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1. Introduction

Let G be a graph of order n and size m. G may have parallel edges and/or loops. The 
Ihara zeta function of G is a function of complex argument defined, for |u| sufficiently 
small, by

ZG(u) =
∏

[C]

(1 − uν([C]))−1,
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where [C] runs over all the prime cycles of G and ν([C]) denotes the length of [C]. We 
refer the reader to [25] for an in-depth treatment of zeta functions of graphs.

Bass [1] showed that the Ihara zeta function satisfies the following determinant for-
mula:

ZG(u)−1 = (1 − u2)m−n det(In − uA + u2(D − In))

where A and D are the adjacency and degree matrices of G, respectively.
The zeta function of a connected graph G that is md2 (i.e. it has no pendant vertices) 

encodes several invariants of the graph, including its order, size, number of loops, girth, 
and complexity (the number of spanning trees). In addition, ZG determines whether G
is regular, bipartite, or a circuit graph and, for particular classes of graphs, determines 
the graph’s adjacency spectrum [8,9,14,23].

Motivated by the theory of electrical networks, Klein and Randic [16] introduced a 
distance function on a simple connected graph G, subsequently called the resistance 
distance: the resistance distance between a pair of vertices vi and vj of G is the effective 
resistance rij between vi and vj , when G is regarded as an electrical network with unit 
resistors placed on each edge.

Using the resistance distance metric, a graph invariant called the Kirchhoff index was 
defined [5,16] as

Kf =
∑

1≤i<j≤n

rij .

More recently, two other resistance distance-based graph invariants were put forward: 
the additive degree-Kirchhoff index [12], defined as

Kf+ =
∑

1≤i<j≤n

(di + dj)rij

and the multiplicative degree-Kirchhoff index [6], defined as

Kf∗ =
∑

1≤i<j≤n

didjrij

where di and dj are the degrees of the vertices vi and vj .
A small sample of recent articles about the three invariants is [3,4,7,10,15,17,20–22,

26,27].
If SpecL(G) = {μ1 = 0, μ2, ..., μn} and SpecN (G) = {ν1 = 0, ν2, ..., νn} are the 

Laplacian and normalized Laplacian spectra of G, respectively, then [6,13]

Kf = n

n∑

i=2

1
μi

(1)
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and

Kf∗ = 2m
n∑

i=2

1
νi
. (2)

The additive degree-Kirchhoff index can be determined using a probabilistic approach 
(see [19,20] for details): define a random walk on a simple connected graph G of order n, 
size m, and degree sequence d1, d2, ..., dn, as the n-state Markov chain with transition 

matrix P = (pij), where pij = 1
di

, if vertices vi and vj are neighbors, and 0 otherwise. 

The stationary distribution π = (πi)1≤i≤n of the chain is given by πi = di
2m . Let W be 

the n × n matrix whose rows are all equal to π. If Tj denotes the hitting time of vertex 
vj and EiTj is the expected value of Tj when the walk starts at vertex vi then, as shown 
in [20],

Kf+ =
n∑

i=1

∑

j �=i

πjEiTj +
n∑

j=1

∑

i�=j

πiEiTj . (3)

It is known that EiTj = zjj − zij
πj

, where zij are the entries of the fundamental matrix 

Z = (In − P + W)−1.
A natural question is whether the Ihara zeta function determines any of these Kirch-

hoffian indices. While, for arbitrary graphs, the answer is no, in this note we show that 
the Ihara zeta function of an md2 graph encodes a resistance distance-based invariant 
defined as

∑

1≤i<j≤n

(di − 2)(dj − 2)rij .

2. Main results

For the rest of the note, G is a connected md2 graph that may have parallel edges 
and/or loops. If we order the vertices v1, ..., vn of G, then the adjacency matrix of G
is an n × n matrix A = (aij), where aij = the number of edges between vi and vj , if 
i �= j, and aii = twice the number of loops at vertex vi. The degree matrix of G is the 
diagonal matrix D = diag(d1, ..., dn), where di = the number of first neighbors of vertex 
vi plus twice the number of loops at vertex vi. The Laplacian matrix of G is the matrix 
L = D − A.

The resistance distance in a simple connected graph can be expressed in terms of the 
minors of its Laplacian matrix [2]: if i �= j then

rij = detL(ij)

τ
(4)
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where L(ij) is the matrix obtained from L by deleting its ith and jth rows and columns 
and τ denotes the complexity of G; if i = j then rii = 0. We use (4) to define the 
resistance distance in connected graphs with parallel edges and/or loops. This allows us 
to extend the definitions of the three Kirchhoffian indices to such graphs.

In addition, we define (for md2 graphs)

Kfz =
∑

1≤i<j≤n

(di − 2)(dj − 2)rij .

Note that, if G is r-regular, then Kfz = (r− 2)2Kf . In general, for arbitrary connected 
graphs,

Kfz = Kf∗ − 2Kf+ + 4Kf.

If G has one or more loops at each vertex, then Kfz(G) = Kf∗(G′), where G′ is the 
graph obtained from G by deleting one loop from each vertex.

Northshield [18] showed that, for a graph G of order n, size m, adjacency matrix A, 
and degree matrix D, if f(u) = det(In − uA + u2(D − In)) then

f ′(1) = 2(m− n)τ.

In light of Northshield’s result, it is natural to ask if the second derivative of f encodes 
any important information about the graph.

Theorem 2.1. Let G be an md2 graph of order n, size m, complexity τ , with adjacency 
matrix A and degree matrix D. If f(u) = det(In − uA + u2(D − In)) then

f ′′(1) = 2(Kfz + 2mn− 2n2 + n)τ.

Proof. We proceed like in [18]. Let

f(u) = det(In − uA + u2(D − In)) = det((1 − u2)In + uL + (u2 − u)D)

where L = (lij) is the Laplacian matrix of G and

M(u) = (1 − u2)In + uL + (u2 − u)D.

For 1 ≤ p ≤ n, let Mp(u) be the matrix obtained by differentiating the pth row of 
M(u). Then

det(M(u))′ =
n∑

p=1
det(Mp(u)).
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Note that the entry (i, j) of Mp(u) is

mp,ij = (1 − udi + u2(di − 1))δij + ulij +

+ [((3di − 2)u− (di − 1)u2 − di − 1)δij + (1 − u)lij ]δip

where δij denotes the Kronecker symbol.
For 1 ≤ p �= q ≤ n, let Mpq(u) be the matrix obtained by differentiating the pth

and qth rows of M(u). In addition, let Mpp(u) be the matrix obtained by differentiating 
twice the pth row of M(u). Then

f ′′(1) =
n∑

p=1
det(Mpp(1)) + 2

∑

1≤p<q≤n

det(Mpq(1)). (5)

Since the non-diagonal entries on the pth row of M(u) are linear in u, then the pth row 
of Mpp(1) has all the entries equal to 0 except for the diagonal entry, which is 2(dp− 1). 
It follows that

det(Mpp(1)) = 2(dp − 1) detL(p),

where L(p) is the matrix obtained from L by deleting its pth row and column. By the 
matrix-tree theorem, detL(p) = τ . Therefore

n∑

p=1
det(Mpp(1)) = (4m− 2n)τ. (6)

Now let 1 ≤ p < q ≤ n. Then

Mpq(1) = L + (dp − 2)Sp + (dq − 2)Sq,

where Sp = (sij), with sij = δijδip. Note that

det(L + (dp − 2)Sp + (dq − 2)Sq) =

= det(L + (dq − 2)Sq) + (dp − 2) det(L(p) + (dq − 2)S(p)
q ) (7)

where S(p)
q is the matrix obtained from Sq by deleting its pth row and column.

Using the matrix-tree theorem,

det(L + (dq − 2)Sq) = detL + (dq − 2) detL(q) = (dq − 2)τ

and

det(L(p) + (dq − 2)S(p)
q ) = detL(p) + (dq − 2) detL(pq) = τ + (dq − 2) detL(pq).
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Therefore, according to (7)

det(L + (dp − 2)Sp + (dq − 2)Sq) =

= (dp + dq − 4)τ + (dp − 2)(dq − 2) detL(pq)

which, by (4), can be expressed as

(dp + dq − 4)τ + (dp − 2)(dq − 2)rpqτ.

It follows that
∑

1≤p<q≤n

det(Mpq(1)) =
∑

1≤p<q≤n

(dp + dq − 4)τ +
∑

1≤p<q≤n

(dp − 2)(dq − 2)rpqτ =

= [(2m− 2n)(n− 1) + Kfz]τ. (8)

The desired equality follows from (5), (6), and (8). �
The corollary from [18] shows that

lim
u→1−

ZG(u)−1(1 − u)n−m−1 = −2m−n+1(m− n)τ.

Corollary 2.2.

lim
u→1−

ZG(u)−1(1 − u)n−m−1 + 2m−n+1(m− n)τ
1 − u

=

= 2m−n(Kfz + m2 − n2 + n)τ.

Proof. Note that

ZG(u)−1(1 − u)n−m−2 = (1 − u2)m−nf(u)(1 − u)n−m−2 = (1 + u)m−nf(u)
(1 − u)2

so

lim
u→1−

[ZG(u)−1(1 − u)n−m−2 + 2m−n+1(m− n)τ
1 − u

] =

= lim
u→1−

[ (1 + u)m−nf(u)
(1 − u)2 + 2m−n+1(m− n)τ

1 − u
] =

= lim
u→1−

(1 + u)m−nf(u) + 2m−n+1(m− n)τ(1 − u)
(1 − u)2 .

Since f(1) = detL = 0, the previous limit equals

lim
u→1−

(m− n)(1 + u)m−n−1f(u) + (1 + u)m−nf ′(u) − 2m−n+1(m− n)τ
−2(1 − u) .
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Using the Theorem from [18], f ′(1) = 2(m − n)τ so the previous limit equals

1
2 [(m− n)2m−nf ′(1) + 2m−nf ′′(1)] = 2m−n−1[2(m− n)2τ + f ′′(1)] =

= 2m−n[Kfz + m2 − n2 + n]τ. �
Since the Ihara zeta function of an md2 connected graph encodes the graph’s order, 

size, and complexity, it follows that the Ihara zeta function also determines the graph’s 
Kfz invariant.

The question arises whether the Ihara zeta function of an arbitrary connected md2 
graph determines Kf , Kf+, or Kf∗. The answer to this question is no. Durfee and 
Martin found two simple connected md2 graphs (“the crab” and “the squid”) that have 
the same Ihara zeta function but different degree sequences (see Example 2.2 from [11]). 
We calculated the Ihara zeta functions of the two graphs (all computations summarized 
in this note were done using Sage) and found

Z(u)−1 = (48u15 + 72u13 − 8u12 + 64u11 − 12u10 + 41u9 − 8u8 + 22u7 − 5u6 + 10u5 −
− 2u4 + 5u3 − 2u2 − 1)(u2 + u + 1)2(u2 − u + 1)(u2 + 1)(u2 − 1)4(u− 1).

We also determined the Laplacian and normalized Laplacian characteristic polynomials 
of the crab and the squid graphs and, by (1) and (2), calculated the Kirchhoff and 
multiplicative degree-Kirchhoff indices of each graph using Viete’s relations. In addition, 
we determined the fundamental matrix Z and calculated the additive degree-Kirchhoff 
index of each graph using (3). The results are summarized below:

Crab graph : Kf = 607
7 , Kf+ = 9166

21 , Kf∗ = 22, 843
42

Squid graph : Kf = 593
7 , Kf+ = 8956

21 , Kf∗ = 22, 339
42

Combining the three Kirchhoffian indices (or using the Ihara zeta function), we find that 
both the crab and the squid have Kfz = 249

14 .

Corollary 2.3. Let G and H be connected md2 graphs that have one or more loops at each 
vertex and G′ and H ′ be the graphs obtained from G and H by deleting one loop from 
each vertex. If ZG = ZH then Kf∗(G′) = Kf∗(H ′).

Czarneski found a pair of non-isomorphic graphs, with loops at each vertex, that have 
the same Ihara zeta function [9, Figure 2.3]:

Z(u)−1 = (240u5 − 232u4 + 139u3 − 51u2 + 13u− 1)(u− 1)(1 − u2)9.

These graphs have Kfz = 43, so the graphs obtained from them by deleting one loop 
from each vertex have the same multiplicative degree-Kirchhoff index (Kf∗ = 43).
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Let S(G) be the subdivision graph of a simple graph G, i.e. the graph obtained 
from G by adding one vertex to each edge. Yang and Klein [26] expressed the three 
Kirchhoffian indices of S(G) in terms of the three Kirchhoffian indices of G. Using their 
results (Theorems 2.3, 2.4, and 2.5), we get

Kfz(S(G)) = 2Kfz(G) (9)

and

Kf(S(G)) = 1
2Kfz(G) + 2Kf+(G) + 1

2(m2 − n2 + n). (10)

The equality from display (10) leads to:

Remark 2.4. Let G and H be simple connected md2 graphs that have the same order, 
size, and Kfz(G) = Kfz(H) (all these conditions are satisfied if G and H have the same 
Ihara zeta function). Then Kf+(G) = Kf+(H) if and only if Kf(S(G)) = Kf(S(H)).

We recall that Setyadi and Storm [24] enumerated (up to an isomorphism) all the 
simple connected md2 graphs on up to 11 vertices and calculated their Ihara zeta func-
tions. They found a unique pair of non-isomorphic md2 graphs of order 8 that have the 
same Ihara zeta function (see Figure 2 from [24]):

Z(u)−1 = (144u11 + 24u10 + 172u9 + 98u7 − 9u6 + 45u5 − 3u4 + 12u3 − 3u2 + u− 1) ×
× (3u2 + u + 1)(2u2 + u + 1)(1 − u2)6(u− 1).

Using Sage, we found that their graphs have the same additive degree-Kirchhoff index. 
Therefore, by the previous remark, their subdivision graphs (which have order 22) have 
the same Kirchhoff index and, from (9), the same Kfz invariant. The Kirchhoffian indices 
of Setyadi and Storm’s graphs are:

Kf(G) = 19.70, Kf∗(G) = 220.4, Kf+(G) = 132.6, Kfz(G) = 34

Kf(H) = 19.75, Kf∗(H) = 220.2, Kf+(H) = 132.6, Kfz(H) = 34

(all the values are exact). We also note that S(G) and S(H) have different additive 
degree-Kirchhoff indices and different multiplicative degree-Kirchhoff indices. This fol-
lows from Theorems 2.4 and 2.5 [26], as G and H have the same additive degree-Kirchhoff 
index but different multiplicative degree-Kirchhoff indices.
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