to have. engineering; some are mentioned in the first section of this paper.
However, we have to proceed with our projects. The first step is The writer acknowledges his debt to them. In the case of the
to recognize the extent of our ignorance and to understandPresent paper and the lecture on which it is based, the author
whence it arises. We can reduce uncertainty by obtaining moreacknowledges the helpful criticisms of Gregory B. Baecher, Des-
information, especially when the search or more information is mond N. D. Hartford, William F. Marcuson, Ill, James K. Mitch-
guided by a rational understanding of the nature of uncertainty ell, and Alfredo Urzua.
and its impact on our decisions. Many practical tools—the obser-
vational method, adaptive management—have been developed to
deal with uncertainty in the engineering project. Endnotes

Probabilistic methods provide a powerful tool for dealing with

these issues, a tool that is finding increasing application in prac- 1t might be argued that, if we knew enough about the linear and angu-

tice. Many of its insights apply to deterministic methods as well, jar velocities of the dice, their inertia, the rebounding characteristics
whether or not they are formally recognized. Most of the cur-  of the dice and the table, and so on, we would be able to predict the
rently available tools for applying probabilistic methods to engi- outcome of any throw. However, this is so impractical that the ex-

neering can be placed in one of two categories—Ilogic trees and pressions “throw of the dice” and “crap shoot” have entered the

direct reliability methods. The details of these techniques are language as synonyms for totally random events.

widely available, and the methods themselves have found appli-it should be noted that it is possible to apply Bayesian methods when

cation across all engineering fields, including some in geotechni-  probability is defined by relative frequency or classical methods to

cal engineering. degree-of-belief probability. However, to avoid excessive and extra-
While the tools themselves are increasingly well known, the neous complication, the presentation follows the line that frequentist

underlying nature of uncertainty, the meaning of probability, and  definitions of probability tend toward classical statistics while

the differences between frequentist and Bayesian statistics are degree-of-belief approaches are more congenial with Bayesian ap-

not. There are also problems in estimating geotechnical param- proaches. This is also the historical distinction.

eters. We usually deal with an inadequate number of data points,®This database has been superceded by many more observations since

and it is important to separate the spatial from the systematic  the analyses were first carried out, but the point about the meaning

contributions. Exerts are often used to elucidate such questions, of the curves remains valid.

but a large body of experience from other fields as well as geo- “This is one instance dtigler's Law of Eponymywhich states in its

technical engineering indicates that it is difficult to elicit informa- simplest form, “No scientific discovery is named after its original
tion from experts and that experts are often too confident of their  discoverer’(Stigler 1999.
estimates. SA similar analysis applies to many other exploration problems; the

Using the output of probabilistic analyses is hindered by the liquefiable zone problem is chosen for convenience.
well-established fact that people, including engineers, have a |Ot6This story was told to the author by the National Research Council
of trouble understanding small probabilities. In recent years, the _ evaluator.

f—N and F—N diagrams have proven to be useful tools for de- "Many engineers have learned to their sorrow that relying simply on
scribing the meaning of probabilities and risks in the context of ~ "engineering judgment” in an adversarial proceeding can lead to
other risks with which society is familiar. Computed absolute embarrassing cross examination.

probabilities may not include all contributions; an effective ap- he plot has both cost and lives lost axes because some of the original
proach is to compare probabilities of different options or alterna- references wrote about costs and others about lives lost. In a par-
tives. Probabilistic methodologies also provide insight into the  ticular application one should use one or the other, but not both.
relative contributions of different parameters to the uncertainty of

the result and thus give guidance for where further investigations

will be most fruitful. References
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