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Geotechnical Engineering Reliability: How Well Do We Know
What We Are Doing? 1

John T. Christian, Hon.M.ASCE2

Abstract: Uncertainty and risk are central features of geotechnical and geological engineering. Engineers can deal with unce
ignoring it, by being conservative, by using the observational method, or by quantifying it. In recent years, reliability anal
probabilistic methods have found wide application in geotechnical engineering and related fields. The tools are well known,
methods of reliability analysis and decision trees. Analytical models for deterministic geotechnical applications are also widely
even if their underlying reliability is sometimes suspect. The major issues involve input and output. In order to develop appropr
the engineer must understand the nature of uncertainty and probability. Most geotechnical uncertainty reflects lack of know
probability based on the engineer’s degree of belief comes closest to the profession’s practical approach. Bayesian app
especially powerful because they provide probabilities on the state of nature rather than on the observations. The first point in
a model from geotechnical data is that the distinction between the trend or systematic error and the spatial error is a modeling
a property of nature. Second, properties estimated from small samples may be seriously in error, whether they are used prob
or deterministically. Third, experts generally estimate mean trends well but tend to underestimate uncertainty and to be overc
their estimates. In this context, engineering judgment should be based on a demonstrable chain of reasoning and not on spec
difficulty in interpreting results is that most people, including engineers, have difficulty establishing an allowable probability of f
dealing with low values of probability. TheF–N plot is one useful vehicle for comparing calculated probabilities with obse
frequencies of failure of comparable facilities. In any comparison it must be noted that a calculated probability is a lower boun
it must fail to incorporate the factors that are ignored in the analysis. It is useful to compare probabilities of failure for alternative
and the reliability methods reveal the contributions of different components to the uncertainty in the probability of failure. Prob
not a property of the world but a state of mind; geotechnical uncertainty is primarily epistemic, Bayesian, and belief based. T
challenges to the profession are to make use of probabilistic methods in practice and to sharpen our investigations and anal
each additional data point provides maximal information.

DOI: 10.1061/(ASCE)1090-0241(2004)130:10(985)

CE Database subject headings: Failures; Geotechnical engineering; Probability; Reliability; Statistics; Uncertainty analysis
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Introduction

Uncertainty and reliability have a long history in geotechn
engineering. Even before there was a distinct discipline of
technical engineering, engineers who dealt with soils, rocks
geological phenomena knew they were involved in an unce
venture and that they had to provide for untoward developm
They have also been the focus of controversy. One of Terza
most famous early papers(Terzaghi 1929) emphasizes the impo
tance of minor geologic details—that is, features that differ f
the expected or mean conditions. He criticized then cu

1The Thirty-Ninth Terzaghi Lecture presented at the ASCE 2003
Engineering Conference and Exposition, Nashville, Tenn., Novemb

2Consulting Engineer, 23 Fredana Rd., Waban, MA 02468.
Note. Discussion open until March 1, 2005. Separate discussions

be submitted for individual papers. To extend the closing date by
month, a written request must be filed with the ASCE Managing Ed
The manuscript for this paper was submitted for review and pos
publication on November 18, 2003; approved on March 29, 2004.
paper is part of theJournal of Geotechnical and Geoenvironment
Engineering, Vol. 130, No. 10, October 1, 2004. ©ASCE, ISSN 10

0241/2004/10-985–1003/$18.00.
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practice for “… blindly trusting in purely statistical relations w
an extraordinary wide range of deviation to both sides from
average. As most of the textbooks fail to call the attention o
readers to the great uncertainty associated with the rules of d
based on this practice, many engineers engaged in dam d
have an exaggerated conception of the reliability of their met
of procedure and as a consequence, progress in this field
practically to a standstill.” He recommended that designers
sume… the most unfavorable possibilities.”

As the discipline developed, it became clear that it was se
technically or economically possible to design for the most u
vorable possibilities, and Terzaghi himself proposed wha
called the “learn-as-you-go” approach. Peck(1969) codified and
expanded the approach, which he named the “observa
method” and which is now an essential feature of geotech
practice, especially for large or difficult projects. The obse
tional method is a practical way to deal with uncertainty tha
closely related to the techniques of Bayesian updating. The
ronmental management community has developed a similar
nique, called “adaptive management,” in which the design,
struction, and operation of environmental remediation facil
are modified during the course of the project as additional o

vations become available. All of these approaches—the observa-
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tional method, Bayesian updating, adaptive management—re
that the project managers acknowledge uncertainty from th
ginning and that the public accept the existence of uncertain

Although the geotechnical community long ago learned p
tical ways to deal with uncertainty, it has been reluctant to
brace the more formal and rational approaches of reliab
theory while other fields of civil engineering have made m
commitments to probabilistic approaches. Nevertheless, ove
last ten or fifteen years several researchers have made ma
vances in applying probabilistic methods to geotechnical p
lems. The author is indebted to their work and to many dis
sions with most of them. In particular, he acknowledges his
to, in alphabetical order, G. B. Baecher, C. A. Cornell, H
Einstein, M. E. Harr, F. L. Kulhawy, P. Lumb, W. H. Tang,
Vanmarcke, D. Veneziano, S. G. Vick, and T. H. Wu. The pre
work has also benefited enormously from the collaboration
Professor Baecher that went into writing our recently publis
book (Baecher and Christian 2003b). Questions of risk and rel
ability have been the basis of at least three previous Ter
lectures (Casagrande 1965; Whitman 1984; S. Lacasse,
Terzaghi Lecture, unpublished).

Uncertainty in Geotechnical Engineering

Blaise Pascal, the first major contributor to probability theory
out in the 17th century the fundamental principle underlying
liability analysis: “We ought to fear or hope for an event not o
in proportion to the advantage or disadvantage but also with
consideration of the likelihood of the occurrence”(Hacking
1975). Most people find this idea intuitively reasonable.
should concern ourselves with situations that have large c
quences but also with those that are most likely to take p
How to distribute our attention over the full range of insignific
to significant events with small to large likelihood of occurre
is, of course, an essential engineering problem. Put another
much of engineering is about how to deal with uncertainty
though one does not always need to understand uncertai
deal with it.

Geotechnical engineers, like engineers in other discipl
have developed several strategies for dealing with uncert
They include:
1. Ignoring it. While on its face such a head-in-the-sand

proach would seem insupportable, it is surprisingly w
spread. There are many stories of agencies and corpor
that willfully ignored warnings that the assumptions und
lying their decisions were fraught with uncertainty. Sur
one of the earliest involved the British and Dutch gove
ments, who in the 17th and 18th centuries sold annuitie
finance their expenses(usually wars) and dismissed out o
hand the objections of early statisticians that the annu
were actuarially unsound(Gigerenzer et al. 1989).

2. Being conservative. This is an obvious and frequently sou
approach. Rather than get involved in the details of
often undesirable things might happen and what their co
quences might be, the engineer makes the structure or s
so robust that it will resist anything. While this works
many cases, it is usually expensive, it may drag the pr
out to unacceptable completion times, and in some ca
may simply not be possible. Eventually one must ask
conservative is conservative enough.

3. Using the observational method. The observational metho

has established itself as the preferred way for geotechnical
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engineers to deal with uncertainty in situations for wh
simple conservatism is unsatisfactory(Peck 1969). It in-
volves (1) considering possible modes of unsatisfactory
formance or other undesirable developments;(2) developing
plans for dealing with each such development;(3) making
field measurements during construction and operation t
tablish whether the developments are occurring; and(4) re-
acting to the observed behavior by changing the desig
construction process. While the observational method
made it possible to carry out many projects that would h
been impossible under conventional conservative proced
it has limitations. The engineer must have access to th
cision maker if the design or construction sequence is t
changed in mid-project, the usual applications do not
sider explicitly the relative likelihood of the undesirable
currences, and field measurements are expensive. An
factor limiting wider use of both the observational met
and reliability-base approaches is that some regulatory
cies and the public often demand what they consider
tainty at the outset of a project.

4. Quantifying uncertainty. This is the purpose of reliability a
proaches. Quantifying the uncertainty is consistent with
philosophy of the observational method; it might be con
ered a logical extension of the observational method
accommodates modern developments in probabilistic m
ods. It is central to this lecture.

Other disciplines have developed techniques that close
semble the observational method with or without probabil
input. An especially notable case is the already mentioned
tive management approach widely used in environmental
ecological management. Whatever they are called, such me
require carefully thought out programs for field measurem
and explicit determination of what the measurements are go
achieve. Leps(1987) explained

Probably the only reasonable role for monitoring system
to provide confirmation or denial of the routine performa
characteristics anticipated in design. The often discusse
of providing advanced warning of impending failure is,
the present writer’s judgment, simply impractical for sev
reasons, the most important of which being that it is usu
totally impossible to pinpoint where failure may begin. T
second and overwhelmingly important point is that if
actually thinks he knows where failure is most apt to oc
he is completely derelict if he has not provided a de
which would eliminate such possibility.

Perhaps the first significant attempt to document an app
for dealing with uncertainty and risk in geotechnical enginee
was Arthur Casagrande’s 1964 Terzaghi lecture, which was
lished in 1965. He reported that he looked carefully into the
ous definitions of calculated risk that had been proposed ove
years and settled on the following:
1. The use of imperfect knowledge, guided by judgment

experience, to estimate the probable ranges for all pert
quantities that enter into the solution of a problem; and

2. The decision on an appropriate margin of safety, or degr
risk, taking into consideration economic factors and the
titude of losses that would result from failure.
That definition is adopted here.
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Current Geotechnical Applications of Probabilistic
Methods

Although many geotechnical professionals have been relucta
embrace probabilistic methods, the techniques have found
cation in many areas. Prominent among these are

Design, Construction, and Operation of Offshore
Platforms for Petroleum Industry

There is a large literature on the subject, and Suzanne Lac
Terzaghi lecture(S. Lacasse, 2001 Terzaghi Lecture, unpublis)
provides an up-to-date summary of the state of the art. Amon
seminal contributions have been those of Bea(1999) and the
group at the Norwegian Geotechnical Institute(Lacasse an
Nadim 1996).

Studies of Safety of Dams, Dikes, and Embankments

These range from detailed evaluations of the probability of fa
or selection of appropriate factors of safety for particular slo
(Christian et al. 1994; El-Ramly et al. 2003b) to studies of variou
failure modes for dam systems(Von Thun 1996; Vick 2002).
Studies of the stability of specific slopes, or sets of slopes,
erally use one of the methods that lead to a reliability indexb and
a probability of failurepf. The analysis of complete dam syste
usually employs event trees or fault trees. Often the resul
reliability analyses of individual components are used as inp
the branches of the event or fault trees. It is worth noting
some agencies, such as the U.S. Bureau of Reclamation an
Hydro, have embraced probabilistic safety analysis of their d
to the extent that it can be carried out defensibly, while oth
such as the U.S. Federal Energy Regulatory Commission, re
adamantly opposed to probabilistic analysis. Other agencie
tably the U.S. Army Corps of Engineers, have adopted pol
that fall somewhere between these two positions.

Probabilistic Seismic Hazard Analysis

Today almost all estimates of seismic hazard, whether deve
for a specific project or presented in the form of maps for us
developing building codes, are based on probabilistic approa
Most analyses use the basic approach developed by C
(1968), often with considerable elaboration to incorporate
elicitation of expert opinion(Budnitz et al. 1997, 1998). Although
these analyses provide probabilistic descriptions of the se
hazard, it is ironic that the results are usually used determi
cally in subsequent engineering analyses.

Mining

Designs of open pit mine slopes and underground excava
have always involved tradeoffs between cost on the one han
reliability on the other. Hoek(1998) provides a brief exposition o
reliability methods suitable for underground openings. Riela e
(1999) and Calderon et al.(2003) describe the application of r
liability methods for studying the stability of open pit mines.

Nuclear Waste Repositories

Probabilistic estimates of potential future behavior of the w
repositories have been central to their evaluation. There is a
literature on the subject(U.S. Nuclear Regulatory Commissi

1975).

JOURNAL OF GEOTECHNICAL AND GEO
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Limit State Design or Load and Resistance Factor
Design

These methodologies represent attempts to apply probabilis
based methods to routine design procedures. They have bee
successfully in structural engineering, but their application in
technical engineering, especially foundation engineering,
been controversial. A great deal of research is underway
there has been much discussion between researchers and
tioners. This is a topic that deserves extensive treatmen
space and time do not permit further discussion here.

Tools of Reliability Analysis

The tools available to the engineer for performing a reliab
analysis fall into three broad categories. First are the metho
direct reliability analysis. These propagate the uncertaintie
properties, geometries, loads, water levels, etc. through ana
models to obtain probabilistic descriptions of the behavior
structure or system. The second includes event trees, fault
and influence diagrams, which describe the interaction am
events and conditions in an engineering system. The thir
cludes other statistical techniques. In particular, some prob
are so poorly defined that it is useless to try to formulate mec
cal models and the engineer must rely on simple statistics
amples are extrapolation of landslide incidence in broad area
studies of the behavior of Karst terrains. In practice, analysis
specific system or structure usually involves a combinatio
methods appropriate to the problem at hand. Baecher and
tian (2003b) provide detailed descriptions of how these te
niques operate.

Direct Reliability Analysis

If there are a loadingQ and a resistanceR, the margin of safetyM
is

M = R− Q s1d

If both Q andR are uncertain, so isM (Fig. 1). Elementary prob
ability theory then provides that the meanssmd and the standar
deviationsssd are related by

mM = mR − mQ

s2d

Fig. 1. General configuration in which loadQ and resistanceR are
uncertain, where both have normal distributions, but that is not
essarily always case
ENVIRONMENTAL ENGINEERING © ASCE / OCTOBER 2004 / 987
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sM
2 = sR

2 + sQ
2 − 2rQRsRsQ

in which rQR=correlation betweenQ and R. If Q and R are no
correlated, the last equation reduces to

sM
2 = sR

2 + sQ
2 s3d

It is often more convenient to work with the logarithms ofQ and
R. Then the factor of safetyF is the ratioR/Q, so

ln F = ln R− ln Q s4d

Since this is similar to Eq.(1), we can work with the logarithm
of the variables provided we use lnF and the logarithms of th
variables. It is customary to definel andz as the mean and th
standard deviation of the logarithms of a variable. It follows t
for any distribution(Aitchison and Brown 1969)

z2 = lnS1 +
s2

m2D
s5d

l = ln m −
1

2
z2

The essence of reliability methods is to recognize that the c
tion M =0 (or ln F=0) corresponds to failure, so the problem is
find the probability thatM ø0. As illustrated in Fig. 2, we no
define a reliability indexb as

b =
mM

sM
s6d

Fig. 2. Distribution of margin of safetyMs=R−Qd: (a) probability
density function and definition of reliability indexb; (b) cumulative
distribution function. Probability of failure is shaded area in(a) and
intersection of cumulative distribution function with vertical axis
(b).
It follows that, if we are working with uncorrelated variables

988 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINE
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b =
mR − mQ

ÎsR
2 + sQ

2
s7d

or, for the case of the logarithms of uncorrelated variables

b =
lR − mlQ

ÎzR
2 + zQ

2
=

lnfsmR/mQdÎs1 + VQ
2 d/s1 + VR

2dg
Îlnfs1 + VR

2d/s1 + VQ
2 dg

s8d

in which V s=s /md=coefficient of variation. As Fig. 2(a) shows
the probability of failure is the area under the probability den
function of M lying to the left ofM =0.

Now, if Q andR are both Normally distributed, so isM. Then
it follows that the probability of failure is

pf = Fs− bd s9d

whereF=cumulative distribution function(CDF) of the standar
normal distribution andb is defined by Eq.(7). If Q and R are
lognormally distributed, so isM, and Eq.(9) again applies, onl
with b defined by Eq.(8). In the past, evaluating the CDF
quired interpolation in tables, but today the CDF is a library fu
tion in spreadsheets and in mathematical software package
Mathcador Matlab.

While the model described by Figs. 1 and 2 and Eqs.(7)–(9) is
conceptually straightforward, calculating the various means
standard deviations is anything but simple. Furthermore, dis
tions other than normal or lognormal arise often in practice
situations where finite minimum and maximum values exist,
of the Beta distributions may be appropriate; problems invol
recurrence of events usually lead to distributions like the e
nential or Poisson. Methodologies based on normal or logno
distributions must be modified when other distributions exist
the underlying theory remains similar even while the details
come more complicated.

Several methods for dealing with reliability models h
evolved over the years:

First Order Second Moment Methods
The idea here is that, if we know the means and the variance(the
second moments) of the variables that enter into the evaluation
a function such asM, we can estimate the mean and varianc
M using only first order terms in a Taylor expansion(Cornell
1969)

mM < Msmx1
,mx2

, . . . ,mxn
d

s10d

sM
2 < o

i=1

n S ]M

]xi
D2

sxi

2

in which the xi =uncertain variables. Eq.(10) applies when th
variables are uncorrelated; a somewhat more complicated e
sion is used when some of the variables are correlated. Whe
difficult to evaluate the partial derivatives directly, central divi
partial differences usually provide sufficient accuracy.

First Order Reliability Method
One shortcoming of the first order second moment(FOSM) ap-
proach is that the results depend on the particular values o
variablesxi at which the partial derivatives are calculated.
sofer and Lind(1974) proposed to resolve this difficulty by eva
ating the derivatives at the critical point on the failure surf
Finding this point usually requires iteration, but the process t
to converge rapidly. If the variables are all normalized by divid

them by their respective standard deviations, the distance between
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the failure point and the point defined by their normalized m
is the reliability indexb. This method assumes normal distri
tions and must be modified to accommodate other distributi

Point–Estimate Methods
The variance of a function—or any of its moments—is essen
the result of integration. Rosenblueth(1975, 1981) proposed tha
an accurate approximation is obtained by evaluating the fun
M at a set of discrete points and using those values to com
the desired moments. In practice, for uncorrelated variables
points are usually taken at plus or minus one standard dev
from the mean of each of the variables. Other schemes c
used, especially when the variables are correlated or skewed
method is a form of Gaussian quadrature(Christian and Baech
1999).

Monte Carlo Simulation
Monte Carlo simulation enjoys a long history and a rich literat
Each continuous variable is replaced by a large number o
crete values generated from the underlying distribution; these
ues are used to compute a large number of values of functiM
and its distribution. The large numbers of computations once
sented a constraint on the use of this method, but cheap m
computers have largely removed this obstacle. There are als
eral serious questions of convergence and of randomness
generated variables. Several so-called variance reduction sc
can be effective in improving convergence and reducing com
tational effort. Fishman(1995) provides one of many treatmen
of the method. Monte Carlo simulation with variance reductio
particularly helpful in improving the accuracy of first order r
ability method(FORM) results(Baecher and Christian 2003b).

Others
Perhaps the most significant methods other than those ju
scribed are the second order second moment and second
reliability method, which provide higher order approximati
than those underlying FOSM and FORM. While these have fo
some applications in structural reliability studies, they have
found much application in geotechnical work.

Event Trees, Fault Trees, and Influence Diagrams

Event trees, fault trees, and influence diagrams are techniqu
describing the logical interactions among a complex set of ev
conditions, physical parameters, and physical states. In this
text, there is no logical difference between an “event,” such a
occurrence of an earthquake or of a large storm, and a “c
tion,” such as the existence of a liquefiable layer of soil or
presence of erodible material in an earth dam.

Event trees(Fig. 3) start with an initiating event, such as, s
the occurrence of an earthquake. Then the analyst develops
of events that could follow; say the peak ground accelera
could fall within a certain range. Associated with each range
conditional probability; for example, for the range 0.05–0.1
the conditional probability could be 25%. These events mu
exhaustive—that is, all possible outcomes are included—
exclusive—that is, no possible result could fall within more t
one outcome. The analysis then proceeds along each p
evaluate the next outcomes, and so on and so forth. At each
the probabilities are conditional; that is, they are the probabi
of the current event if all preceding events in that branch
occurred. At the end of the tree, the probability of each outc

is simply the product of the conditional probabilities. Event trees
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r

t

have been used to study the reliability of dams(Vick and Stewar
1996; Von Thun 1996), tank farms on liquefiable soil(T. W.
Lambe & Associates 1982, 1989), and other engineered syste

Fault trees(Fig. 4) start with the failure and work backwa
The tree contains the conditions that must be met for the failu
occur. There are two basic situations. If all the conditions mu
met, they are connected to the event by an “and” gate; if the
will occur if one or more of the conditions are met, they
connected by an “or” gate. The analyst develops the tree from
top down, moving from condition to condition. In the usual
mulation, the conditions at each stage must be independen
must encompass all the conditions that could lead to the
stage. To compute the probability of failure, the analyst w
from the bottom up. The effect of an “and” gate is that the p
ability of occurrence of a stage is the product of the probabi
for events feeding into the gatesp=p1p2¯pnd. The effect of an
“or” gate is that the probability of occurrence of a stage
minus the product of the probabilities of nonoccurrence of
events leading into the gatefp=1−s1−p1ds1−p2d¯ s1−pndg.
Fault trees have also been used in geotechnical practice(Van Zyl
et al. 1996).

The influence diagram(Fig. 5) displays the relations betwe
various events and conditions in a system. The direction o
arrows and other conventions represent the dependencies b
the objects.

Other Techniques

Many other statistical and probabilistic tools exist, and most
find some applications in geotechnical engineering. One im
tant case arises when the mechanics of a problem are not
stood well enough to permit detailed modeling. The deta
mechanisms of failures of slopes along highway rights of wa
in a Karst terrain are not really responsive to conventional s
stability analysis. The probability of failure is best estimated
compiling statistics on the numbers and magnitudes of fai
that have been observed over time and developing a proba
distribution that describes the observations.

Requirements for Reliability Analysis

An engineer faced with the task of evaluating the reliability
facility, structure, or system must address four issues: the n
of the input uncertainties, the methodology for reliability analy

Fig. 3. Simple, generic event tree. Tree for actual situation w
have many more branches(U.S. Nuclear Regulatory Commissi
1975)
the geotechnical analytical models, and interpreting the output.
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The previous sections contain a brief description of the techn
for reliability analysis—techniques that are well established
thoroughly described in the literature. In general, the method
gies for reliability analysis are robust, their strengths and lim
tions well established.

The tools of geotechnical analysis for most practical prob
are also well known. While some are well founded in theory
practice and will introduce little model error into the reliabi
calculations, others have large—and largely unknown—er
For example, the widely used shallow bearing capacity equa
depend on some dubious assumptions about plastic strains
ciated with the Mohr–Coulomb yield equation and on combin
minimal solutions for three different factors(Christian and Urzu
1996). Furthermore, each of these factors is multiplied by u
five correction factors to account for shape and eccentricity

Fig. 4. Fault tree for analysis of dam brea

Fig. 5. Influence diagram for two-stage exploration decision, b
on forthcoming Canadian Electricity Association Guide to D
Safety Risk Management
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 J. Geotech. Geoenviron. Eng., 2
-

clined loading, depth of embedment, base tilt, and ground
(Meyerhof 1953, 1963; Vesic 1973, 1975). The uncertainties an
ranges of validity in the three basic factors and fifteen corre
factors are poorly understood, and it is far from clear that m
plying them together gives accurate results. Serious question
be raised about the errors introduced by many other com
analytical models. Suffice it to say that anyone using an anal
tool should be aware of the potential for error due solely to
inadequacies of the model.

Attention will now be directed at the first and fourth of
requirements for reliability analysis: input and output. The dis
sion of input requires some introduction to the meanings o
certainty and probability and the difficulties involved in desc
ing what we know. The discussion of output centers on ho
understand what the output means and what can be learned
its details.

Input—What are Uncertainty and Probability?

The input to any reliability analysis includes descriptions of
relevant parameters describing physical properties, loads, an
ometry and of their uncertainties. Usually these are in the for
means and variances or standard deviations or probabiliti
occurrence. However, before the engineer seizes values
probabilistic parameters and leaps into the mechanics of a
ability analysis, he or she should have some understanding
issues that have been raised about the nature of uncertain
probability and how these issues affect the way one deals
uncertainty. Many of these issues arise again in interpretin

due to overtopping(after Parr and Cullen 1988)
ching
output of a reliability analysis.
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Nature of Uncertainty

What exactly do we mean when we say that something is u
tain? Do we mean that the thing occurs at random in some
predictable way, like the roll of a set of dice? That is, is the th
so unpredictable that additional knowledge or analysis will
affect our ability to estimate it?1 This type of uncertainty is no
known as aleatory, after the Latin word for gambler or d
thrower (Hacking 1975). Alternatively, we might mean that th
thing is uncertain only in the sense that we do not know en
about it. For example, after a deck of playing cards is shuffled
arrangement of the cards is fixed but unknown. We could disc
the arrangement by simply examining each card in turn. How
that is precisely what we are not allowed to do, so the strate
a game such as Bridge is to discover the arrangement by o
vation and induction. The uncertainty is due to lack of knowle
This type of uncertainty is called epistemic, after the Greek w
for knowledge(Hacking 1975). Table 1, based on a table co
piled for analysis of flood risk(National Research Council 199),
presents seven pairs of alternate definitions proposed ove
years(Baecher and Christian 2003b). The words “aleatory” an
“epistemic” have achieved wide circulation and application
they will be used here.

It will immediately be clear that the problem of establish
the geometry and properties of geologic deposits is closer to
of determining the arrangement of a deck of cards than it
predicting the throw of a set of dice. Jensen(1997) was one of th
first to point out the analogy between the configuration of
logic formations and the order of cards in a deck. In effect,
problem facing the geotechnical or geological enginee
epistemic rather than aleatory; it follows more from a lack
knowledge about materials and geometries than from inh
randomness in them.

Aleatory and epistemic uncertainties must be treated d
ently. If something is uncertain in the epistemic sense, the u
tainty may be reduced by additional information. Closer atten
to the bidding and play of the hand in Bridge or additional ex
ration and testing in geotechnical engineering may reduce
epistemic uncertainty. It may not eliminate it, and the cos
reducing it below some level may not be worth it, but, in gene
more information tends to reduce epistemic uncertainty. C
versely, more information will not reduce aleatory uncerta
although it may establish more precisely the parameters go
ing that uncertainty. Veneziano(1995) has described the implic
tions of the distinction between aleatory and epistemic un
tainty and how these affect the trade-offs that must be ma

Table 1. Terms Used in Literature to Describe Dual Meaning of Un

Uncertainty due to naturally
variable phenomena in time
or space

Uncertain
knowledge

of

Aleatory uncertainty Episte

Natural variability Knowled

Random or stochastic variability Funct

Objective uncertainty Subjec

External uncertainty Intern

Statistical uncertainty Induc

Chance P
analysis.
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Meaning of Probability

The mathematical theory of probability is an algebra that ca
derived from three simple axioms

PfAg ù 0

PfAg = 1 meansA is certain s11d

PfA ø Bg = PfAg + PfBg if A andB are mutually exclusive

However, none of this describes what probability is. Doe
describe the relative frequency with which something happ
Or does it describe the degree of belief that something happe
exists? The relative frequency view implies that there is s
underlying frequency with which things happen and that repe
trials or experiments will reveal it. The degree-of-belief view
gues that most important questions do not admit of repeated
and that most practical applications of probabilistic methods
ploy probability as a measure of confidence in an uncertain
come. The frequentist argues that probability is inherent in
state of nature and that the analyst’s job is to estimate it.
adherent to the degree-of-belief school argues that probabi
in the mind of the individual and the analyst’s job is to elicit

It should be noted that it is possible for the two approach
apply to the same transaction. The insurance company pric
products as a frequentist. It employs actuaries to calculat
rates of occurrence of various events from observed freque
Indeed, it has great difficulty pricing insurance for an even
which it does not have much actuarial data. On the other han
purchaser of insurance buys it on the basis of his or her deg
belief. Each of us has one life and a limited number of hou
cars, businesses, and so on. Our decisions whether to buy
ance, how much, and what sort are informed by our own pa
lar circumstances, the exposure we are willing to undertake
the steps we have taken to minimize risk. Thus, the insur
company is a frequentist, and we are degree-of-beliefers.

When the geotechnical engineer processes laboratory
from many tests to obtain estimates of the properties of geolo
materials, the engineer is acting like a frequentist. The resul
often expressed as means and standard deviations, and the
implication that the distributions of properties observed in
laboratory apply in the field. However, when carrying out an
ploration program, geotechnical engineers are trying to sha
their degree of belief in a model of the geologic conditions a
site. The author would argue that, in geotechnical engineerin
most important issues involve the engineer’s degree of b

ty, after Baecher and Christian(2003b)

to lack of
derstanding
e Reference citation

certainty Hacking 1975; McCann 1999

certainty National Research Council 200

ncertainty Stedinger et al. 1996

ncertainty Chow et al. 1988

ertainty Chow et al. 1988

obability Carnap 1936

lity Poisson, Cournot(Hacking 1975)
certain

ty due
or un
natur

mic un

ge un

ional u

tive u

al unc

tive pr

robabi
especially when engineering judgment is employed.
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Frequentist versus Bayesian Statistics

One outgrowth of the historical arguments between freque
and degree-of-belief schools of probability is the distinction
tween frequentist(or classical) and Bayesian statistics.2 Frequen
tist or classical statistics are described in most statistics textb
and college courses. The essential thrust of classical statistic
answer the question, “If a particular hypothesis is true, what i
probability that the data I have before me could have been
erated?” In other words, it addresses the probability of the
given the state of nature, or, in mathematical nota
P[dataustate of nature]. Geostatistics, logistic regression, and
criminant analysis are examples of classical statistical met
Fig. 6 shows the 20% curves resulting from discriminant
logistic regression analysis of the modified ground acceler
and standard penetration data for liquefaction and nonliquefa
cases used by Christian and Swiger(1975, 1976).3 The results ar
nearly identical, as they should be. Users first coming acros
type of plot are inclined to believe that a site whose data
below and to the right of the line has a 20% probability of liq
faction. This is precisely the wrong interpretation. The ac
meaning of the plot is that, if a new site were to liquefy during
earthquake, there is 20% probability that its data would fall be
and to the right of the curve. Similarly the probabilities associ
with locations of curves in a geostatistical analysis are no
probabilities that the lines are located correctly but the proba
ties that the data used in the analysis would be observed
lines were correct(Baecher and Christian 2003a).

Bayesian analysis addresses the converse question, “If I
before me a set of data, what is now the probability that my v
of the subject is true?” That is, it gives the probability of the s
of nature given the data, or, in mathematical notation,P[state o
natureudata]. The approach was first proposed by the Reve
Thomas Bayes in 1763 and independently discovered by Ma
Pierre Simon de Laplace in 1782(Gelman et al. 1995). Bayes
received the credit, but the version of the theory now comm
used is due to Laplace.4 Sivia (1996) and Gelman et al.(1995),
among others, have written excellent introductions to Baye

Fig. 6. Cyclic stress ratio versus normalized blow counts, insta
of liquefaction and nonliquefaction, and 20% separation lines d
mined by discriminant analysis(solid line) and logistic regressio
(dashed line). Data are taken from database used by Christian
Swiger (1975, 1976).
analysis.
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 J. Geotech. Geoenviron. Eng., 2
Bayesian analysis starts with a prior probability or prior p
ability distribution; that is, the analyst must first estimate the
of nature before the new data are introduced. The data then
vide an update to the probability of the state of nature. Additi
data make possible further updates and better estimates
state of nature. The basic idea is an extension of Jacques Be
li’s comment, “Even the stupidest of men, by some instinc
nature, is convinced on his own that with more observation
risk of failure is diminished.”(Bernoulli 1713) As De Finett
(1972) wrote: “Data never speak for themselves.” They only
us how to update what we thought before we saw the data to
we logically think afterwards. The procedure is most easily
plained by a simple example that nonetheless illustrates so
the insights that arise from Bayesian analysis.

Consider the problem of determining whether a liquefi
zone exists under a proposed facility.5 The field data are based
results of either the standard penetration test or cone pene
test, and the design earthquake has been specified in advanc
questions to be answered are
• What is the probability that a liquefiable zone exists?
• How is this probability affected by the results of succes

borings?
• Are more borings justified?
Let the probability of finding the zone, if it exists, be 0.3 for a
one boring; hence the probability of not finding it, if it exists
0.7. Also, it is possible to get a false positive when no liquefi
zone exists, so let the probability of the false positive be 0
This implies that the probability of not finding it if it does n
exist is 0.95. IfF indicates that the zone is found,E indicates tha
the zone exists, and a superposed bar indicates the compl
then the conventional probability notation is

PfFuEg = 0.3 PfF̄uEg = 0.7
s12d

PfFuĒg = 0.05 PfF̄uĒg = 0.95

The basic form of Bayes’ Theorem states that, if there is s
prior estimate of the probability that the zone exists,P0fEg, the
posterior probability that it exists if the zone is “found” in o
boring, P1fEuFg, is

P1fEuFg =
PfFuEgP0fEg

PfFuEgP0fEg + PfFuĒgP0fĒg
s13d

The posterior probability that it exists if it is not found in o
boring is

P1fEuF̄g =
PfF̄uEgP0fEg

PfF̄uEgP0fEg + PfF̄uĒgP0fĒg
s14d

Now, let us suppose that we are of two equal minds about wh
or not the zone exists; we really do not know and would no
surprised to find that it does or does not exist. This is equiv
to

PfEg = PfĒg = 0.5 s15d

Further, let the result of the first boring be that it “finds” the zo
but this could be a false positive. We want the probability tha
zone exists if the boring seems to find it. Inserting the approp

numbers into Eq.(13) gives
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P1fEuFg =
s0.3ds0.5d

s0.3ds0.5d + s0.05ds0.5d
= 0.86 s16d

which indicates a sharp increase in the degree of belief tha
zone exists. If the boring had not found the zone, Eq.(14) would
give

P1fEuF̄g =
s0.7ds0.5d

s0.7ds0.5d + s0.95ds0.5d
= 0.42 s17d

indicating that the degree of belief in the existence of the zon
decreased, but not by much.

As results from additional borings are obtained, the probab
of existence of the zone can be updated by treating the pos
result of the previous updating as the prior result for the next.
7 shows all possible results for three borings when the initial
probability of existence is 0.5. Fig. 8 shows the correspon
results when the initial probability is 0.25. Four observations
conform to our intuitive experience are apparent:
1. The order of the results makes no difference;
2. Two or three positive results lead to near certainty tha

zone exists for this set of parameters;
3. Two or three negative results reduce the belief that the

exists, but not by much; and
4. As more data accumulate, the probabilities move from

prior assignment to values that reflect the data more stro

Fig. 7. Posterior probability of existence of liquefiable zone by Ba
sian updating on basis of three borings when initial prior probab
is 0.5. At each fork upper branch corresponds to “find’ and lowe
“not find.”

Fig. 8. Results for same analysis as that represented by Fig. 7 e
that initial prior probability is 0.25
JOURNAL OF GEOTECHNICAL AND GEO
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The analysis can be repeated for a range of initial prior p
abilities, with the results plotted in Fig. 9. The horizontal a
represents the initial probability; the vertical axis is the ultim
posterior probability after three borings. The four lines co
spond to the four possible outcomes: three, two, one, or no
Again, if there are two or three hits, the data overwhelm the
probabilities. If there are one or no hits, there is an effect on
posterior probabilities, but it is not nearly so strong. In partic
failure to find the zone in three borings does not lend much
port to the belief that the zone does not exist. This conforms t
not-uncommon experience of encountering undesirable cond
during construction despite the exploration programs carrie
during design.

Estimating Geotechnical Properties

A central problem facing the geotechnical engineer is to esta
the properties of soils and rocks that will be used in anal
whether that analysis is probabilistic or deterministic. Fig. 10
plot of the soil profile for one section of the James Bay d
(Christian et al. 1994). An engineer wishing to estimate the va
shear strength of the Marine Clay(the middle layer) would be
justified in choosing a value that was constant with depth an
approximately at the mean of the measured data.(Of course, th
value should be corrected for the effect of the plasticity index
that is another issue.) The engineer would make such a cho
regardless of whether the strength was to be used determ
cally or probabilistically. There is some scatter about the me
the data. The situation for the Lacustrine Clay(the lowest layer) is
not so straightforward. The vane shear strength varies with d
so there would be substantial scatter about a constant mean
The engineer might choose a description of the strength tha
ied linearly with depth, or maybe a more complicated trend
such as a sine wave would be appropriate. The data woul
closer to the trend line, so the scatter about the trend wou
reduced. Unfortunately, the uncertainty in the location of the t
is correspondingly increased. The scatter about the trend l
called data scatter, and the uncertainty in the location of the
is called systematic error. The choice of the shape and locat
the trend line is not an artifact of nature; it is a modeling deci
made by the engineer. Thus, the separation between data
and systematic error is also a modeling decision. This is true

Fig. 9. Posterior probabilities of existence of liquefiable zone ve
initial prior probabilities after three borings for all possible ini
priors and all outcomes of boring program
if the results are used entirely deterministically. Put another way,
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the model for soil properties is a choice made by the modele
is not a simple reflection of the realities of nature.

Fig. 11, also from Christian et al.(1994), depicts the di
chotomy between data scatter and systematic error. It show
data scatter can be further divided into actual spatial or tem
variation and random measurement error. It is desirable to re
the random measurement error from further analysis. The
common ways to do this are the method of moments and
method of maximum likelihood estimators, which have been
scribed in detail by De Groot and Baecher(1993). The systemati
error can also be divided into systematic error in the trend
bias in the measurement procedures. The classic example
latter is the correction to the vane shear data to account fo
plasticity index of the clay(Bjerrum 1972; Terzaghi et al. 1996).

It is important to bear in mind that data scatter and system
error have different effects on a reliability analysis. In many p
lems, such as conventional slope stability analyses in whic
contributions of shear strength are summed along a failure
face, the scatter in the value of the shear strength averages
nearly does so. The contribution of the scatter in the s
strength to the uncertainty of the result is thus greatly reduc
the geometry of the problem gets larger(Christian et al. 1994
El-Ramly et al. 2002, 2003a; Duncan et al. 2003). On the othe
hand, the systematic error propagates throughout the ana

Fig. 10. Soil profile for James

Fig. 11. Conceptual separation of uncertainty into its component
geotechnical applications(Christian et al. 1994)
994 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINE
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t

r

.

There are other situations, such as those governed by a
plane of weakness or potential seepage path, in which the
the volume the more likely the critical feature is to be found
such cases the data scatter does not average out and is
important than the systematic error.

Another problem arises from the use of small numbers o
results. Much of statistical theory is based on the Law of L
Numbers, which can be summarized in a mathematically
rigorous way by the statement that, if there is a large en
number of data points, statistical properties can be estimated
an arbitrary degree of accuracy. In the real world, and certain
geotechnical engineering, there are often far from enough d
satisfy the conditions of the Law of Large Numbers. Tversky
Kahneman(1971) observed that, despite the fact that people o
do not have enough data to make valid inferences, they beha
though they did. They called this the “Law of Small Numbe
Consider a data set consisting of six values of shear wave v
ity: 229, 224, 229, 217, 200, and 241 m/s. For these dat
sample mean is 223 m/s, the standard deviation is 13.9 m/s
the standard error of the mean is 5.7 m/s. In fact, these ar
measured values, but the first six values created by a ra
number generator from an underlying normal distribution
mean of 240 m/s and standard deviation of 24 m/s. Fig. 12
pares the underlying distribution with a normal distribution
ferred from the observed values. It is clear that the infere
drawn from the small sample of six values are not valid. Un
tunately, the same problem of inadequate numbers of data
in many geotechnical problems, except that the underlying d
bution is not known. Basing estimates of geotechnical prope
on small numbers of data points, which is the case in many
technical projects, can lead to significant and unknown bias
those estimates. This is true regardless of whether the esti
are used in probabilistic or deterministic analyses.

Statistical sampling theory provides some guidance when
is dealing with small numbers of data points. A well-known re
is that the standard error of the mean or the standard deviat
the estimate of the mean equals the standard deviation o
sample divided by the square root of the number of data po
However, this applies only in a statistical sense. In the pre
example, the standard error is 5.7. It is clear, however, tha

dikes, after Christian et al.(1994)
Bay
actual mean of the underlying distribution does not fall within the
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range 223±6 m/s. The actual results in a specific case ma
conform to statistical expectations. Anomalies can and do o

Expert Elicitation and Engineering Judgment

In view of the limited number of field and experimental d
usually available, the geotechnical engineer often has to re
the opinions of experts and engineering judgment to establis
values and ranges of engineering properties. Obtaining rel
information from experts, or, to use the technical term of
“elicitation” of expert opinion, has been the subject of exten
study in the management and psychological communities.
gan and Henrion(1990) and Vick (2002) provide accessible sum
maries of the issues. These can become quite complicated, s
elicitation of expert opinion is seldom the straightforward pro
imagined by those who have never worked on it. As evidenc
this statement, the Senior Seismic Hazard Analysis Comm
report (Budnitz et al. 1997) dealing largely with eliciting expe
input for seismic hazard analysis runs to 256 pages plus s
appendices totaling over 850 additional pages. The utility o
methodology is called into question by the need for such vol
nous explication.

The first problem is identifying an expert. Who is an exp
and how well qualified is the expert? Obviously, the expert’s
opinion of his or her own worth may be too high or too low,
procedures have to be developed to establish the range
expert’s expertise. Furthermore, an expert trained in one d
pline may not appreciate the statistical implications of an opin
Some feedback and iteration is needed to address this probl
one of the early probabilistic seismic hazard evaluations f
nuclear facility, one of the evaluators for the U.S. Nuclear R
latory Commission asked one the experts on seismicity, “Do
realize that your model implies that there ought to be a magn
5 earthquake or higher at the plant boundary every 10 years?
expert replied that he was not aware of the implication and
not believe that such a series of events would occur. The tw
them then worked out a probabilistic description of the seism
that was more consistent with the expert’s real opinions abou
seismicity. In a basic sense, the expert had not understoo

6

Fig. 12. Actual underlying probability distribution function for she
wave velocity example and normal distribution estimated from
data points
question he was being asked.
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The literature on eliciting expert opinion generally arrive
two conclusions. First, real experts tend to be good at estim
mean or median values or trends. That is, they get the exp
values right. Furthermore, the average of the opinions of se
experts tends to be even better. Second, experts are usua
confident in their estimates and tend to underestimate the u
tainty in their estimates.

The last points are illustrated nicely by results published
Hynes and Vanmarcke(1976). An embankment had been bu
north of Boston, Mass., for a highway project that was later a
doned. In 1974 a team from the Massachusetts Institute of
nology placed additional fill on the embankment to bring i
failure in conjunction with an international workshop at wh
seven acknowledged experts were invited to make predictio
the behavior of the embankment. Each was asked to predic
much additional fill it would take to cause the embankment to
and to provide a range within which the expert’s confidence o
failure was 50%, also known as the interquartile range Th
sults, modified from Hynes and Vanmarcke’s paper, are in sh
Fig. 13. The large square points are the experts’ best estim
the vertical lines are the interquartile ranges. The dashed
represents the actual amount of fill that caused failure, 18
The average of the seven experts’ best estimates was 15.6 f
is a good estimate of the actual event, especially since the c
parameter leading to failure is the total height of the embankm
not the last increment. However, the figure also shows that
case did the actual amount of fill to cause failure fall within
expert’s 50% confidence limits. Pure chance would predict th
the 50% confidence estimates really represent the uncertain
the experts’ judgments, half the vertical lines(i.e., 3 or 4) would
intersect the observed value of 18.7 ft. Thus, the experts
formed well on the average, but each expert was too confide
his own estimate.

Fig. 14 shows the results when the audience was ask
estimate the required additional fill. Twenty-six people subm
estimates. Once again, the best estimates were distribute
proximately evenly about the actual result, but in this case six
of the 50% confidence estimates intersected the observed
Thus, the audience, which had much less time to do its w
managed to include the correct value within the interqua
range 62% of the time. In this case, the experts performed
well than their audience. It is not clear why this is so. The in
quartile rages in Figs. 13 and 14 are approximately equal, s
experts and the audience were equally confident of their
mates. The reason for the better performance of the aud
cannot be that it was more humble and less confident. Since
were no detailed studies of the psychology of the experts o
dience, the reason for the discrepancy must remain a myste

Another interesting result appears in Fig. 15. The seven
perts were asked to provide, in addition to the interquartile ra
the minimum and maximum values of the additional height of
In only three cases did the actual additional height of fill
within an expert’s minimum to maximum range. In many ca
the minimum to maximum range is virtually identical to or l
than the interquartile range. Hynes and Vanmarcke conclude
is clear that there are wide differences among engineers i
way they interpret the terms “minimum” and “maximum.” Th
widely used terms are essentially meaningless unless rela
relative likelihood or probability.”

Kondziolka and Kandaris(1996) described another study
expert elicitation in geotechnical engineering. Nine enginee
various degrees of expertise were asked to design six transm

tower footings against uplift, and the footings were then built and
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tested to failure. The design capacity is designatedP, and the
actual failure loadQ. Fig. 16 presents the results in terms ofP/Q
for each designer. The square points are the averages over
footings, and the lines indicate the range of results. A valu
P/Q of unity indicates exact prediction of the actual result; va
less than unity are conservative in the sense that the pre
capacity is less than that observed. Kondziolka and Kan
numbered the designers in decreasing order of average goo
of their predictions. Except for the first three designers,
tended to be quite conservative. The range of values ofP/Q for
each designer is large. For example, the range for the be
signer, number 1, is from 0.67(33% conservative) to 1.2 (20%
unconservative). Table 2 presents the experience and educatio
the participants. It is not clear how this information correla

Fig. 13. Seven experts’ estimates of additional height of fill to ca
vertical bars are their 50% confidence bounds(Hynes and Vanmark

Fig. 14. Audience’s estimates of additional height of fill to ca
estimates, and vertical bars are their 50% confidence bounds(Hynes
996 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINE
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with a particular designer’s performance. The two best perfor
had 14 and 30 years of experience, respectively, but the wor
22. Designers with advanced degrees fell into Positions 4–8
general rule, the more boxes checked in Table 2, the bette
designer performed. However, the third best designer had lim
experience and no advanced degrees. One of the lessons
learned from this example is that it is difficult to predict an
pert’s performance on the basis of credentials and experien

These and similar results are relevant to the question of
much reliance should be placed on engineering judgment. T
are those who argue that, in the last analysis, judgment is the
for all geotechnical engineering and that, from the start of
careers, engineers should be encouraged to use it. Others
that judgment must be based on something other than intu

ailure of I-95 embankment. Square points are experts’ best esti
6.

ilure of I-95 embankment. Square points are audience mem
Vanmarke 1976).
use f
e 197)
use fa
and
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For example,(Hartford 2000) proposes that engineering judgm
must be based on a chain of reasoning explicitly laid ou
inspection. Studies like the two just described and the literatu
expert elicitation indicate that good judgment requires not
knowledge and experience but also evaluated experience.
requires that the engineer be able to demonstrate how the
chain of reasoning led to the conclusions. That is, it requires
the expert not only have devoted time and effort to learn the
at hand but also have studied the results of earlier prediction
evaluated what worked and what did not.7

Selecting Parametric Values

The above examples suggest certain conclusions about se
parametric values, whether they will be used in probabilisti
deterministic analyses. Among these are:
1. Dividing uncertainty between spatial and systematic com

nents is fundamentally a modeling choice and not a fa
nature.

2. Spatial and systematic uncertainties contribute different

ailure of I-95 embankment. Square points are experts’ best esti
marke 1976).

r Foundation Uplift Project, after Kondziolka and Kandaris(1996)

Designer

3 4 5 6 7 8 9

— x — — — — —

— x x x x — —

x — — — — — —

x x x x — — —

— x x x x — x

x x x x x — x

x x x x — — —

x x x x x x —

— x x x x x —

— x — — x — —

8 5 10 10 5 0 22
Fig. 16. Ratio of predicted uplift capacitysPd to measured upli
capacitysQd for six transmission tower foundations evaluated by
designers. Each square point represents average of six values oP/Q
for each designer. Vertical bar represents range of each desi
results. Plotted from results presented by Kondziolka and Kan
(1996).
Fig. 15. Seven experts’ estimates of additional height of fill to cause f
vertical bars are their minimum and maximum estimates(Hynes and Van
Table 2. Experience and Education of Participants in Transmission Towe

Experience or education 1 2

Previous full scale uplift test experience x —

Previous uplift foundation design experience x x

Transmission line tower project experience x x

Regional geotechnical design experience x x

Previous involvement with geotech investigations x x

Drilled pier foundation construction experience x x

Professional engineer x x

Bachelor’s degree x x

Master’s degree — —

Doctorate — —

Years of experience 14 30
ENVIRONMENTAL ENGINEERING © ASCE / OCTOBER 2004 / 997
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uncertainty analyses; in particular, spatial uncertainties
to average out.

3. Values computed from small samples can be misleadin
4. Experts tend to be more confident than they should be

is, they underestimate the variances.
5. Engineering judgment is invaluable if it is based on ev

ated experience and a demonstrable chain of reasoni
should never be used as a euphemism for speculatio
guessing.

Output—Interpreting Results

After a reliability analysis is complete, the results, like any an
sis, must be interpreted. What do the probabilities mean? Ho
they to be used? What does the analysis reveal about the i
tance of the various parameters and their uncertainties?

Absolute Probability of Failure

Most people do not understand what a probability means,
cially if it is a small probability. Fischoff et al.(1997). developed
the original form of Fig. 17; it has been reproduced by o
authors(Vick 2002). Three groups of subjects were asked q
tions of varying difficulty and asked to provide estimates of
probability of error in their answers. Fig. 17 compares these
mated, subjective probabilities of error with the actual freque
of error. When the actual error rates were greater than 0.2
subjective estimates agreed well with the actual rates. How
when the actual error rates fell below 0.2, the subjective
dropped precipitously. At the extreme left side of the figure, w
the actual rates were between 0.04 and 0.1, the subjects th
their error rates were 10−6. In words, the subjects were overco
fident by 5 orders of magnitude! In a similar vein, people
notoriously more frightened of accidents on commercial airli
than on the highways, despite an abundance of widely publi
data that show that air travel is many times safer than drivin

Fig. 17. Actual error frequency versus subjective estimate of pro
on variety of subjects. Original results developed by Fischhoff e
the highways.
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Two mechanisms for presenting the results of probabi
analyses in a form that can be grasped intuitively and us
decision-making are thef –N andF–N diagrams, the latter bein
the cumulative form of the latter. Fig. 18 is a typical exampl
the f –N diagram(Baecher 1982). The plot has on the horizon
axis either cost in dollars or lives lost.8 The vertical axis is th
observed annual frequency of the losses for various activ
Both axes are logarithmic. The results plot along a broad s
running from the upper left(small costs and high frequency
failure) to lower right (high costs and low frequency of failur).
This is an experimental result; it reveals the rates of failure
costs that society—or at least some operating part of society

y of error for three groups of subjects asked questions of varying
) and also presented by Vick(2002).

Fig. 18. One version off –N plot annual risk cost or number of live
In this plot both cost and lives are shown; it is customary to use
or the other rather than both on same plot(Baecher 1982).
babilit
t al.(1997
ERING © ASCE / OCTOBER 2004
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implicitly found acceptable. Of course, asked in a referen
what risks are acceptable, society might choose a different ac
able risk, but Fig. 18 represents what we live with now. S
activities, such as commercial aviation, fall well below the tre
and this conforms to the general perception that commerci
travel is relatively safe. Others, such as mobile drilling rigs,
above the trend; it is not surprising that mobile drilling rigs
dangerous places to work. Any other risk can be plotted on
same figure to see how it compares to other activities. Fo
ample, there have been at this writing 22 years of National
ronautics and Space Administration space shuttle missions, t
which failed costing seven lives each and untold dollars. If
plots a point for seven lives and an annual failure rate of 0.09
point falls well above the trend line. This confirms that astron
on the space shuttle are exposed to high risks. It also indi
that the technology is not yet so reliable that people from
general public, such as schoolteachers, should be invited to
ticipate.

Several organizations that deal with public policy and sa
have adoptedF–N plots as aids in decision-making. Fig. 19 is
version adopted by the Hong Kong Planning Department(Hong
Kong Government Planning Department 1994). Fig. 20 was de
veloped in the Netherlands(Versteeg 1987). The Australia New
Zealand Committee on Large Dams(ANCOLD 1994) proposed
Fig. 21. Von Thun(1996) presented a somewhat more com
cated figure proposed for the Bureau of Reclamation. Three p
of clarification must be emphasized. First, the vertical axis in
18 is the number of events occurring in a year, but the ver
axis in Figs. 19–21 is the annual rate of occurrence ofN or more
events. Second, locations of the lines separating the region
not the same in all the figures; the locations reflect negotia

Fig. 19. F–N diagram adopted by Hong Kong Planning Departm
for planning purposes(Hong Kong Government Planning Depa
ment 1994). “ALARP” stands for “as low as reasonably practicab
among the designers of the figures. Third, current practice is not

JOURNAL OF GEOTECHNICAL AND GEO
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to be bound by the bright lines separating the regions but t
them as guidelines. Regardless of how the figures are deve
they are convenient tools for comparing the results of reliab
analyses with acceptable levels of risk.

Whenever one is working with a computed probability of f
ure, it must be borne in mind that the probability of failure co
puted with best estimates of the statistical parameters is like

Fig. 20. F–N diagram proposed for Netherlands for planning
design(Versteeg 1987). “Prompt fatalities” is term used in origin
reference and refers to failures that occur in short term rather
because of lingering effects.

Fig. 21. F–N diagram proposed by Australia New Zealand Com
tee on Large Dams(ANCOLD 1994). “ALARP” stands for “as low
as reasonably practicable.”
ENVIRONMENTAL ENGINEERING © ASCE / OCTOBER 2004 / 999
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be a lower bound. The computed value necessarily does n
clude the effects of factors that were not included in the ana
Since things that were ignored during design and constru
cause many failures, engineers should be wary of placing
much confidence in the absolute values of the computed
abilities of failure. As Leps’(1987) statement quoted earlier e
phasizes, if the designer knows of something that could ca
failure, he or she should fix it. Of course, a probability of fail
computed with conservatism piled on conservatism is not n
sarily a lower bound, but it is also not clear what the comp
probabilities mean.

Comparative Probability of Failure

It is often more useful to compare probabilities of failure
different alternative courses of action than to rely on the abs
probability of failure. In the previous sentence the word “co
pare” is used deliberately. As Gigerenzer(2002) stresses, relativ
probabilities can be misleading. He gives the example of a sc
ing procedure that reduces the risk of dying of breast cancer
4 per 1,000 patients to 3 per 1,000. The absolute effect
reduce the risk by 1 per 1,000, but the relative effect is
reduction in risk. He writes, “Relative risks do not carry inform
tion about the absolute benefits of treatment.”

Christian et al.(1994) give an example of the use of compa
tive probabilities. Three heights of dikes were proposed for
James Bay project: 6, 12, and 23 m. The first two are single
dikes; the last, a composite dike built in stages. Table 3 give
estimated factors of safety and probabilities of failure for
three designs. Although the factors of safety are similar, the p
abilities of failure are quite different. The 23 m dike has a lo
probability of failure, which is not reflected in the factor of saf
Another way to look at these results is to consider the desi
target probabilities of failure. On the basis of the historical be
ior of dikes of this type, an annual probability of failure of 0.0
was established as a reasonable target for typical dikes such
12 m dikes. The consequences of failure for the lower 6 m d
would be smaller, so a larger probability of failure of 0.01 w
chosen. The greater size and importance of the 23 m multi
dike led to a reduced target of 0.0001. Working through the
lytical results led to the target estimated factors of safety c
sponding to these target probabilities and listed in Table 4. T
could then be used for design calculations. It is interesting tha
values of the target factors of safety are in inverse order to
would be expected intuitively. The reason for this reversa
expectations is primarily that the spatial contributions to the

Table 3. Comparative Probabilities of Failure for James Bay Dikes,
Christian et al.(1994)

Case EfFg pf

H=6 m, single stage 1.58 2.5310−2

H=12 m, single stage 1.53 4.7310−3

H=23 m, multiple stage 1.50 7.1310−4

Table 4. Target Design Factors of Safety for James Bay Dikes,
Christian et al.(1994)

Case Targetpf TargetFS

H=6 m, single stage 0.01 1.63

H=12 m, single stage 0.001 1.53

H=23 m, multiple stage 0.0001 1.43
1000 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGIN
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certainty average out over the larger failure surfaces that app
the higher dikes. This reduces the uncertainty in the facto
safety. Such might not be the case for another design probl

Contributions of Components

Another useful result from reliability analyses is the contribu
of the various factors to the probability of failure. Fig. 22, a
from the James Bay study(Christian et al. 1994), shows the con
tribution of each of six uncertain factors contributing to the v
ance in the factor of safety for the 23 m high dike. The factor
the shear strength of the intact marine clay, the intact lacus
clay, the consolidated marine clay, and the consolidated lacu
clay; the friction angle of the fill; and the unit weight of the fi
Each bar has three parts: the contribution of the systematic
the contribution of the spatial error after it has been averaged
the failure surface, and the additional contribution of the sp
error that is removed by averaging. The plot shows clearly
the strength of the lacustrine clay and the unit weight of the
contribute much more to the variance of the factor of safety
the other three factors. One implication is that to reduce the
certainty in the factor of safety, and hence the probability of
ure, the engineer would be well advised to concentrate on im
ing the knowledge of the strength of the lacustrine clay and
unit weight of the fill.

Factor of Safety and Reliability

The preceding paragraphs could give the erroneous impre
that there is an inherent conflict between approaches using
tor of safety and those based on reliability theory. This is no
case. The factor of safety is a value computed by well-kn
methods that provides a measure of the expected performa
a slope. For other problems, other computed values are app
ate, such as estimated settlement, uplift pressures, bendin
ments, and so forth. Reliability theory does not invalidate
calculations. It extends them by giving them a context an
giving additional information to help the engineer interpret

Fig. 22. Contributions of each of six different uncertain factors
variance of factor of safety of the 23 m high multistage dike
James Bay project(Christian et al. 1994)
results.
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Conclusions

Many conclusions can be drawn from the applications of p
ability to geotechnical problems. This paper has concentrate
the imperfections in our knowledge and how they affect our
ity to make decisions. It is clear that our knowledge of the g
logical and environmental factors affecting geotechnical engin
ing is imperfect and that it will remain so. Although mod
developments in remote sensing and information techno
promise to ameliorate this situation, we are not likely ever to h
as much or as reliable information as we would like to h
However, we have to proceed with our projects. The first st
to recognize the extent of our ignorance and to unders
whence it arises. We can reduce uncertainty by obtaining
information, especially when the search or more informatio
guided by a rational understanding of the nature of uncert
and its impact on our decisions. Many practical tools—the ob
vational method, adaptive management—have been develo
deal with uncertainty in the engineering project.

Probabilistic methods provide a powerful tool for dealing w
these issues, a tool that is finding increasing application in
tice. Many of its insights apply to deterministic methods as w
whether or not they are formally recognized. Most of the
rently available tools for applying probabilistic methods to e
neering can be placed in one of two categories—logic trees
direct reliability methods. The details of these techniques
widely available, and the methods themselves have found a
cation across all engineering fields, including some in geote
cal engineering.

While the tools themselves are increasingly well known,
underlying nature of uncertainty, the meaning of probability,
the differences between frequentist and Bayesian statistic
not. There are also problems in estimating geotechnical pa
eters. We usually deal with an inadequate number of data p
and it is important to separate the spatial from the system
contributions. Exerts are often used to elucidate such ques
but a large body of experience from other fields as well as
technical engineering indicates that it is difficult to elicit inform
tion from experts and that experts are often too confident of
estimates.

Using the output of probabilistic analyses is hindered by
well-established fact that people, including engineers, have
of trouble understanding small probabilities. In recent years
f –N and F–N diagrams have proven to be useful tools for
scribing the meaning of probabilities and risks in the contex
other risks with which society is familiar. Computed abso
probabilities may not include all contributions; an effective
proach is to compare probabilities of different options or alte
tives. Probabilistic methodologies also provide insight into
relative contributions of different parameters to the uncertain
the result and thus give guidance for where further investiga
will be most fruitful.

There are three important conclusions with which the p
closes:
• Probability in geotechnical engineering is not a property o

world but a state of mind;
• Thus, geotechnical and geological uncertainty is belief-b

and necessarily Bayesian; and
• The current challenge to the geotechnical engineering pr

sion is how to use probabilistic methods in practice.
To return to the question posed in the subtitle to this pa

there is a lot that we do not know about what we are doing.

best engineers have always brought a healthy skepticism to
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projects that deal with geology and the environment. Mo
probabilistic methods now provide an additional tool for desc
ing and dealing with that uncertainty.
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Endnotes

1It might be argued that, if we knew enough about the linear and a
lar velocities of the dice, their inertia, the rebounding characteri
of the dice and the table, and so on, we would be able to predi
outcome of any throw. However, this is so impractical that the e
pressions “throw of the dice” and “crap shoot” have entered the
language as synonyms for totally random events.

2It should be noted that it is possible to apply Bayesian methods w
probability is defined by relative frequency or classical methods
degree-of-belief probability. However, to avoid excessive and ex
neous complication, the presentation follows the line that freque
definitions of probability tend toward classical statistics while
degree-of-belief approaches are more congenial with Bayesian
proaches. This is also the historical distinction.

3This database has been superceded by many more observations
the analyses were first carried out, but the point about the mea
of the curves remains valid.

4This is one instance ofStigler’s Law of Eponymy, which states in its
simplest form, “No scientific discovery is named after its origina
discoverer”(Stigler 1999).

5A similar analysis applies to many other exploration problems; the
liquefiable zone problem is chosen for convenience.

6This story was told to the author by the National Research Counc
evaluator.

7Many engineers have learned to their sorrow that relying simply o
“engineering judgment” in an adversarial proceeding can lead to
embarrassing cross examination.

8The plot has both cost and lives lost axes because some of the o
references wrote about costs and others about lives lost. In a p
ticular application one should use one or the other, but not both
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