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a b s t r a c t

Inventory managers often group inventory items into classes to manage and control them more
efficiently. The well-known ABC inventory classification approach categorizes inventory items into A, B
and C classes according to their sales and usage volume. In this paper, we present an optimization model
to enhance the quality of inventory grouping. Our model simultaneously optimizes the number of
inventory groups, their corresponding service levels and assignment of SKUs to groups, under limited
inventory spending budget. Our methodology provides inventory and purchasing managers with a
decision-support tool to optimally exploit the tradeoff among service level, inventory cost and net profit.
The model and solution are applied for an inventory classification project of a real-life company, and
outperform the traditional ABC method. Computational experiments are performed to obtain managerial
insights on optimal inventory grouping decisions.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

A manufacturer often keeps inventory of various raw materials
and components to meet production needs. A repair shop needs to
ensure availability of different parts for replacement and main-
tenance work. A retailer usually holds certain amount of various
merchandize to satisfy market demand. A hospital must keep
sufficient medical supplies of all kinds for its clinical and opera-
tional needs. In the above inventory systems, the number of stock
keeping units (SKUs) may be so large that it is often not practical
to control them individually (Ernst and Cohen, 1990).

One way to manage a large number of SKUs is to aggregate
them into different groups, and set common inventory control
policies for each group (Chakravarty, 1981). Grouping provides
management with more effective means for specifying, monitor-
ing and controlling inventory performance. From the operational
perspective, grouping may achieve more efficient inventory man-
agement by reducing the overhead of managing each inventory
group. Inventory policies also align better with item groups than
each individual item. For instance, inventory groups with different
service levels often reflect a company's order fulfillment strategy
and customer relationship policies, e.g., the service level agree-
ment (SLA). Service levels have a direct impact on the company's
revenue and profit.

A well-known implementation of the inventory grouping idea
is the ABC classification method widely used in industry. It was

first developed by GE in the 1950s (cf. Flores and Whybark, 1986;
Guvenir and Erel, 1998). In a typical ABC approach, one classifies
inventory items according to their transaction volume or value.
A small number of items may account for a large share of volume;
an intermediate category may have a moderate percentage of
volume; and a large number of items may occupy a low proportion
of volume. These categories are labeled A, B and C. Taking insights
from Pareto (1971), it is often found that a small percentage of the
inventory items contribute to the majority of a company's sales
and revenue. This has led to the 80–20 rule. That is, the top 20% of
items are given the A classification, the next 30% of items the B
classification and the bottom 50% the C classification (Flores and
Whybark, 1986). Alternatively, Juran (1954) claims that A-items are
the highest 5% of the items in dollar value, C-items are the bottom
75% and B items are the middle 20%.

Practitioners often employ the ABC classification scheme in a
three-step approach to control inventory. First, SKUs are grouped
into categories according to their sales volume. Second, inventory
policies, e.g. the target service levels, are determined for each
group. A common wisdom to determine the service level is that
one should concentrate on the A category to enhance managerial
effectiveness. As a rule-of-thumb, the A-class items get the highest
service level settings and C-class the lowest (Armstrong, 1985).
Finally, inventory managers, in collaboration with sales manage-
ment and finance, need to make sure that the inventory control
policy is feasible within the available inventory and management
budget.

The above ABC inventory grouping and control approach has
several disadvantages. (a) According to Teunter et al. (2010), there
is no clear guideline in the literature to determine the service level
for each group. (b) Since the grouping decision is made
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independent from and before the service level decision, their
interactions have not been exploited, thus neither of the two
decisions can be optimal. (c) Because the available budget was not
considered until the last step, there is no guarantee that the
grouping and/or service level decisions made in the first two steps
are feasible. Thus one often needs to iteratively revise the group-
ing and/or service level decisions until feasibility is reached. This
can be a tedious process for a large number of SKUs, and may lead
to sub-optimal solutions. These deficiencies have motivated us to
develop a new optimization approach to enhance the existing ABC
inventory grouping and control decisions.

Our model and solution will help inventory and operations
managers to simultaneously optimize: (i) the number of classifica-
tion groups for the SKUs; (ii) optimal assignment of each SKU to a
group; (iii) target service level for each group; and (iv) optimal
allocation of available inventory budget to groups of SKUs. These
decisions are made to maximize the total net profit, subject to
explicit inventory budget constraints. We have implemented our
methodology for an industrial products’ distributor using real-life
inventory data.

The remainder of this paper is organized as follows. Section 2
reviews the related research literature and highlights contribution
of our work. Section 3 formally describes the addressed optimiza-
tion problem and presents a mixed-integer linear programming
(MILP) formulation to model it. In Section 4, we provide a case
study of our approach on a real-world inventory grouping applica-
tion. A comprehensive computational experiment is conducted to
further examine the behavior and performance of our model when
problem parameters vary. The computational results and manage-
rial insights are presented in Section 5. Finally, Section 6 draws
conclusion and discusses future research directions.

2. Related literature

Optimizing inventory classification and grouping decisions have
been intensively studied in the research literature of inventory and
operations management. The existing research can roughly be
classified into two lines of works: one considering only the inventory
clustering/classification issues, and the other addressing both inven-
tory grouping and control.

While the classical ABC analysis makes grouping decisions
based solely on a volume/cost metric (cf. Pareto, 1971), a vast line
of research generalizes it into a multi-criteria clustering frame-
work. For instance, Flores and Whybark (1986, 1987) developed a
multi-criteria ABC analysis approach by considering other classi-
fication criteria such as obsolescence, lead times, substitutability,
reparability, criticality and commonality. They employ a qualitative
approach using the concept of joint criteria matrix. Partovi and
Burton (1993) proposed a systematic approach to quantify the
priority of inventory items through the analytic hierarchy process
(AHP, Saaty, 1980). An artificial neural network (ANN) approach
was developed by Partovi and Anandarajan (2002) to learn the
optimal weights of different criteria. They show that ANN outper-
forms an alternative statistical approach based on the multiple
discriminate analysis (MDA). Bhattacharya et al. (2007) proposed a
method, called TOPSIS, to account for various conflicting criteria
having incommensurable measures.

Other researchers approach inventory grouping as an optimiza-
tion problem. Notably, linear programming approach, based on the
data envelopment analysis (DEA), has been developed by Ramanathan
(2006) and Ng (2007), and recently improved by Hadi-Vencheh
(2010) and Chen (2011). The advantage of DEA based approach is that
it is able to alleviate the impact of subjectivity on the criteria weights.
Chen et al. (2008) proposed a case-based distance model to find
optimal classification thresholds using quadratic programming.

Hadi-Vencheh and Mohamadghasemi (2011) developed a combined
AHP-DEA methodology to account for ambiguity of decision-maker's
judgments. For large instances, various metaheuristic methods have
been developed including genetic algorithm (Guvenir and Erel, 1998)
and particle swarm optimization (Tsai and Yeh, 2008) among others.

All the aforementioned works address a pure inventory group-
ing/clustering problem without explicitly considering inventory
policy and performance. Although researchers have found ways to
implicitly incorporate inventory control measures in the multi-
criteria framework, their grouping solutions do not address the
question whether the three (A–B–C) group classification scheme is
optimal, neither do they consider the interactions between inven-
tory grouping and control decisions.

A second line of research in ABC analysis explicitly addresses and
exploits the relationship between inventory classification and con-
trol decisions. Early works focus on minimizing total inventory
costs, i.e. the inventory holding cost plus ordering cost. They also
make strong assumptions to simplify a realistic inventory control
system. For instance, Crouch and Oglesby (1978) classified SKUs into
a given number of groups, while minimizing the total inventory
cost. Their model assumes that the inventory holding cost is the
same for all the items, which rarely holds in the practical setting.
Chakravarty (1981) considered a more general problem setting and
showed that the optimal grouping can be obtained by ordering the
items according to the product of demand rate and holding cost rate
(or PDHC). The use of PDHC significantly enhances the efficiency of
their dynamic programming algorithm. Aggarwal (1983) further
proposed closed-form expressions to obtain optimal grouping
boundaries under the assumption that the cumulative distribution
of inventory value can be characterized by a Pareto function. These
works share the following commonalities. Firstly, they all assume
that a group has either the same order cycle or the same order
quantity. This assumption sets up a generic inventory control policy
for a group, which reduces the burden of managing each SKU
individually. However, the implication of this assumption is that
items within the same group may have different service levels,
which leads to a different probability of fulfilling customer demand.
Secondly, they all assume unlimited spending on inventory cost, but
do not address optimal allocation of inventory budget or the
tradeoff between inventory cost and service level.

Ernst and Cohen (1990) proposed a two-stage approach based
on a blend of statistical clustering procedures and optimization
methods. Their procedure starts with solving a clustering problem
to maximize the degree of dissimilarity among inventory classes,
which is computed as a statistical measure as a function of inventory
item attributes and clustering decision. Once the clusters/classes are
determined, the second optimization problem seeks to minimize the
number of groups by assigning SKUs to selected groups, subject to
generic inventory control policy for each group and various opera-
tional performance constraints, e.g. cost, lead time, inventory turn-
over ratio, etc. Ernst and Cohen's approach provides a more general
way for inventory grouping and control, but does not directly
optimize inventory performance measures. Its two-stage nature
may also lead to sub-optimal grouping decisions.

The work of Korevaar et al. (2007) optimizes the inventory budget
using a nonlinear optimization model. Their decision variables
include whether or not to stock an SKU, the safety stock level and
reorder points of SKUs to achieve an optimal budget that achieves a
specified service level target. Their model is solved by a simulated
annealing metaheuristic.

Teunter et al. (2010) recently developed an optimization model
to simultaneously optimize inventory classification and control
decisions. Rather than using the service level as performance
measure, they proposed an alternative metric, known as fill rate,
i.e. the fraction of demands that are satisfied directly from stock on
hand, to be the classification criterion. A nonlinear optimization
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model is solved to minimize the total inventory costs, as the sum
of three components: cycle stock cost, safety stock cost and
shortage (backlog) cost. While Teunter et al.'s approach focuses
on cost minimization, our model emphasizes finding the optimal
tradeoffs among revenue, service level, inventory stock and
management cost to maximize profit.

Table 1 summarizes our review of the literature in terms of key
modeling features: objective function, performance criteria (single
or multiple), model formulation (linear or nonlinear), whether
considering inventory budget constraint or not, whether optimiz-
ing number of inventory groups, and whether considering the
overhead management cost for inventory groups. It is evident that
our work contributes the existing research literature by providing
a combination of new modeling features. Our integrated decision-
support tool may assist inventory and purchasing managers to
make inventory grouping and service level decisions subject to the
available inventory budget. Our solution simultaneously optimizes
the tradeoffs among profit, inventory investment and customer
satisfaction (via service level), and optimally allocates a company's
available budget for inventory spending.

3. Optimization model

We start with a formal description of the addressed optimiza-
tion problem, then present a mixed-integer linear programming
(MILP) model formulation and discuss its properties.

3.1. Problem description

Consider N inventory items or SKUs. Each SKU i¼ 1;…; N has an
average monthly demand of di with a standard deviation of si. We
assume that the demand of each SKU follows a normal distribution
N ðdi; siÞ. The lead time of SKU i is known to be li months. Each SKU i
has a gross profit πi, which is its selling price minus purchasing cost.
To simplify inventory management process and reduce overhead
cost, the inventory manager's task is to classify the N inventory items
into groups, then to set up a generic inventory policy, i.e. service
level, for each group. The inventory holding cost for SKU i is ci per
unit. Clearly, setting a 99.99% service level for all the SKUs achieves
the highest revenue, but is not practically feasible because doing so
also incurs a significant amount of inventory cost. The company has
an inventory stocking budget of B available for the planning horizon.

The inventory manager must optimally allocate B to the SKUs to
maximize the total net profit.

Let j¼ 1;2;…; M be M candidate groups, each of which is
associated with a service level αjA ½0; 1Þ. When demand is nor-
mally distributed, it is well-known that the inventory level of SKU i
to achieve αj (in group j) can be computed in a standard way as the
sum of mean demand plus safety stock (cf. Ballou 2004)

diliþzjsi
ffiffiffi
li

p
; ð1Þ

where zj is the z-value associated with αj in the standard normal
distribution.

Note that in general, the inventory level in (1) can be negative
when (i) zj is negative (αj is less than 50%), (ii) si is large (large
variation in demand), or (iii) lead time li is long.

From the management perspective, there is a cost ωj for main-
taining and managing an inventory group j. Purchasing departments
often assign buyers to an inventory class to coordinate the ordering
of these items. This management cost may also include additional
purchasing and administrative costs incurred for each group. The
benefit of the classical ABC method may be largely due to its
simplicity in implementation and low administrative cost of main-
taining only three inventory groups. Our model is able to improve
and generalize the classical ABC method by optimizing the tradeoff
between granularity of service level (number of groups) and man-
agement cost incurred.

Our current approach assumes that ωj is constant, i.e. the same
amount of management effort is needed for each additional group. In
practice, it is possible that ωj is a decreasing function of the number of
groups through the economies of scale. Taking the staffing cost needed
for managing inventory groups for example, it is possible for the same
team to manage multiple inventory groups, so that the staffing cost
per group may be diminishing with respect to the number groups.
Thus our assumption of a constant ωj is somewhat conservative for
the benefit of our approach. The other possibility is that the effort of
managing an inventory group might be an increasing function of the
number of SKUs and/or inventory volumes in a group. However, to
model such increasing relationship requires more data, and the
resulting model will become nonlinear which requires a different set
of solution methods. Such investigation goes beyond the scope of
this paper.

In our addressed inventory grouping optimization problem, the
decision-maker simultaneously makes two decisions: selecting the
number of inventory groups (with corresponding service levels) and

Table 1
Comparison of features of different inventory grouping models.

Approaches Obj. function Criteria Model
formulation

Budget
constraint

Optimizing # groups Management
cost

Optimizing only inventory classification
Ernst and Cohen (1990) Minimize # of groups Multiple Linear No Yes No
Guvenir and Erel (1998) Minimize distance of expert ranking Multiple Nonlinear No No No
Partovi and Anandarajan (2002) Minimize distance of expert ranking Multiple Nonlinear No No No
Ramanathan (2006) Maximize performance score Multiple Linear No No No
Bhattacharya et al. (2007) Minimize distance from the ideal Multiple Linear No No No
Ng (2007) Maximize performance score Multiple Linear No No No
Hadi-Vencheh (2010) Maximize performance score Multiple Nonlinear No No No
Chen (2011) Maximize performance score Multiple Linear No No No
Chen et al. (2008) Minimize distance Multiple Linear No Yes No
Tsai and Yeh (2008) Maximize performance score Multiple Nonlinear No Yes No
Optimizing both inventory grouping and control
Crouch and Oglesby (1978) Minimize cost Single Nonlinear No No No
Chakravarty (1981) Minimize cost Single Linear No Yes No
Aggarwal (1983) Minimize cost Single Linear No Yes No
Korevaar et al. (2007) Minimize inventory budget Single Nonlinear No No No
Teunter et al. (2010) Minimize cost Single Nonlinear No No No

This paper Maximize profit
Single/
multiple

Linear Yes Yes Yes
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assigning each SKU to an appropriate group. These decisions must
be made so that the total inventory holding cost does not exceed
the available inventory spending budget. The objective function is
to maximize the total net profit as the difference between the total
gross profit and the total inventory group management cost.

3.2. MILP formulation

We formulate the addressed optimization problem as a mixed-
integer linear program (MILP) below.

Parameters

N: number of inventory items (SKUs)
M: maximum number of inventory groups
di: mean of monthly demand of SKU i¼ 1;…; N
si: standard deviation of monthly demand of SKU i¼ 1;…; N
li: lead time of SKU i¼ 1;…; N
πi: gross profit per unit of SKU i¼ 1;…; N
ci: inventory holding cost per unit of SKU i¼ 1;…; N
ωj: fixed overhead management cost for inventory group
j¼ 1;…; M
B: available budget for total inventory cost
αj: service level associated with group j¼ 1;…; M
zj: z-value associated with the service level αj of group
j¼ 1;…; M
Decision variables
yj ¼ 1: if inventory group j is selected, and 0 o.w. for j¼ 1;…; M
xij ¼ 1: if SKU i is assigned to group j for i¼ 1;…; N and
j¼ 1;…; M
viZ0: inventory level of SKU i¼ 1;…; N

Objective function

Maximize ∑
N

i ¼ 1
∑
M

j ¼ 1
πidiαjxij� ∑

M

j ¼ 1
ωjyj ð2Þ

Constraints

∑
M

j ¼ 1
xijr1; 8 i¼ 1;…; N ð3Þ

∑
N

i ¼ 1
xijrNyj; 8 j¼ 1;…; M ð4Þ

vi ¼ ∑
M

j ¼ 1
dilixijþ ∑

M

j ¼ 1
zjsi

ffiffiffi
li

p
xij; 8 i¼ 1;…; N ð5Þ

∑
N

i ¼ 1
civirB ð6Þ

viZ0; 8 i¼ 1;…; N ð7Þ

xijAf0; 1g; 8 i¼ 1;…; N; 8 j¼ 1;…; M ð8Þ

yjAf0; 1g; 8 j¼ 1;…; M ð9Þ

The objective function (2) maximizes the total net profit computed
as the total gross profit subtracting the total overhead inventory
management cost. Here the service level is treated as a fill rate to
compute the amount of demand that can be satisfied (fulfilled) by
the SKU stock. The product term diαj is the expected average
demand that can be fulfilled for SKU i if i is placed in the inventory
group j with fill rate αj. Then the inner summation ΣM

j ¼ 1πidiαjxij
over all the M inventory groups computes the gross profit
generated by SKU i given its inventory grouping decision xij. Thus
the entire first term ∑N

i ¼ 1∑
M
j ¼ 1πidiαjxij in objective function (2) is

the total gross profit of all N SKUs. Such concept of fill rate has also
been used by other researchers (cf. Teunter et al., 2010).

Constraint (3) assigns an SKU to at most one group. Note that it is
feasible not to assign SKU i to any group. Proposition 1 will reveal the
condition for this to happen and its implication. Constraint (4)
enforces that a group must be selected in order for any SKU to be
assigned to the group. In other words, if group j is not selected, no
SKU can be assigned to j. Constraint (5) computes the inventory level
of SKU i based on (1). Constraint (6) ensures that the total inventory
holding cost does not exceed the available budget. Constraints (7)
through (9) specify the domain of decision variables.

We now discuss some important properties concerning the MILP
formulation. Recall that for each combination of ði; jÞ, the inventory
level (1) may be negative. We need to show that this does not affect
the feasibility of the system of constraints (3) through (9). For
convenience, we define δij as the inventory level of SKU i if it is

assigned to group j, i.e. δij ¼ diliþzjsi
ffiffiffi
li

p
according to (1). We state

and prove Proposition 1 below.

Proposition 1. For a pair of SKU i and group j, if δijo0, i must not be
assigned to j, i.e. xij ¼ 0.

Proof. By contradiction, suppose it is also feasible that xij ¼ 1.
Because SKU i cannot be assigned to any other group (constraint
(3)), i is assigned to group j with z-value zj. Thus its inventory level
vi ¼ δijo0. Since the decision variable must be non-negative (7),
there exists a contradiction. Therefore, xij ¼ 0 when δijo0. □

Proposition 1 implies that it is possible to keep zero inventory
for an SKU i if none of δij is positive for all j¼ 1;…; M. This feature
allows our model to determine which SKUs should be stocked and
which should not. In principle, if an SKU has a low profit margin, a
low average demand but a high variation and long lead time, one
may opt not to stock it. This type of decision is known as inventory
(SKU) rationalization (cf. Borin and Farris, 1990; Quelch and Kenny
1994; Byrne, 2007; Mahler and Bahulkar, 2009). Therefore, a side
benefit of our model is to provide a rigorous way for optimal SKU
rationalization: poor performing SKUs will be rationalized out of
the inventory set and will not consume the company's inventory
budget.

The MILP model is NP-hard, so that there is no polynomial
algorithm to solve it to optimality. The proof of NP-hardness is
established by transforming the formulation into an un-capacitated
facility location problem (UFLP, cf. Drezner and Hamacher, 2004).

Proposition 2. The MILP formulation (2) through (9) for inventory
grouping optimization is NP-hard.

Proof. It suffices to show that the MILP formulation is equivalent to
a UFLP. We create a dummy group ϕ representing an inventory group
with zero service level, i.e. αϕ ¼ 0, and set δiϕ ¼ 0 for every SKU i (by
letting the safety stock to be equal to �dili). Then constraint (3)
becomes (3’): ΣM

j ¼ 1xij ¼ 1 for each i¼ 1;…; N, which means that we
now assign each SKU to exactly one group. Since the dummy group's
service level is zero ðα¼ 0Þ, any SKU assigned to the dummy group
does not generate any profit or is there any inventory for the SKU
because δiϕ ¼ 0. By relaxing constraint (6), the MILP formulation (2),
(3’), (4) plus (8) and (9) is equivalent to a UFLP, which is well-known
to be NP-hard. Therefore, the original MILP formulation is NP-hard. □

The model formulation (2) through (9) has a single-objective
function (2) to explicitly optimize inventory performance defined by
the criterion of profitability. Other criteria implicitly optimized by the
model include service level in (2) and (5), inventory holding cost in
(5) and inventory management cost due to grouping in (2). Optimi-
zation of these implicit criteria can be achieved by the concept of
efficient frontier through the sensitivity analysis in mathematical
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programming. This will be elaborated in our computational experi-
ment in Section 5.

3.3. Model extension: multi-criteria optimization

In this section, we extend our single-objective optimization
model to a multi-objective one that explicitly optimizes inventory
performance measured by multiple criteria. Consider a set of criteria
k¼ 1;2;…; K . They can be either quantitative such as demand
volume, unit cost and lead time (cf. Flores and Whybark, 1986;
Partovi and Burton, 1993); or qualitative such as replaceability
(Guvenir and Erel, 1998) and criticality (Ramanathan, 2006). Repla-
ceability measures the easiness of replacing an item by a different
one, i.e. how easy is it to substitute an item. Criticality may reflect a
company's strategic positioning of its customers.

Let sik be the score of SKU i¼ 1;…; N for criterion k¼ 1;2;…; K ,
and wk be the weight for criterion k evaluated by a decision-maker
(DM) or the consensus from a group of DMs. A weight wk indicates
the relative importance of criterion k among all K criteria, such that
ΣK
k ¼ 1wk ¼ 1. The weighted performance score f i of SKU i can be

computed as f i ¼ ΣK
k ¼ 1wksik. We then use the well-known weighting

method in multi-objective optimization (Cohon, 1978) to maximize
the overall weighted performance score FðU Þ of all SKUs

Maximize F ¼ ∑
N

i ¼ 1
∑
M

j ¼ 1
f idiαjxij ð2’Þ

Objective function (2’) has as similar structure as (2) with the unit
profit πi replaced by the weighted performance score f i. The resulting
multi-objective model (2’) plus (3) through (9) is capable of incorpor-
ating DM’s subjective judgments and opinions in optimizing inven-
tory grouping.

4. A case study: optimized ABC analysis

Our research was motivated by a consulting project for an
industrial products distributor of pneumatic products: air compres-
sors, air compressor parts, valves and fittings. The company distributes

products for 48 manufacturers in its sales region. The company's
annual sales are approximately $16,000,000, and 6703 SKUs were
stocked in its warehouses.

During the economic expansion of the early 2000s, the company's
sales grew along with the construction industry and the general
economy. Inflated by strong sales, its inventory management policy
had become relaxed. Going into the recession, beginning in 2008, the
company found its inventory costs growing while sales decreased.
Worse than these general conditions, was that the best-selling SKUs
always seemed to be out-of-stock, while slow-movers continued to be
purchased. An imperative decision now faced by the company's
inventory manager is to classify the thousands of SKUs into reasonable
groups with appropriate service levels, so that the company's limited
inventory budget can be best utilized, and the effectiveness of
managing these groups can be improved. The company has a planned
budget of 2 million dollars, which is determined by the inventory
manager to achieve approximately 6 inventory turns per year. There is
an estimated fixed overhead, or management cost of 1000 dollars per
inventory group. Sales and inventory data for a 12-month period is
available for this project.

The company currently implements a traditional ABC approach to
classify its SKUs based on their sales volume. After the A, B, and C
groups and the SKUs memberships are identified, an iterative
procedure is employed to set/adjust service levels for SKU groups
as depicted in Fig. 1. The procedure starts with an arbitrary service
level for each group based on decision-maker's experience, e.g., 95%,
87% and 80% for Class-A, Class-B and Class-C, respectively. Since this
decision is made without considering the available inventory budget,
the initial service levels may lead to violation of available budget.
Therefore, the decision-maker needs to go back-and-forth revising
the service levels until a feasible and “good” (in a heuristic sense)
solution is reached.

In addition to being a tedious number-crunching process, the
inventory control policies suggested by the existing approach are often
sub-optimal. One solution obtained from the ABC procedure of Fig. 1 is
shown in Table 2. The inventory manager raises the following issues:
(i) the annual sales of A-Class ranges from $186.23 to $38,461.89,
yet all of them are assigned to the same high service level; (ii) the
difference ($0.34) between the annual sales of the bottom A-Class SKU

Set initial service levels
A = 95%
B = 87%
C = 80%

Is inventory
budget over or
under target

Procedure for Setting Service Level by Item Class

Determine
inventory budget
with sales and

finance

Based on inventory
turnover target and

availability of
financing

Adjust based on
input of sales and

finance
departments

Input z value corresponding to
service level for A, B and C

classifications to reorder point
calculation for entire inventory set

StopNo

Adjust service
level targets for A,

B and C

Is inventory
budget over or
under target

Notify sales
department of
final service

levels by class

Yes

No

Yes

Fig. 1. Flow chart of an iterative ABC procedure for inventory grouping.
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and top B-Class SKU, and the difference ($0.01) between the bottom
B-Class SKU and top C-Class SKU, is not significant enough to justify
the difference of their service levels; (iii) the solution makes no
recommendation about SKU rationalization, although the manager
believes that the company should keep no inventory for certain SKUs.

The inventory manager would like to answer the following
questions:

� Is the three-group (A–B–C) scheme optimal? Specifically,
should the company manage more groups than three, with
more differentiation and granularity of service levels to achieve
more profit?

� Is annual sale a reliable criterion for SKU-group assignment?
� How to optimally allocate the company's available inventory

budget to SKUs?
� Should the company exclude some SKUs out of inventory? If so,

which SKUs?

We implement the MILP model presented in Section 3 to
answer these questions. In our implementation, a total of 108
potential inventory groups are considered including 99 groups
with service levels from 1% to 99% (with an increment of 1%), plus
9 groups with service levels from 99.1% to 99.9% (with an
increment of 0.1%). The purpose of considering the additional nine
groups is to granulize the continuous service level space, as these
higher service levels are usually assigned to more important SKUs.

Our MILP model was solved by the branch-and-cut (B&C) method
in integer programming through CPLEX 12.1 on a desktop PC with
Pentium 3.3 GHz CPU speed and 8 G RAM. The default CPLEX
settings for B&C were used. It took CPLEX about 5 h to find optimal
solution (and prove optimality). Comparing with the days or even
weeks of time spent on the manual iterative procedure, this is clearly
an improvement of solution efficiency for the company.

An optimal solution found by our MILP model recommends
8 inventory groups instead of 3. It generates 3.85% more profit than
the ABC classification solution. The service levels, group size,
inventory spending and profits of the eight groups are provided in
Table 3. We compute the return of investment (ROI) in the last
column as a measure to quantify the benefit of keeping the
corresponding inventory group.

The optimal inventory grouping and service level solution differ
significantly from the one found by the ABC procedure. The group
with the highest 99% service level accounts for only 8.55% of the total
6703 SKUs, but has the highest gross profit. However, it is far less
than the 80% of profit as suggested by the ABC scheme. Furthermore,
while the ABC solution assigns the bottom 50% of SKUs to the C-Class
(Flores andWhybark, 1986), our optimal solution has grouped 60% of
the items into some intermediate service level groups, i.e. 98%, 96%
and 93%. It is evident that our optimal solution has roughly assigned
SKUs with higher ROIs higher service levels, which is intuitively
plausible. This result suggests that when the company has limited
inventory budget available, the ROI might be a better choice than
sales alone (as in the ABC analysis) to be the classification criterion.
In addition, our MILP model also serves as an SKU rationalizer by
identifying 66 SKUs with zero service level and inventory.

5. Computational experiment

We perform additional computational experiments to examine the
behavior of our MILP model when some key problem parameters vary.
In particular, we would like to understand the impact of management
cost per group ω, and the available inventory budget B on the optimal
inventory grouping solutions. Our goal is to obtain managerial insights
for practitioners to better characterize optimal inventory grouping and
service level strategy.

5.1. Sensitivity analysis of problem parameters

We let management cost per group ω vary in the interval of [200,
2000] with an increment of 200, which leads to 10 values for ω. The
available inventory budget B is changed in the interval of [1,000,000,
3,000,000] with an increment of 200,000, which gives 11 values for
B. The MILP model is solved for a total of 10� 11¼ 110 combina-
tions of ω and B.

Table 2
Inventory grouping and service level solution from the ABC approach.

SKU rank ABC class Service level (%) Annual sales ($)

1 A 93 $38,461.89
1341 A 93 $186.23
1342 B 90 $185.89
3352 B 90 $45.97
3353 C 80 $45.96
6703 C 80 $0.02

Table 3
Optimal inventory grouping and service level solution found by the MILP model.

Group with
service level (%)

# of SKUs (%) Inventory
spending ($)

Gross profit ($) ROI

99 573 (8.55) $298,657 $1,340,921 4.49
98 1196 (17.84) $435,320 $1,290,743 2.96
96 1537 (22.93) $539,320 $1,094,234 2.02
93 1282 (19.13) $410,762 $649,392 1.58
87 941 (14.04) $233,731 $275,350 1.17
73 487 (7.27) $71,398 $76,216 1.06
39 621 (9.27) $10,783 $23,644 2.19
0 66 (0.98) $0 $0 –
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Fig. 2. Optimal number of groups when management cost per group increases.
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As shown in Fig. 2, a higher management cost per group will
discourage selecting more inventory groups. Such relationship
appears to be nonlinear. We state Insight 1 below.

Insight 1. As the management cost per group increases, the optimal
number of inventory groups will decrease at a diminishing rate.

The nonlinear relationship between the optimal number of
groups and management cost per group justifies the need of an
optimization model for decision-support. Without the solution
offered by our MILP model, it will not be straightforward to
determine the optimal number of inventory groups.

To understand the impact of available inventory budget, we
plot the relationship between the optimal number of groups and
the inventory budget in Fig. 3, with the management cost per
group being fixed at different levels: $200, $1000 and $2000. One
observes that as more inventory budget is available, there will be
fewer inventory groups in an optimal solution; when inventory
budget becomes tight, the optimal number of inventory groups
will increase. As an extreme case, when there is plenty of capital
available for inventory investment, the optimal number of groups
will converge to three as suggested by the ABC method. One
should realize that even in this case the ABC approach might still
be sub-optimal because it does not optimally assign SKUs to the
inventory groups (service levels).

Fig. 3 also shows that the above relationship between the optimal
number of groups and the inventory budget appears to be similar for
different management costs per group, but with different sensitivity.
When the cost of managing an inventory group is low, the optimal
number of groups is more sensitive to the inventory budget. That is, a
small decrease of inventory budget may lead to a significant increase
in optimal number of inventory groups. These observations are
summarized by Insights 2 and 3 below.

Insight 2. It is optimal to select more inventory groups when the
available inventory budget is tight; there is less incentive to select
more inventory groups when there is plenty inventory budget
available.

Insight 3. The relationship between the optimal number of
inventory groups and available inventory budget in Insight 2 is
more significant when the management cost per group is low.

Insight 2 justifies the benefit and value of our optimization
model when the inventory budget is tight, because in such cases
there is more incentive to better allocate the available budget, by
differentiating their service levels. Insight 3 suggests that there is
incentive to reduce management cost per group, possibly by using

electronic data interchange (EDI), to facilitate managing multiple
inventory groups.

We next examine how the profit found by the optimization and
ABC methods change when the available inventory budget varies in
Fig. 4. The net profit increases rapidly as the available budget
increases from $1,000,000 to $1,500,000 initially. As the budget is
increased further, the rate of change decreases, reflecting a dimin-
ishing return of the inventory investment. Insight 4 follows.

Insight 4. The net profit increases as the inventory budget increases,
at a decreasing rate. That is, the inventory investment has a dimi-
nishing return on profitability.

Our optimization model is able to help a company answer
interesting and important what-if type questions about the benefit
of increasing inventory budget. For example, how much more
profit can be generated if the company increases its inventory
budget by 0.5 $million? Due to the nonlinear relationship between
net profit and inventory budget in Insight 4, the answer depends
on what the company's current budget is. For instance, if the
company is currently spending 1 $million, increasing the budget to
1.5 $million will generate over $250,000 more net profit; however,
if the company is already spending 2.5 $million, increasing to 3
$millions brings less than $100,000 more net profit. Without the
decision-support of an optimization model it would not be
intuitive to quantify the incentive of increasing inventory budget
because of their non-linear relationship.

The sensitivity analysis in Fig. 4 also offers a constraint method in
multi-objective optimization to exploit the best tradeoff between
two objectives (cf. Cohon 1978). The optimal net profit curve defines
an efficient frontier showing the best possible (maximum) total net
profit for certain inventory holding budget. Since the net profit curve
obtained by the ABC method always lies within the efficient frontier,
our optimization model always outperforms the ABC method in
solution quality. Further comparison leads to Insight 5.

Insight 5. The optimization model performs significantly better
than the ABC method when the available inventory budget is tight.
Its advantage over the ABC method diminishes when there a plenty
of inventory budget available.

When the inventory budget is ample, the optimal number of
groups converges to three (Insight 2), so that the quality of ABC
solution is close to that of the optimal solution; when the inventory
budget is tight, it becomes necessary to have more groups than three,
thus the advantage of the MILP's optimal solution over the ABC
solution becomes more significant.
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5.2. Dynamic implementation results

To examine the performance of our approach over time, we
implement the MILP and ABC solutions over a course of 12 months.
The 6703 SKUs’ 12 month actual demand data of the distributor in
the case project are used for this experiment. The flow of the
dynamic procedure is depicted in Fig. 5. Given the SKU grouping
and service level solutions suggested by either solution (the MILP
model or the ABC method), the reorder point of each SKU can be
computed. The procedure starts with some initial inventory. Then
the actual demand is observed to update both the satisfied demand
and remaining inventory level. If the remaining inventory is below
the reorder point, an order is placed with quantity equal to the
average monthly demand. The lead times for all SKU orders are
assumed to be 1 month. The above process repeats for every time
period to evaluate the overall solution performance.

Since our MILP solution performs significantly better than the
ABC solution when the budget is tight, we first examine the case
where the budget is ample ($ 3million). Fig. 6 compares the profit

obtained (a) and inventory cost spent (b) in each month. We state
the following two hypotheses.

Hypothesis 1. The MILP solution generates higher profit in each
month than the ABC solution does.

Hypothesis 2. The MILP solution spends less inventory cost in
each month than the ABC solution does.

The two-sample paired t-test is performed to test the two
hypotheses. Both are supported at confidence level greater than
99.99%. Insight 6 follows.

Insight 6. Our MILP solution consistently outperforms the ABC
solution in inventory spending and profitability in the multi-
period setting.

We next vary the available budget level to implement the
dynamic procedure. Fig. 7 summarizes the advantage of MILP
solution in both multi-period (dynamic) and one-period (static)

Set initial inventory

Monthly
demand >
inventory

level

Satisfy demand
up to inventory

level
Yes

Dynamic Procedure – Logic for Evaluating Inventory Levels

The model repeats the
comparison of demand versus
inventory level for the next month.

Satisfy all
customer demand
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Monthly
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inventory

level

Inventory level =
initial inventory
level – satisfied

demand
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Inventory level =
initial inventory

level – customer
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Place order for
reorder quantityYes

No action
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Deliver order in
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exponential smoothing

Fig. 5. Dynamic procedure to implement the inventory group solution.

Fig. 6. Monthly performance of the MILP and ABC solutions. (a) Monthly net profit and (b) monthly inventory spending.
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settings with different budget levels. In the dynamic setting, the
percentage of improvement of MILP solution over the ABC solution
decreases from 4.5% to 1.3% when the available inventory budget
increases from $ 1 million to $ 3 million. In the static setting, the
percentage of improvement is significantly higher (over 30%) when
budget is $ 1 million, but lower (0.57%) when budget is $ 3 million.

We now examine why a dynamic implementation of the MILP
solution shows less advantage over the ABC solution compared
with the static implementation. Note that an order to replenish is
only activated when the on-hand inventory level triggers the
reorder point. When the actual monthly demand is low enough
and the on-hand inventory level remains higher than the reorder
point, no replenishment order will be made, so that the service level
determined by either the MILP or ABC solution will in fact be greater
than the target. This is often the case for SKUs with low and sporadic

demand. Fig. 8 shows examples of demand distributions of four
SKUs. The demand in (a) appears to be symmetric and normally
distributed, as assumed in our MILP model; the one in (b) is non-
symmetric and biased toward lower demand; the demand in (c) and
(d) is more sporadic with extremely low quantity. The existence of
demand patterns such as (b), (c) and (d) deviates the assumption of
normal demand distribution in the MILP model, and leads to less
frequent replenishment of the corresponding items, thus mitigating
the disadvantage of the ABC solution.

6. Conclusion and future research

In this paper, we have developed an optimization model to
simultaneously determine inventory groups, their corresponding
service levels and assignment of SKUs to groups. It generalizes and
enhances the well-known ABC inventory grouping approach by
offering integrated, automated and optimized solutions. Our model
differs from the existing optimization models in the literature with
two distinctive features. First, rather than minimizing inventory cost,
our model maximizes the profitability of a company. Second, our
solution optimizes the tradeoff between inventory cost and profit,
and optimally allocates the inventory budget to SKUs. Our approach
may also serve as an SKU rationalization tool to help inventory
managers decide which SKUs should better to be kept out of stock.

Our optimization model and solution are applicable to companies
and organizations in various industries: manufacturing, distribution,
retail and health care. We have implemented our methodology for a
real-life company who distributes thousands of industrial products
to business customers. Solution offered by our model has improved
the company's total net profit by 3.85%, compared with past ABC
solution implemented at the company. Our solution helps better
manage inventories by optimally assigning service levels to SKUs and
determining with SKUs should be rationalized out of stock.
Moreover, the sensitivity analysis provided by our approach helpsFig. 7. Percentage of improvement of MILP solution over ABC solution.

Fig. 8. Demand distributions of four SKUs. (a) SKU no. P/TH20106BU-250R, (b) SKU no. P/T24044NA-100, (c) SKU no. P/T89153 and (d) SKU no. P/TR910922790.
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inventory managers to quantify the impact of inventory spending
and inventory group management cost on the optimal inventory
grouping decision and profitability.

Through a comprehensive computational experiment, we have
obtained several managerial insights about optimal inventory group-
ing and control strategy. (i) When the management cost per group can
be reduced, it is optimal to differentiate service levels for SKUs by
classifying them into more granular groups. (ii) Our solution shows a
diminishing return of inventory spending on the net profit, and can
help a company quantify and justify the benefit of increasing
inventory budget. (iii) We find that there is more incentive to increase
the number of inventory groups when the available inventory budget
is tight; whereas when there is plenty of budget available, it might be
acceptable to aggregate SKUs into a small number of groups as in the
traditional ABC approach. The capability of being able to optimally
allocate limited inventory spending among SKUs is of importance in
today's completive business environment.

Our work has the following limitations, which also opens the door
for future study. Firstly, our current model is a one-period static
model. Although it can be implemented in a rolling horizon fashion as
shown in Section 5.2, it will be interesting to develop a multi-period
dynamic inventory grouping model that directly optimizes the group-
ing decisions taking the future demand projection and trend into
consideration. Secondly, the current model is based on a deterministic
optimization approach, which can be improved by an integrated
simulation–optimization approach to optimize inventory grouping
decisions under uncertainty. In addition, due to limited availability
of data, our computational study has focused on the model with
single-objective. We plan to continue working with our industrial
partners on inventory grouping optimization with multiple criteria. It
is also our plan to consider other practical inventory management
settings such as quantity discounts, perishable SKUs, and variable
overhead management cost per inventory group as a function of the
number of groups, the number of SKUs or volumes in each group.
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