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Abstract: A well-developed and maintained pavement management system (PMS) empowers a decision maker to select the best 

maintenance program, i.e., which maintenance treatment to use and where and when to apply it, so that a maximum utilization of 

available resources can be achieved. This paper addresses a decision making problem for managing pavement maintenance and 

rehabilitation projects under budget uncertainty (MPMRPBU). A stochastic linear programming model is formulated and solved for 

the MPMRPBU so that a set of candidate projects can be optimally selected from the highway network over a planning horizon. 

Numerical results are discussed based upon a pilot case study. Different optimization solutions based on deterministic optimization 

and stochastic programming approaches are discussed and compared. The effect of the budget constraint on the optimized solutions 

is investigated. The computational result indicates a high quality MPMRPBU solution using stochastic programming approach, 

suggesting that there is a potential that the algorithm can be used for real world applications.  
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1  Introduction 

Pavement management systems (PMS) have long been used 

as the primary tool to support pavement maintenance and 

rehabilitation (M&R) activities. Deciding which road 

pavement sections should be included in the yearly M&R 

project list for a planning horizon of several years is one of the 

major functions of a PMS system. Pavement maintenance is 

defined as routine, preventive, or reactive maintenance 

activities which often include but are not limited to filling 

cracks, patching potholes, and other applicable treatments 

such as chip seal coat or slurry seal.  Pavement rehabilitation 

generally refers to major maintenance actions that are 

intended to enhance the structural capacity of pavements, such 

as resurfacing (overlay), resurfacing with partial 

reconstruction (localized reconstruction), and complete 

reconstruction. Both pavement maintenance and rehabilitation 

are costly with pavement rehabilitation being more expensive. 

The stringent yearly M&R budgets available to the state 

Departments of Transportation (DOT’s) usually cannot 

support every M&R need. A practical procedure that can 

optimally manage and improve DOT’s pavement maintenance 

and rehabilitation project selection process can potentially 

save M&R cost and improve pavement condition for the 

agency 
[1]

. 

The pavement management information system (PMIS) is 

the automated portion of the PMS used by the Texas 

Department of Transportation (TxDOT). The PMIS is a set of 

computer programs for storing, retrieving, analyzing, and 

reporting information to assist decision makers (i.e., 

state/district pavement maintenance engineers/managers in 

TxDOT) to make cost-effective decisions regarding the 

maintenance and rehabilitation of pavements
[2,3]

.  The PMIS 

consists of two major components: (1) pavement data and 

information management; and (2) decision support provision. 

PMIS databases are populated with various kinds of 

pavement-related data, one of the most important of which is 

the pavement condition data that have been collected annually 

or biannually since 1985.  The decision support component 

provides essential functions that assist decision makers to 

manage pavement M&R activities in a cost-effective manner.  

Generally the decision support system in a typical PMS assists 

decision-makers at two levels of pavement management that 
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are referred to as the network level and the project level 
[4,5]

. 

Pavement management at the network level considers for the 

whole pavement network the development of an M&R budget 

plan, prioritization program and schedule of work over the 

analysis period while pavement management at the project 

level deals with engineering concerns for the actual 

implementation for an individual project. The network-level 

decision support can be further divided into programming 

level and project selection level 
[4]

. At the programming level, 

budgets are established and general resource allocations are 

made over the entire network. The project selection level 

involves prioritization to identify which projects should be 

carried out in each year of the programming horizon. In recent 

years, considerable research efforts were made to tackle the 

PMS network level decision-making problem, both in the 

programming topic
[6-10]

 and in the project selection topic
[11,12]

. 

The optimization methods developed for network 

programming of finding optimal M&R actions generally fall 

into one of the following two categories: (1) maximization of 

pavement conditions subject to M&R budget constraints; or  

(2) minimization of M&R cost subject to minimum 

requirements on road conditions. Since the network 

programming is normally conducted on a planning horizon of 

several years, the modeling of the transition of pavement 

conditions is needed. For the prediction of network pavement 

conditions over multiple time periods, the transitions of 

network pavement conditions are frequently modeled as 

Markovian chain processes, and accordingly the decision 

variables of the optimization models are just the Markovian 

transition probabilities which are associated with the 

designated M&R actions.  In previous studies, the Markovian 

transition probabilities were applied in the current time period 

to either proportions
[7,8,10]

 or aggregate lane miles
[6]

 of 

pavements in different condition states in order to predict the 

pavement condition proportions or the lane miles in each of 

the condition states in the next time period.  

The above studies in network programming can help a 

pavement engineer/manager know the proportion or aggregate 

lane miles out of the whole pavement network that are in need 

of a designated M&R treatment in each year of the planning 

horizon. Therefore with the help of network programming, 

pavement engineers can understand the pavement needs in the 

future years and can proactively conduct need analysis and 

budget planning for the pavement network. However, the 

information about the M&R needs for proportions and lane 

miles of the pavement network is far from detail enough to 

know whether or not a specific pavement section should 

receive an M&R treatment within the year’s M&R project 

program.  A PMS should also have the function of assisting 

the decision maker in selecting the best maintenance program, 

i.e., what maintenance treatment to be applied for which 

pavement section at what time, so that a maximum utilization 

of available resources can be achieved for the pavement 

network.  This is what the network level project selection 

programming is all about. 

A PMS should have a function routine to establish 

maintenance and rehabilitation priorities to support 

project-selection decision making. Clearly the quality of the 

prioritization directly influences the effectiveness of the 

available M&R budget, which in most cases, is deemed a 

prime goal of a decision maker. Currently the project selection 

process in the TxDOT PMIS is first to prescreen the “in need” 

pavement sections from the pavement network using an 

experience based decision tree, then calculate the cost and 

benefit associated with the pre-selected M&R treatment for 

each of the “in need” pavement sections, and then rank all the 

sections in descending order of cost-effectiveness ratios
[2,3]

. 

Finally the top sections with a total cumulative cost equal to 

the current year’s allowable budget are selected for the year’s 

M&R program.  However, there are two flaws in using this 

project selection method: (1) the prescreening approach favors 

the most severely damaged pavement sections which 

accordingly have the highest priorities, and only the top 

sections on the list consume the budget of the whole pavement 

network while ignoring the needs of the other sections; and  

(2) it does not handle maintenance timing wisely because a 

less severely damaged section may have a low rank and is not 

taken care of in the current year, but the pavement section may 

deteriorate so badly in only a few years that a much more 

costly treatment would be needed.  Just like in network 

programming, an optimization method could also be applied 

to the prioritization of M&R projects for the whole highway 

network over a planning horizon of multiple years. Decision 

variables could be dummy variables with values of either 1 or 

0 indicating whether or not a pavement section would be 

selected and treated with a specific M&R action for a specific 

year in the planning horizon.  Each decision variable is 

associated with a gain or improvement in pavement condition 

and a cost induced in the M&R treatment. The summation of 

the gains obtained from the decision variables for all 

pavement sections in the network comprises the total M&R 

effectiveness over the analysis years, and the summation of 

the treatment costs due to the decision variables for all 

pavement sections in the network constitutes the total M&R 

cost over the analysis years.  To extend the experience gained 

in the studies in network-level programming, an optimal 

solution to a set of integer decision variables for the pavement 

sections in the network could be developed to meet annual 

M&R budget constraints and minimum requirements on 

pavement conditions, and to pursue to the highest degree 

maximization of the total network M&R effectiveness. 

Therefore, an integer linear programming (ILP) model could 

be constructed for the network-level project selection 

problem.  
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The aforementioned two flaws in TxDOT’s PMIS project 

ranking process could be eliminated by applying the 

optimization method to the project selection in which 

pavement sections are competing equally for M&R budget 

and project timing is considered fairly. In the optimization 

model the most severely damaged sections are no longer the 

most favored, rather projects with the highest effectiveness 

and best timing effect for the entire network and over the 

planning horizon would be selected for every individual year’s 

M&R program. Several research efforts have been made in 

such areas. For examples, Sharaf 
[11]

compared two ranking 

models with the ILP optimization model using data obtained 

from a comprehensive survey of Egyptian road network and 

concluded the superiority of the optimization model in terms 

of improved budget deficit and network condition over the 

analysis period. Zambrano et al. 
[12]

compared two optimization 

models, multi-year optimization with multi-treatments 

(MYO-MT) and multi-year optimization, with single 

treatment (MYO-ST) with the current TxDOT PMIS ranking 

method and claimed the victory for the MYO-MT model in 

terms of accumulated cost-effectiveness ratio and backlogged 

mileage requiring medium and heavy rehabilitation 

treatments. 

It should be noted that the using of pavement management 

system (PMS) has been a common practice for every state 

DOT. Pavement sections are regularly (annually or biannually) 

assessed for performing conditions, and the pavement 

assessment data are readily stored in the state DOT’s PMS 

databases. Therefore, it would be reasonable to employ a 

performance transition function for each of the pavement 

sections to predict the pavement conditions in multiple years 

of the planning horizon for the project-selection optimization 

model. In particular, it should be noted that the yearly budgets 

available for a transportation agency to use in pavement 

preservation are always changing over time due to 

unpredictable circumstances. The instable federal funding due 

to the overdue enacting of the new surface transportation bill, 

the dynamics of federal, state, and local highway laws, and the 

reduced State and Federal Excise Gas Tax Funds due to the 

ever increasing gas prices are a few contributors to the 

uncertainty in the yearly pavement M&R budget 
[13]

.Though 

the previous research was helpful, few involved the possibility 

of Managing Pavement Maintenance and Rehabilitation 

Projects under Budget Uncertainty (MPMRPBU). Economic 

recession has produced tight budget, even triggered additional 

budget cuts, and imposed many economic and human 

resources constraints on many government and state agencies 

such as TxDOT. A natural question is raised: As future 

funding levels become more uncertain, what is the best 

strategy out there for the pavement engineer/maintenance 

managers to make informed decision and make the best out of 

limited financial resources. This paper will formulate and 

solve the MPMRPBU under a finite rolling planning horizon. 

Particular attention is given to MPMRPBU model formulation 

and the stochastic programming approach to solving this 

multistage stochastic model. 

Stochastic programming has many applications in the 

transportation research areas and examples can be found in 

freight fleet management 
[14]

 and car sharing systems 
[15]

. Solid 

theoretical foundation regarding large scale linear 

programming and multistage stochastic programming were 

built in Dantzig
[16]

, Dantzig and Wolfe
[17]

, Ziemba
[18]

, 

Wollmer
[19]

, Wets
[20]

, Birge
[21]

, Birge and Louveaux
[22]

, 

Morton
[23]

, Wallace
[24]

, and Beale et al.
[25]

 Some good 

applications and techniques used for generating scenario trees 

for multistage stochastic programming decision problems can 

be found in Zenios
[26]

, Kouwenberg
[27]

, Hoyland and 

Wallace
[28]

, and Fleten et al.
[29]

 

Based on all previous discussions, the purpose of this paper 

is to address a decision making problem for the MPMRPBU. 

A stochastic linear programming model is constructed in this 

paper to solve the project-selection problem at the network 

level in a PMS, which seeks to select a set of candidate 

projects from the highway network over a planning horizon of 

five years, which meet the annual M&R budget and pavement 

condition constraints, and at the same time maximize the total 

M&R treatment effectiveness. Numerical results will be 

discussed based upon a pilot case study. 

The subsequent sections of this paper are organized as 

follows: Section 2 discusses the problem statement and 

assumptions. Section 3 presents the stochastic programming 

model formulation for the MPMRPBU. Section 4 illustrates 

the scenario tree generation for the stochastic programing (SP) 

approach. Section 5 presents the comprehensive 

computational results of the experimental network as a pilot 

study. Finally, a summary and discussion of future research 

directions concludes this paper in section 6. 

2  Problem statement 

As known, M&R treatments could be at any level, from the 

simplest and cheapest in preventive maintenance to the most 

complicated and expensive in rehabilitation. However, it is 

generally not necessary (and sometime also impossible) for 

programming at the network level to be as detailed as it is at 

the project level. In this regard, five simplified M&R 

treatment levels are assumed and listed as follows: 

(1) Needs nothing (NN); 

(2) Preventive maintenance (PM);  

(3) Light rehabilitation (LRhb); 

(4) Medium rehabilitation (MRhb); 

(5) Heavy rehabilitation (HRhb).  

Each road section in the optimization method is actually a 

so-called management section and should receive only one of 

the above five treatments. A management section is a section 
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of pavement, of similar structure, that could be treated in a 

uniform manner.  By grouping together similar pavement 

sections, the idea of a management section could reduce the 

number of sections in the highway network and therefore 

reduce the total number of decision variables in the 

optimization model, making the problem simpler and easier to 

handle
[2,12]

. 

The M&R benefit (or effectiveness) and cost for each of the 

five M&R treatments are closely related to the length and 

traffic volume of the road section. Generally, road sections 

with longer section length and/or higher traffic volume tend to 

have bigger M&R benefits and M&R costs. Similarly, the 

improvement in pavement condition and extended effective 

life with each of the five candidate M&R treatments could be 

determined individually for every road section. Normally, a 

more expensive rehabilitation treatment should yield bigger 

and longer condition improvement to the road section than a 

preventive maintenance treatment. The before- and 

after-treatment effects on road condition are depicted over 

time in Fig. 1, where eij represents the improvement in 

condition score.  

 

 

 
Fig. 1  Pavement condition score and M&R effectiveness 

 

The improvement in road condition could be measured in 

two parameters: M&R treatment effectiveness and increased 

condition score.  M&R treatment effectiveness is defined as 

the area between the two curves in Fig. 1 over the effective 

life of the treatment. The road condition score (0-100) that 

combines distress and ride quality is regarded as a stable index 

for road condition and used by TxDOT.  The treatment 

effectiveness over the effective life of the M&R treatment 

could be estimated by multiplying the initial increased 

condition score by the treatment’s effective life.  Normally a 

condition score below 50 indicates that the pavement section 

requires some type of remedial attention 
[1]

. Although it is 

known that network level pavement condition scores of many 

road sections among many states have a skewed (sometime 

even heavily skewed) distribution, more towards the excellent 

or good category where they are bounded by 100, for 

modeling simplicity, road sections in the highway network are 

still assumed to have condition scores that are normally 

distributed, i.e., S ~ N (μ, σ
2
), where S is the condition score of 

a section in the highway network; μ and σ
2
are mean value and 

variance of the normal distribution N respectively. It is 

generally believed that statistics observed from sampling can 

be described with the t distribution, which closely 

approximates the normal distribution, when degrees of 

freedom exceed 30. Therefore the normal distribution 

assumption for condition scores could be assumed to be 

satisfied with the large number of pavement sections in the 

network although in reality the condition scores may actually 

follow a skewed distribution. 

To estimate a road condition in a future time and formulate 

a road state transition process, an additive condition transition 

model with constant deterioration rates is assumed. As shown 

in Fig. 1, road section i is given an M&R treatment at year j 

and improved by eij in condition score. A constant 

deterioration rate i that is specific to section i could be 

determined using historical data. If the initial condition score 

is measured at Si0, and road condition score is increased by eij 

at year j for j = 1, 2, …, then in a future time t (t > j) road 

score Sit can be calculated in the following formula: 

   0
1

1 1
tt t j

it i i ij i
j

S S e 



       (1) 

Clearly, pavement sections may behave very differently and 

a constant deterioration rate model is far from precise enough 

to describe the complex transition process of road conditions. 

Furthermore, pavement may behave differently after a major 

maintenance and rehabilitation treatment and therefore 

substitution of a different deterioration rate may be 

appropriate after each M&R treatment. However, the more 

accurate performance curves and deterioration characteristics 

of every pavement could be obtained from history or other 

relevant data 
[2]

.  In other words, a road condition prediction 

model similar to the one shown in Eq. (1) could be established 

and calibrated for each road section and employed in this 

optimization model.    

The TxDOT PMIS databases hold various pavement-related 

history data that can be used to determine the parameters 

discussed earlier. It is assumed in this paper that the data for 

initial road condition score, condition deterioration rate, M&R 

unit cost, and M&R effectiveness and effective life associated 

with each of the five M&R treatments can be retrieved or 

calculated from the PMIS databases for every road 

management section in the network. To make the model 

simpler, discount rate for cash flows is not considered in this 

study and all costs are assessed and represented in present 

dollar values. Each road management section is assumed to 

receive at most one M&R treatment in one year and a limited 

total number of treatments during the planning horizon of five 

years. Finally, a planning horizon of five years is assumed 

since during this short period of time only a few M&R 

treatments are applied to a pavement section. Five to ten years 

are a popular analysis period for pavement maintenance and 

  

yearj      

  

S 
i   

e 
i j   

Time 
  

l 
i j   

Pavement Condition  
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rehabilitation planning at the network level 
[10,12]

. 

3  Model formulation 

Based on the previous discussions, an ILP optimization 

model is formulated as follows. 

Indices/Sets: 

i——pavement section; 

j——year; 

k——treatment. 

Parameters/Data: 

n——total number of road sections in network;  

m —— total number of years in planning horizon;  

r —— total number of candidate M&R treatments;  

ai—— average daily traffic per lane for section i;  

di —— section length in kilometers for section i;  

eik—— improvement in condition score for road section i 

due to treatment k;  

lik —— treatment effective life in years for treatment k 

applied to section i;  

cik—— M&R unit cost for treatment k applied to section i 

in thousands of dollars per lane km; 

bj —— available budget in thousands of dollars for year j ;  

i—— deterioration rate for section i;   

g1 —— minimum requirement on road condition score for 

each of all road sections;  

g2 —— maximum possible road condition score for each of 

all road sections;  

g3 —— maximum number of treatments allowed for each 

road section over the design period; and  

g4 —— statistically minimum requirement on mean value 

of network road condition scores. 

Random variables: 

jb —— available budget in thousands of dollars for year j，

j = 2, …, m. 

Decision variables: 

xijk—— decision variable for section i at year j with 

treatment k, valued at 1 if selected, 0 otherwise; 

Sij —— derivative decision variable of road condition score 

for section i at year j with initial condition score Si0; 

Objective function: 

Max    
1 1 1

n m r

i i ik ik ijk
i j k

Z a d e l x
  
  

 

             (2) 

s.t.     1 1
1 1

      
n r

i ik i k
i k

d c x b
 
  

           

    (3) 

       
1 1

    2,3, ,
n r

i ik ijk j
i k

d c x b j m
 
   ，

         

(4) 

   0
1 1

1 1

 1,2, ,  ; 1,2, ,   

j rj j t
ij i i itk ik i

t k

S S x e

i n j m

 


 
    

      

(5) 

1       1,2, ,  ; 1,2, ,ijS g i n j m   ，     (6) 

2     1,2, ,  ; 1,2, ,ijS g i n j m  ，     (7) 

3
1 1

      1,2, ,  
m r

ijk
j k

x g i n
 
   ，       (8) 

4
1 1

       1,2, ,
n n

ij i i
i i

S d g d j m
 
  ，       (9) 

1

1       1,2, ,  ; 1,2, ,
r

ijk
k

x i n j m

   ，   (10) 

{0,1}   1,2, ,  ; 1,2, , ; 1,2, ,ijkx i n j m k r   ， (11) 

As can be seen in Eq.(2), the objective is to maximize the 

total network M&R effectiveness in planning horizon in 

weighted condition score points. Eq.(3) and Eq.(4) refer to the 

budget constraints at the first year and all future years, 

respectively. Other equations are self-explained in most 

senses.  

4  Scenario tree generation 

Fig. 2 illustrates a complete scenario tree for multi-stage 

stochastic programming models. In this figure, the nodes in 

the tree represent states at a particular period, t. Decisions are 

made at the nodes and the arcs represent realizations of the 

uncertain variables. Decisions to be made further down the 

scenario tree depend on the decisions already made through 

parent nodes and the uncertain properties of children nodes - 

such as the three L(ow), M(edium) and H(igh) annual budget 

scenarios in this Fig. 2. Note that the generation of scenarios is 

based on the assumed discrete distribution and the decision 

makers can specify the probability distribution function so that 

the statistical properties of the problem are preserved. A 

complete scenario tree consists of realizations of the uncertain 

variables in each time period (or each stage). In practice, only 

the first-stage solution at the top node will be used for 

decision making. The decisions made at stage two or after that 

are only made in order to find the right incentives for the 

first-stage decisions 
[29]

.  

At the beginning of the first period, decisions are made 

based on current information (and realizations of the 

stochastic future) at the end of the first period consequences of 

this decision are seen. Given this consequence and new 

information for the next period, a new decision is made at the 

beginning of the second period. Based on the outcomes from 

the second period and given new information for the third 

period, the decision is made again. The whole process 

continues indefinitely in principle. Note that for each scenario 

tree with generated random variable, one can use exact 

optimization methods (e.g. L-shaped Method 
[22]

) to solve it. 

In fact, the first-stage decision is obtained this way. 

5  Numerical results 

5.1  Example network and data preparation 

To run the established model, an instance of the 

MPMRPBU problem represented by a 5-stage (i.e., year) 

experimental network with 10 road sections is chosen and 
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included in this pilot study to test the solution quality and 

efficiency using the developed stochastic programming 

method to solve the MPMRPBU. The input data for i, Si0, ai, 

and di for each of the ten road sections and cik, eik, and lik for 

the ten road sections and the five candidate M&R treatments 

are prepared based on information from TxDOT reports. The 

first year M&R budget b1 is known at the time of running this 

optimization model and assumed to be $364,000/year. 

However, for all future four years, budget data bj’s (j = 2, 3, 4, 

5) are all stochastic and also assumed to follow a discrete 

distribution with three scenarios (with expected budget being 

$364,000/year) for the model. In other words, they are LOW 

budget scenario bj = $300,000/year (j = 2, 3, 4, 5) with 

probability being 0.4, MED(ium) budget scenario bj = 

$360,000/year (j = 2, 3, 4, 5) with probability being 0.4, and 

HIGH budget scenario bj = $500,000/year (j = 2, 3, 4, 5) with 

probability being 0.2. The input data set for a typical 

pavement management section is illustrated in following 

Table1. 

 

t=1

Stage 1

t=2

Stage 2

t=3

Stage 3

L M H

L M H L M H L M H

Fig. 2  Scenario tree for multi-stage stochastic programming models 

 
Table 1  Data input for road section i 

k 
cik ($k/lane 

km) 
eik lik(year) 

NN 0 0 0 

PM 6.1 3 3 

LRhb 21 15 5 

MRhb 46 25 7 

HRhb 110 40 9 

pi  = 0.05, Si0 = 95, ai = 20,000 vehicles per lane, di = 2.4 km 

 

Note that the M&R treatment unit cost is measured in 

thousand US dollars per lane kilometer. The values for g1 

through g4 are also determined. According to the practice at 

TxDOT, g1 = 50, and g2 = 100. The g3 value limits the total 

number of treatments allowed for each road section during the 

design period of 5 years and should not be larger than 5 (In the 

worst case a road section is given a treatment for every year in 

the design period). The g4 value is determined from the 

assumed normal distribution of condition scores in the 

network, i.e., S ~ N (μ, σ
2
). From the parameters μ and σ, one 

can say statistically for a probability of α that road sections in 

the whole network are better than a condition score of Sα.  

The g4 value can be computed from the formula: μ = g4 = Sα + 

(Zα)(σ). For example, the Texas Transportation Commissioner 

Johnson’s statement of minimum required network pavement 

condition “90% of the road sections in the network should 

have 70 or higher condition scores” could be interpreted as  

g4 = 70+(1.29)(10) = 83 (if σ is assumed to be 10). The σ 

value or standard deviation in pavement condition scores 

could be obtained using historical data. The α and Sα values 

should be input as user requirements and used to calculate the 

minimum requirement on the mean value of future condition 

scores in the network 
[1]

. Also the optimization model is 

solved using OPTMODEL 
[30] 

based on SAS macro.  

5.2  Computational results 

5.2.1  Deterministic optimization approach 

In this section, the deterministic optimization approach 

(DOA) also refers to the expected budget solution. In other 

words, it is common practice to ignore the uncertainty 

associated with system parameters because of the 

computational inconveniences they may cause and to develop 

heuristic decisions by using the expected value of these 

random variables instead. In other words, the pavement 

district engineer/maintenance manager may make the decision 

using expected annual budgets and then execute the optimal 

solution by optimizing this “average” scenario only. 

Numerical results of such deterministic optimization are 

illustrated as follows. 

(1) Effect of annual budgets. 

Sensitivity analysis is conducted for the annual budget 

constraints. Fig. 3 shows the effect of changed budget 

constraints on objectives Z. As one can see in this figure, as 

the annual budget increases from $200,000, the M&R 

effectiveness objective Z gains improvements for a very large 

budget range before it becomes insensitive to further budget 

increases. This result clearly shows that increase of annual 

budgets is one effective method to increase total M&R 

effectiveness.  

(2) DOA solution results. 

Table 2 lists the solutions for the decision variables in two 

budget conditions. The solutions to the dummy variables show 
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the tendency of having less costly M&R treatments when 

budget becomes more stringent for pavement maintenance and 

rehabilitation. However in this case, to keep pavement 

sections in acceptable conditions, more frequent maintenance 

or rehabilitation may be required for pavement sections with 

high deterioration rates. This tendency actually reflects the 

difference in pavement maintenance and rehabilitation 

strategies. In the pavement arena there are two opposite 

strategies to a pavement problem, i.e., “to cover it up” or to 

“fix it for good”. In reality, when only preventive maintenance 

or light rehabilitation are applied to roads with structural 

problems, then the structural problems are covered up for only 

short periods of time and the same problems come back 

quickly in the future. The optimization results in Table 2 show 

that for abundant M&R budgets, high cost treatments 

(normally combinations of preventive maintenances and 

rehabilitations) are more cost effective than low cost 

treatments and therefore included in the M&R projects list. 

And for stringent M&R budgets, only preventive maintenance 

or light rehabilitation make up the feasible solution. Although 

the feasible solution is still optimal for the network, these 

treatments may not necessarily be the most cost-effective for 

every individual pavement section. 

 

 
Fig. 3  Objective Z versus annual budget 

 

5.2.2  Stochastic programing approach 

As mentioned before, Stochastic Programing (SP) is a 

modeling framework for handling uncertainty in some of the 

problem data (e.g., the stochastic budget in this paper). The 

uncertainty is expressed as three budget scenarios (namely 

HIGH, MEDIUM and LOW budget) allowing the MPMRPBU 

problem to be solved taking the uncertainty into account rather 

than finding a way to deal with it afterwards. Since the future 

budget is unknown and a decision must be made in the current 

period (i.e., Stage 1), and the values of all first period 

variables must be the same for all scenarios. Using the 

developed SAS macro code, the SP solution is obtained for the 

three-level case and the result as shown in Table 3 is SP = 

55,733,760 incorporating all possible scenarios. In other 

words, this value means that one can expect a sum of 

55,733,760 in total M&R effectiveness if such SP solution 

decision is executed. 

In other words, as presented above, the pavement district 

engineer/maintenance manager may make the decision to 

compute the average budget (i.e., $364,000/year) of the three 

scenarios as shown in section 5.2.1 and then execute the 

optimal solution by optimizing the “average” scenario only. 

By doing so in the pilot study problem, the problem is solved 

replacing random budgets by their expected values and the 

result as shown in Table 3 is: EB = 57,312,000, which means 

that the total M&R effectiveness will be 57,312,000.However, 

if the SP solution is executed, the SP solution is only 

55,733,760. This is expected because the problem has changed 

from a stochastic programming problem to a deterministic 

optimization problem. When the budget is deterministic 

instead of random, one has perfect budget information and, as 

a result, one can get a better solution compared to the 

stochastic programming approach with an objective function 

value of SP = 55,733,760. Also the magnitude of the objective 

function for the expected value problem is more than that of 

the stochastic problem, which is in accord with the principle 

of Jensen’s inequality 
[22,23]

. 

5.2.3 Value of Stochastic Solution 

The difference between the SP solution cost and the 

expected total cost of using the “expected budget” solution 

(where the solution for the expected budget case is used as the 

“average” scenario solution and evaluated under stochastic 

environment) corresponds to the Value of Stochastic Solution 

(VSS). 

In other words, if the solution of the expected value 

problem is evaluated in the random budget environment, the 

objective function of the stochastic problem becomes: EEB = 

54,769,926, which indicates that this is an actually worse 

solution than the SP solution (SP = 55,733,760). That is, the 

VSS can be calculated as VSS = SP - EEB = 963,834, which 

can be explained as the cost of executing optimal M&R 

decisions by ignoring budget uncertainties and always using 

their expected annual budget values instead. Although this 

amount might not seem that large in magnitude, the aggregate 
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value for a large network under a long time horizon can be 

significant. Therefore, stochastic solutions are always 

preferable to expected value solutions. 

 

Table 2  Optimal decision variables in different budget cases for doa 

Section. Year 
M&R Treatment (Budget=$200 000/yr) M&R Treatment (Budget=$200 000/yr) 

NN PM LRhb MPhb HRhb NN PM LRhb MPhb HRhb 

A.1  1     1    

A.2  1     1    

A.3           

A.4   1     1   

A.5           

B.1  1         

B.2           

B.3   1        

B.4  1         

B.5         1  

C.1  1     1    

C.2  1         

C.3       1    

C.4        1   

C.5   1        

D.1  1         

D.2  1         

D.3  1         

D.4  1         

D.5   1      1  

E.1  1         

E.2  1         

E.3  1         

E.4  1         

E.5         1  

F.1  1         

F.2  1     1    

F.3       1    

F.4   1     1   

F.5           

G.1       1    

G.2  1     1    

G.3   1        

G.4        1   

G.5  1     1    

H.1  1     1    

H.2       1    

H.3   1        

H.4        1   

H.5  1     1    

I.1  1         

I.2  1     1    

I.3       1    

I.4   1     1   

I.5  1         

J.1  1         

J.2  1     1    

J.3  1     1    

J.4        1   

J.5   1        

Sum 0 26 9 0 0 0 16 7 3 0 

Obj. Value Z 43 632 033 57 312 000 
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Table 3  Pilot study numerical results 

Formulation Approach Solution Scenarios Objective Function Value 

Deterministic Optimization Expected Budget (EB) 57,312,000 

Stochastic Programming with Recourse 
Three-level Case (SP) 

HIGH, MEDIUM and LOW Budget 
55,733,760 

Evaluating Solutions under Stochastic Environment Evaluating EB (EEB) 54,769,926 

Value of Stochastic Solution SP - EEB 963,834 

 

6  Conclusions 

This paper addresses a decision making problem for 

managing pavement maintenance and rehabilitation projects 

under budget uncertainty (MPMRPBU). A stochastic linear 

programming model is formulated and solved for the 

MPMRPBU. Numerical results are presented based upon a 

pilot case study. Different optimization solutions based on 

deterministic optimization and stochastic programming 

approaches are discussed and compared. The effect of the 

budget constraint on the optimized solutions is investigated, 

which shows that “the maximization of total M&R 

effectiveness” objective is positively related to budget 

increase. Analysis of the decision variables shows that 

increased budget may lead to the inclusions of more expensive 

rehabilitation treatments in the M&R projects list. The 

computational result indicates a high quality MPMRPBU 

solution using stochastic programming approach, suggesting 

that there is a potential that the algorithm can be used for real 

world applications. 

However, it should be pointed out that due to limitations of 

computation time and SAS/OPTMODEL solver capability, the 

execution time for solving the MPMRPBU using stochastic 

programming approach could be unnecessarily long for a 

certain number of scenarios and the convergence could be a 

realistic issue for future more-realistic case studies. In such 

cases, accepting good-enough feasible solutions with tolerable 

convergence gap may have to be the way to go. As an 

important part of future research, CPLEX, which is commonly 

known for its superior speed and ability to deal with large 

scale optimization, may worth a serious try. Nonetheless, 

solving the MPMRPBU using stochastic programming 

approach does show a high potential and can be promising as 

this line of research matures. 
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