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SUMMARY
Epstein–Barr virus (EBV) infects 95% of the adult population and is the cause of infectious mononucleosis. It is also
associated with 1% of cancers worldwide, such as nasopharyngeal carcinoma, Hodgkin’s lymphoma and Burkitt’s
lymphoma. Human and cancer genetic studies are now major forces determining gene variants associated with many
cancers, including nasopharyngeal carcinoma and Hodgkin’s lymphoma. Host genetics is also important in infectious
disease; however, there have been no large-scale efforts towards understanding the contribution that human genetic
variation plays in primary EBV infection and latency. This review covers 25 years of studies into host genetic suscepti-
bility to EBV infection and disease, from candidate gene studies, to the first genome-wide association study of EBV
antibody response, and an EBV-status stratified genome-wide association study of Hodgkin’s lymphoma. Although
many genes are implicated in EBV-related disease, studies are often small, not replicated or followed up in a different
disease. Larger, appropriately powered genomic studies to understand the host response to EBV will be needed to
move our understanding of the biology of EBV infection beyond the handful of genes currently identified. Fifty years
since the discovery of EBV and its identification as a human oncogenic virus, a glimpse of the future is shown by the
first whole-genome and whole-exome studies, revealing new human genes at the heart of the host–EBV interaction.
© 2014 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd.
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Epstein–Barr (EBV) is a human gamma herpesvi-
rus, infecting over 95% of adults by the age of
30years [1,2]. Initial infection with EBV typically
occurs in childhood, transmitted through saliva
[3]. Childhood infections are usually clinically
silent or difficult to distinguish from other mild
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viral infections [4,5]. Worldwide, EBV is estimated
to cause 1% of cancers, the fourth most common
infectious cause of cancer in 2002 [6].

EBV’s primary tropism is for B and epithelial
cells but can also infect NK, T and smooth
muscle cells, with the ability to cause oncogenesis
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in all of these cell types [7]. Following primary
infection, EBV establishes a latent infection and
persists within memory B cells at low levels,
allowing a lifelong infection to be established
that the immune system cannot clear. EBV’s
biphasic life cycle has two stages: the lytic cycle
allows EBV to productively infect new cells and
new hosts, whereas the latency cycle is vital to
allow persistence of the virus within infected
cells. Latency can be further divided into four
types (Table 1) with restricted viral gene ex-
pression to avoid immune surveillance. Viral
gene expression changes when EBV enters the
lytic cycle [8,9].
UNDERSTANDING THE HOST GENETICS OF
SUSCEPTIBILITY TO INFECTIOUS DISEASE
Host genetic variation is well established as a com-
ponent of infectious disease pathogenesis and has
the potential to lead to new tests and treatments
for primary infections and their long-term compli-
cations, and this is no less true of EBV [10]. Candi-
date gene studies have highlighted a number of
common, high-penetrance human genetic variants
associated with infection and disease resistance. A
deletion in chemokine (C-C Motif) receptor 5
(CCR5) gives resistance to certain strains of HIV
[11,12], whereas a deletion in fucosyltransferase 2
(FUT2) conveys resistance to symptomatic noro-
virus infection. Rare single gene mutations, such
as primary deficiencies of the TLR signalling
system, specifically the TLR3–Unc93b–TRIF–TRAF3
pathway, have been associated with increased
susceptibility specifically to herpesvirus infection,
particularly herpes simplex virus encephalitis [13].
Table 1. Latency profiles of EBV-infected cells

Latency type Features*

Type 0 Naturally EBV-infected B cells with
healthy individuals [107]

Type I Memory B cells, EBV+BL and BL-d
cell lines [108]

Type II EBV+NPC, EBV+GC, HL and T-ce
Type III LCLs; B-cell tumours in immunosu

individuals, for example, PTLD, AI
immunoblastic lymphomas

*Adapted from Kutok and Wang [109] and Young et al. [110]

© 2014 The Authors. Reviews in Medical Virology
published by John Wiley & Sons Ltd.
GWAS are being used to understand the host
genetics of virus infection. They require no prior
knowledge of which regions of the genome are
implicated in disease aetiology; dense genotyp-
ing studies allow association results to be local-
ised to smaller regions of the genome; and they
are a cost-effective way of interrogating the ge-
netic contribution to a trait of interest [14]. Host
genetic susceptibilities to hepatitis B, hepatitis C
and HIV have all been highlighted by GWAS.
These studies have been successful even in the
face of pathogen genome variation, a potential
confounding factor.
Whole-exome or genome sequencing is another

powerful approach to identifying rare, often large
effect size or high-penetrance mutations within
largely coding readings of the human genome
and has been used in a clinical setting to identify
the aetiology of rare genetic diseases [15]. For
individual cases, sequencing can identify atypical
presentations of genetic disorders with EBV
involvement such as XLP [16] or previously
unknown mutations that mimic known EBV-
susceptibility conditions [17], allowing the correct
diagnosis and treatment. Since mutations in the
PRF1 gene that reduce or knock out PRF1 func-
tion have been identified as a cause of some
EBV-driven lymphoproliferations, autologous
T-cell gene therapy that restores PRF1 expression
is being used to treat these patients [18]. At a
population level, understanding the genetic
basis of susceptibility to EBV infection or EBV-
related disease will help us to pinpoint those
who would benefit most from any future vaccine
for EBV [19] and may contribute to the develop-
ment of new treatment strategies.
Gene expression profile

in some EBERs (LMP2A)

erived EBERs, EBNA1

ll lymphoma EBERs, EBNA1, LMP2A, LMP1
ppressed
DS-related

EBERs, EBNAs, LMPs

.
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73Genetics of EBV infection
THE HOST GENETICS OF PRIMARY EPSTEIN–
BARR VIRUS INFECTION, LATENCY AND
COMPLICATIONS OF PRIMARY INFECTION

Epstein–Barr virus antibody response
EBV antibody responses are epidemiologically
linked to the development of BL [20] and HL [21].
Studying the host genetics of EBVantibody response
is seen as an intermediate step to identifying the
genetics of EBV-related disease development.
A number of human genetic variants have been

associated with increased anti-VCA-IgA levels in
a candidate gene study of polymorphisms in the
HRRS, namely, MDC1, RAD54L, TP53BP1, RPA1,
LIG3 and RFC1 [22]. EBV utilises the HRRS during
lytic reactivation [23], and increased lytic reactiva-
tion may be inferred to increase anti-VCA-IgG
levels. Anti-VCA-IgG antibody levels are also
correlated with variants within IL10 [24], as well
as human leukocyte antigen (HLA)-DR2 in healthy
blood donors [25]. SNP rs16944 in IL1B is asso-
ciated with EBV seropositivity in healthy blood
donors [26]. Genetic variants in the exons of
MBL2 that lead to mannose-binding lectin defi-
ciency have been associated with lower anti-VCA-
IgG antibody titres [27]. Genome-wide analysis of
anti-EBNA-1 antibody levels in more than 1300
Mexican Americans identified polymorphisms in
genes within the HLA and associated regions of
chromosome 6 that were correlated with anti-
EBNA-1 levels, namely, proline-rich coiled-coil 2A,
EHMT2, butyrophilin-like 2 (MHC class II associ-
ated) (BTNL2), HLA-DRA, HLA-DRB9 and HLA-
DRB1, associations that were replicated in a larger
cohort. Using 60 large family pedigrees, anti-
EBNA-1 levels were shown to be 43% heritable,
and discrete anti-EBNA-1 status (seropositive vs
seroindeterminate vs seronegative) to be 68%
heritable [28]. A study of EBV-antibody-negative
blood donors aged over 60 years (with no detect-
able EBV DNA in blood) compared the frequen-
cies of HLA alleles HLA-C �35 (associated with
increased T-cell signalling) and HLA-Bw4 be-
tween negative cases and age-matched EBV-
positive controls. The HLA-C �35 allele was
more frequent in EBV-positive donors, whereas
HLA-Bw4 was more frequent in EBV-negative
blood donors. However, because of the difficul-
ties in finding EBV-negative study participants
in this age group, only a small number of cases
(17) were included [29].
© 2014 The Authors. Reviews in Medical Virology
published by John Wiley & Sons Ltd.
From these studies, it is clear that variation in
EBV serostatus has a host genetic component, most
reliably identified by large studies. It is less clear
whether the host genetic variants underlying
control of EBV antibody response also contribute
to the development of those lymphomas epidemio-
logically linked to high EBV antibody levels.
Infectious mononucleosis and complications
of primary Epstein–Barr virus infection of B
cells
IM is usually a benign, self-limiting lymphoprolif-
erative disease most common in the Western
world, which occurs in between 25% and 70%
of young adults following primary EBV infection
[30]. Symptoms of IM appear around a month
after primary infection and range from benign
(lymphadenopathy, sore throat, fever and fatigue)
to severe (fulminant hepatitis, liver necrosis
and/or HLH (see following)). The appearance and
increase of EBV-specific T lymphocytes leads to a
gradual decline in symptoms [31]. Rarely, severe or
fatal IM develops if no successful EBV-CTL (cyto-
toxic T lymphocyte) response is mounted, which
may be sporadic or linked to genetic disorders such
as XLP (see following) [31]. Certain cancers and
other chronic conditions are epidemiologically
linked to IM [32], with independent epidemiological
links between HL and MS following a clinical diag-
nosis of IM.

Two large population studies of IM concordance
in twins [33] and first-degree relatives [34] have sug-
gested a heritable genetic component to IM, and can-
didate gene studies have identified IM-associated
regions of the human genome. HLA class I polymor-
phisms initially identified in EBV-positive HL (see
following) are associated with an increased risk of
developing IM [35]. Individuals homozygous for
allele 1 of the STR D6S510 or allele 3 of STR D6S265
had an OR of 2.7 for IM development. SNPs
rs253088 on chromosome 5 and rs6457110 on chro-
mosome 6 were also associated with IM develop-
ment [5]. SNP rs1982073 in TGFB1 were found at
higher frequencies in IM cases than in healthy EBV-
positive controls [36]. Finally, the ATA haplotype of
IL10 promoter SNPs rs1800896, rs1800871 and
rs1800872 has been associated with risk of IM [37].

Overall, relatively little is known about the
common genetic basis of susceptibility to primary
EBV infection, despite the genetic contribution
Rev. Med. Virol. 2015; 25: 71–84.
DOI: 10.1002/rmv
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suggested by twin and family studies of IM concor-
dance. There has been greater success in identifying
rare mutations associated with severe responses
to primary EBV infection of B cells, of which
XLP is perhaps the best known. XLP is a genetic
disorder with a prevalence of approximately 1 in
1 million men [38]. People with XLP are clinically
healthy in 90% of cases until primary infection
with EBV, which results in fulminant IM [39].
Mutations in two human genes have so far been
implicated in XLP: SH2D1A and XIAP [40]. Some
affected individuals do not carry these mutations,
suggesting further genetic factors are involved in
this disease.

Exome and genome sequencing have identified
four further disorders involving genetic suscep-
tibility to EBV infection: XMEN, ITK deficiency,
CORO1A deficiency and PRKCD deficiency. XMEN
is caused by an X-linked mutation identified by
exome sequencing. Mutations within MAGT1
impair magnesium transporter function, necessary
for T-cell antigen receptor stimulation, leading to
poor T-cell function. Whereas this T-cell deficiency
leads to a general immunodeficiency in affected
patients, chronic EBV infection of B cells is a partic-
ular characteristic [41]. ITK deficiency, caused by
autosomal recessive mutations in the ITK gene,
leads to high EBV DNA loads in peripheral blood
and B cells and treatment-resistant, fatal B-cell
proliferation following initial EBV infection. It has
been detected in five families [17,42,43]. CORO1A
deficiency, described as ‘leaky SCID’ (severe
combined immune deficiency), is linked to both
primary immunodeficiency and EBV-associated
B-cell proliferations. A homozygous missense mu-
tation in CORO1A led to a less stable form of the
coronin protein, causing a T-cell deficiency [44].
Of note is a small gene expression study that
found that CORO1A was over-expressed in LCLs
that were non-permissive for EBV lytic reactivation
and had low EBV genome loads per cell. This
suggests a role for coronin in EBV control in B cells,
as well as in T-cell development [45]. A homozy-
gous mutation located in PRKCD causes an
autoimmune lymphoproliferative syndrome, with
persistent high EBVDNAemia, low PRKCD protein
expression and reduced NK cell cytolysis. This
suggests that PRKCD plays an important role in
controlling infected B-cell proliferation and EBV
load following primary infection [46]. Sequencing
of rare, extreme reactions to primary EBV infection
© 2014 The Authors. Reviews in Medical Virology
published by John Wiley & Sons Ltd.
is enhancing our understanding of EBV control in
immunocompetent individuals.
Chronic Epstein–Barr virus infection of Tand
NK cells
EBV is primarily B lymphotropic, but in the context
of immune suppression or genetic susceptibility,
infection of T and NK cells may occur. One such
condition is CAEBV. When primary EBV infection
symptoms do not spontaneously resolve in other-
wise immunocompetent individuals, with infection
of T and NK cells, recurrent or chronic bouts of
IM-like illness result in abnormal patterns of
EBV antibodies. CAEBV patients have very high
blood EBV loads [31]. CAEBV is more prevalent
in south Asia, and particularly Japan, suggesting
a particular host genetic background common in
this region may also be a risk factor for CAEBV
development [47]. Mutations in the PRF1 gene
were found in one patient who died following
the onset of CAEBV [48], and this disorder is
increasingly treated by HCST [49].
PRF1 mutations are also a feature of HLH, a rare

autosomal recessive disorder affecting between
0.12 per 100,000 children in Sweden and 0.342 per
100,000 children in Japan. Macrophages and CTL
are hyperactivated in HLH, leading to an inflam-
matory response extreme enough to cause multiple
organ failure. Primary HLH is typically diagnosed
in early childhood but can develop later in life as
secondary HLH, which may be triggered by infec-
tion. EBV is the most common viral trigger of
primary and secondary HLH [50], infecting T and
NK cells leading to clonal lymphoproliferation
[51]. Genetic studies are blurring the distinctions
between primary and secondary HLH [52], as a
number of previously healthy adults (some aged
over 50 [53]) initially diagnosed with secondary
HLH have been found to carry mutations in the
same genes that cause primary HLH in infants.
Mutations in PRF1 have been found in adults

with reactivated EBV infections and HLH [54], with
significant genetic overlap between HLH and
CAEBV. PRF1 interacts with GZMB in cytotoxic cell
death, and plasma granzyme expression is elevated
in herpesvirus infection [55], so the link between
GZMB polymorphisms and EBV-positive HLH
has been investigated. In a small study where 20
HLH cases were compared with IM cases and
healthy controls, the wildtype ‘QPY’ (rs8192917,
Rev. Med. Virol. 2015; 25: 71–84.
DOI: 10.1002/rmv
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rs11539752 and rs2236338) haplotype of GZMB was
statistically significantly over-represented in HLH
cases compared with the ‘RAH’ triple-mutated
haplotype that has no apoptotic function [56]. A
study of killer cell immunoglobulin-like receptor
(KIR) alleles also found KIR2DS5 to be significantly
enriched in people with HLH compared with chil-
dren with IM or healthy age-matched controls [57].
EBV-associated HLH is also linked to polymor-
phisms in STX11 [58], UNC13D [59] and RAB27A
[60]. A common thread is the failure of cellular cy-
totoxicity, particularly granule-mediated path-
ways, underlying the genetic basis of HLH. This
indicates that further genes with cellular cytotoxic
functions may be important to the control of EBV
infection and the pathogenesis of HLH.
In summary, failures in T-cell activity or activa-

tion are a feature of many diseases that have
chronic active EBV infection as a major symptom,
suggesting that genes and pathways involved in
T-cell development and regulation may feature
further mutations that influence the outcome of
primary EBV infection. Further investigation of
primary immunodeficiencies is likely to uncover
more host genes associated with EBV infection.
THE HOST GENETICS OF EPSTEIN–BARR
VIRUS-RELATED LYMPHOPROLIFERATIONS
AND CANCERS

Post-transplant lymphoproliferative disorders
PTLDs occur most commonly after EBV seronega-
tive hosts receive EBV seropositive donor organs
(10% of recipients [61]) or during the profound
immune suppression following HCST (1% of cases
[62]) [63]. The majority of PTLDs are of B-cell origin
(85%), of which 80% are EBV-positive, but may also
involve other cell types such as T cells (10–15%, of
which 30% are EBV-positive) [61,64]. There are a
range of lymphomas within the category of B-cell
origin PTLD, and the broad grouping of these
sequelae may confound efforts to identify the host
genetic risk factors involved.
Candidate gene studies of transplant recipients

show HLA haplotypes, such as HLA-A26 and B38,
that are associated with a higher risk of developing
EBV-positive B-cell origin PTLD [65]. Following
transplantation, some individuals develop chronic
high EBV loads and progress to PTLD, whereas
others resolve their high virus loads relatively quickly.
© 2014 The Authors. Reviews in Medical Virology
published by John Wiley & Sons Ltd.
A sudden sharp rise in EBV load is predictive of the
development of EBV-positive PTLD. The HLA-A02
allele was found in 80% of individuals with chronic
high viral loads, whereas 71% of individuals who re-
solved their high viral load carried allele HLA-B08
[66]. Other small studies have identified HLA-DR7
as a risk factor for the development of a symptomatic
EBV infection in transplant recipients [67]. IL1RN has
a 86bpVNTR in the second intronwhich is associated
with EBV viraemia in liver transplant recipients, as is
IL1B SNP rs16944 [68]. TGFB1 and IL10 poly-
morphisms were associated with developing EBV-
positive PTLD in a candidate gene study of 38 late-
onset PTLD cases and 400 PTLD-free solid organ
transplant recipients [69]. In contrast, in a second
smaller study, PTLD cases and PTLD-free transplant
recipient controls did not find a link between
lymphoma occurrence or survival and polymor-
phisms in IL10 and TGFB1, but in this study PTLD
cases were not divided by EBV status [70]. Variants
within tumour necrosis factor alpha (TNF) and tu-
mour necrosis factor receptor I (TNFRSF1A) have
been associated with EBV-positive PTLD. Increased
serum levels of TNF were found in patients with
PTLD versus EBV-positive PTLD-free solid organ re-
cipients [71]. An IFNG low producer genotype [72]
was found more often in PTLD cases following
paediatric liver transplant (67%) than in PTLD-free
liver recipients (33%), although the sample sizes for
both groups were small, namely 6 and 53 patients,
respectively. Although variants in the HLA regions
and in a variety of regulatory and inflammatory
cytokine genes have been implicated in PTLD
pathogenesis, there is as yet no clear picture of the
host genetics underlying PTLD risk or whether the
studies presented earlier represent causative variants
or false-positive associations.
Epstein–Barr virus-positive Hodgkin’s
lymphoma
HL is a tumour originating from B lymphocytes.
Not all HLs are EBV-positive, and the percentage
of lymphomas positive for the virus varies by HL
subtype, with EBV found in 50–80% of mixed-
cellularity type HL [31]. The EBV-positive HL is
more common than EBV-negative HL in young
children and older adults, with the opposite pattern
in adolescents [32]. EBV is also epidemiologically
linked with HL, with a relative risk of HL following
IM of 2.55 [73].
Rev. Med. Virol. 2015; 25: 71–84.
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HLA polymorphisms associated with the genetic
risk of developing IM are also associated with
developing EBV-positive HL [35,74]. A large GWAS
of EBV-positive and EBV-negative HL identified
variants rs2734986 in HLA-A and rs6904029 in
HLA complex group 9 (HCG9) as associated with
EBV-positive HL [75]. The rs1800896 IL10 promoter
SNP, associated with high IL10 expression, is more
common in EBV-positive HL than EBV-negative
cases [76]. The CC allele of IL6 SNP rs1800795 was
associated with a lower risk of developing EBV-
positive HL (OR=0.29) as a young adult, on the
basis of a study of monozygotic and dizygotic twins
and matched controls [77]. A small candidate gene
study of FCGR2A (known as CD32) examined the
frequency of SNP rs1801274 in classical HL [78]. This
polymorphism leads to a histidine to arginine (H to
R) substitution within FCGR2A that decreases the
affinity of the receptor for human immunoglobulin
G. When 23 EBV-positive and 81 EBV-negative HL
cases were compared, 87% of EBV-positive cases
carried at least one arginine-encoding allele com-
pared with 68% of EBV-negative HL (p=0.06); this
gene has not been associated with HL by GWAS,
although larger candidate genes studies have asso-
ciated it with lymphoma risk [79]. GWAS reinforce
the role of HLA polymorphisms in the development
of HL; further large-scale genetic studies will be
required to disentangle the contributions of cytokine
polymorphisms to HL risk.

Low-grade B-cell lymphoma
There are many B-cell lymphomas, not classically
associated with EBV, in which EBV may play a path-
ogenic role, including chronic lymphocytic leukae-
mia, splenic marginal zone lymphoma, mantle cell
lymphoma, hairy cell leukaemia and follicular lym-
phoma. In a small study of patients with various
low-grade B-cell lymphomas, two polymorphisms in
FCGR2A (previously studied in HL [78]) were found
at different frequencies between EBV-positive and
EBV-negative low-grade B-cell lymphoma. Allele
R113 was more common in EBV-positive patients
(84.2%) than in EBV-negative patients (28.5%). The
R113 polymorphism also correlated with expression
of EBV latent gene LMP1 in this study [80].

Nasopharyngeal carcinoma
NPC occurs in the epithelium of the nose and throat
and can be grouped as two broad subtypes—
keratinising (differentiated epithelial cells) and non-
© 2014 The Authors. Reviews in Medical Virology
published by John Wiley & Sons Ltd.
keratinising (poorly or undifferentiated epithelial
cells). Of non-keratinising NPC cases, 90% to 100%
are EBV-associated, and between 30% and 100% of
keratinising cases are EBV-associated [8]. The high
prevalence of NPC in East Asia, and Central and
South America, may be due to local host suscep-
tibility genotypes that are absent or less common in
other populations [81]. NPC has a number of non-
viral risk factors that may partly explain its varied
geographic incidence rate, but recent genetic studies
suggest NPC arises in part from an interaction
between the virus and host genotype [82]. A func-
tional polymorphism in MAP2K4, a candidate
tumour suppressor gene, was found at different fre-
quencies in 1200 NPC patients and 1300 controls.
The G variant of rs3826392 is protective against
NPC (OR=0.78), particularly in EBV-negative indi-
viduals (OR=0.51), but does not provide statistically
significant protection against NPC in EBV-positive
individuals (OR=1.05) [83]. There is as yet no func-
tional evidence of a link between MAP2K4 and pro-
tection against EBV infection or NPC development,
only reports of increased MAP2K4 expression in
EBV-positive Tand NK lymphoma-derived cell lines
[84]. In a small candidate gene study of Portuguese
patients with NPC, homozygosity at allele A2 (two
VNTR copies) of IL1RNwas strongly associatedwith
the non-keratinising form of NPC (OR=4.08) when
the allele frequency was compared with healthy
controls [85]; the same polymorphism was associ-
ated, but not statistically significantly, with EBV
seropositivity in a small sample of blood donors,
highlighting the problem of investigating candidate
gene associations in small studies [26]. A T/C poly-
morphism within the 5′ untranslated region of
complement component receptor 2 (CR2) showed an
association with NPC in a case–control analysis of
candidate polymorphisms in aCantonese population.
In this study of approximately 500 cases and 400 con-
trols, the C allele of SNP rs3813946 was associated
with sporadic (non-familial) NPC (OR=1.43) [86].
Following up a number of SNPs within the HLA
region identified by three previous NPCGWAS, Tang
and colleagues compared allele frequencies between
1400 EBV IgA-VCA-positive NPC cases, 1300 EBV-
positive controls and 1300 EBV-negative controls
(defined by the presence of anti-VCA-IgA in blood).
They found that alleles HLA-A02:07 and 33:03 were
at statistically significantly different frequencies when
NPC cases were compared with EBV-negative con-
trols but did not significantly differ between NPC
Rev. Med. Virol. 2015; 25: 71–84.
DOI: 10.1002/rmv



77Genetics of EBV infection
cases and EBV-positive controls. In the HLA-B locus,
alleles 27:04, 46:01 and 58:01, and at the HLA-C locus,
alleles 01:02, 03:02 and 12:02,were also found at statis-
tically significantly different allele frequencies only
when NPC cases were compared with EBV-negative
controls. This suggests that these alleles, identified
by GWAS as associated with development of NPC,
may also be associated with EBV infection or
humoral immunity [87].

Gastric carcinoma
EBV is found in 10% of GC, a malignant tumour of
the stomach epithelium [88]. EBV-positive GC is
more prevalent in men than in women [73,89]. Both
the EBV-positive and negative forms of GC have a
marked geographical distribution, being highly
prevalent in Japan and the Andes. High EBV anti-
body titres are seen in GC cases [88]. Given the high
prevalence of EBV-positive GC [90], very little is
known about whether differences exist in the
genetic risk of developing EBV-positive versus
EBV-negative GC and whether they have different
epidemiological risk profiles [91]. Many genes have
been found to be somatically mutated in EBV-
positive GC [92], but these mutations were not
found in non-tumour tissue samples. Promoter
polymorphisms in TNF and IL10 have been found
to differ by EBV status in a candidate gene study
of EBV-positive (30 patients) and EBV-negative GC
(120 patients) and 220 healthy controls. The high
producer TNF allele is associated with EBV-positive
GC, whereas the IL10 high producer allele is found
more often in EBV-negative GC [93]. Future GWAS
of GC risk may find that stratifying GC by EBV
status reveals different genetic associations.

COMMON THREADS IN EPSTEIN–BARR
VIRUS INFECTION AND IMMUNITY
The role of host genetic variation in EBV-associated
disease is still an emerging field of study. Many of
the studies reviewed here draw their evidence from
case reports of private mutations or from small
cohorts from a single geographic area. They have
typically employed a candidate gene approach,
using either current knowledge of EBV biology or
results from previous studies of EBV-related disease,
to identify polymorphisms putatively involved in
the response to EBV infection. They have nevertheless
identified a number of interesting host gene variants
associated with EBV disease (Table 2). The protein–
protein interactions (predicted by Search Tool for the
© 2014 The Authors. Reviews in Medical Virology
published by John Wiley & Sons Ltd.
Retrieval of Interacting Genes/Proteins (STRING)
[94]) between these genes are shown [95] in Figure 1.

Some well-powered studies of susceptibility to
EBV-associated cancers have begun to leverage the
power of genome-wide approaches to understanding
disease pathogenesis; by analysing EBV-positive and
EBV-negative forms of different cancers as discrete
groups, it is possible to begin to tease out the contri-
bution that EBV makes to these conditions, for exam-
ple, Huang et al. and Urayama et al. [75,96]. It is
tempting to speculate in some cases that common
pathways may influence different EBV diseases.

To date, there are more than 30 host genes that
have been associated with EBV infection, immunity
and disease. Those that are of potentially the greatest
interest are the genes that have been associated with
more than one EBV-related pathology or aspect of
EBV immunity. Here we distil such genes and
variants with disease overlap.

Fc fragment of IgG, low affinity IIa, receptor
associated with Hodgkin’s and non-Hodgkin’s
lymphoma
FCGR2A is present on the cell surfaces of macro-
phages, neutrophils and NK cells, with roles in pha-
gocytosis and modulation of the immune response.
The studies linking this gene to EBV-positive B-cell
lymphoma have both been relatively small and have
examined a disparate collection of classical HL and
non-HL, non-BL, making it difficult to draw conclu-
sions on the role of FCGR2A in EBV susceptibility
and disease [78,80]. SNP rs1801274 is a functional
polymorphism affecting binding affinity of this IgG
receptor, encoding a histidine to arginine substitution.
The histidine-encoding allele is also associated with
Kawasaki disease, an autoimmune disorder of un-
known aetiology inwhichEBVmayplay a role [97,98].

Human leukocyte antigen system and
association with infectious mononucleosis,
multiple sclerosis, Epstein–Barr virus
antibodies, Hodgkin’s lymphoma, post-
transplant lymphoproliferative disorder and
nasopharyngeal carcinoma
Large [28] and small [29] studies of EBV antibody
responses have identified association with poly-
morphisms with the HLA system (including class
I and II polymorphisms), which are so far indepen-
dent from the polymorphisms identified as driving
other EBV-related disease [28].
Rev. Med. Virol. 2015; 25: 71–84.
DOI: 10.1002/rmv



Table 2. Human genes linked to EBV-related disease

EBV-associated trait or disease Gene Reference

EBV antibodies BAT2 Rubicz [28]
EBV antibodies BTNL2 Rubicz [28]
Coronin-1A deficiency CORO1A Moshous [44]
Hypogammaglobulinaemia, NPC CR2 Thiel [111], Fan [86]
EBV antibodies EHMT2 Rubicz [28]
Low-grade B-cell lymphoma,
EBV+Hodgkin lymphoma

FCGR2A Diamantopoulos [80],
Ghesquieres [78]

Haemophagocytic lymphohistiocytosis GZMB Zaitsu [56]
EBV+Hodgkin lymphoma HCG9 Urayama [75]
Infectious mononucleosis, multiple
sclerosis, EBV antibodies

HLA McAulay [5],

EBV+Hodgkin lymphoma,
post-transplant lymphoproliferative
disorders, EBV+Hodgkin lymphoma, NPC

HLA-A Niens [74], Reshef [65],
Huang [112], Tang [87],
Zivadinov [113]

Post-transplant lymphoproliferative
disorders, EBV antibodies, NPC

HLA-B Reshef [65], Durovic [29],
Tang [87]

NPC, EBV antibodies HLA-C Tang [87]
EBV antibodies, post-transplant
lymphoproliferative disorders,
EBV+Hodgkin lymphoma, MS

HLA-DR Nielsen [25], Rubicz [28],
Hocker [67], Diepstra [35],
De Jager [114]

PTLD IFNG Lee [72]
EBV antibodies, EBV viraemia IL1B Hurme [26], Kasztelewicz [68]
EBV viraemia, NPC IL1RN Kasztelewicz [68], Sousa [85]
EBV+Hodgkin lymphoma IL6 Cozen [77]
Infectious mononucleosis, EBV antibodies,
EBV+Hodgkin lymphoma, PTLD, GC

IL10 Yasui [24], Helminen [37],
Babel [69],
Silva [76], Wu [93]

IL-2-inducible T-cell kinase deficiency ITK Huck [17]
Haemophagocytic lymphohistiocytosis KIR2DS5 Qiang [57]
EBV antibodies LIG3 Shen [22]
CAEBV MAGT1 Li [41]
Infectious mononucleosis, EBV antibodies MBL2 Friborg [27]
EBV antibodies MDC1 Shen [22]
NPC MAP2K4 Zheng [83]
EBV+Hodgkin lymphoma MICB Urayama [75]
Chronic active EBV, haemophagocytic
lymphohistiocytosis

PRF1 Katano [48],

Chronic active EBV PRKCD Kuehn [46]
Haemophagocytic lymphohistiocytosis RAB27A Szczawinska-Poplonyk [60]
EBV antibodies RAD54L Shen [22]
EBV antibodies RFC1 Shen [22]
EBV antibodies RPA1 Shen [22]
X-linked lymphoproliferative disorder SH2D1A Booth [38]
Haemophagocytic lymphohistiocytosis STX11 Albayrak [58]
Infectious mononucleosis, PTLD TGFB1 Hatta [36], Babel [69]

(Continues)

78 C. J. Houldcroft and P. Kellam

© 2014 The Authors. Reviews in Medical Virology Rev. Med. Virol. 2015; 25: 71–84.
published by John Wiley & Sons Ltd. DOI: 10.1002/rmv



Table 2. (Continued)

EBV-associated trait or disease Gene Reference

PTLD, gastric carcinoma, EBV-Hodgkin
lymphoma survival

TNF McAulay [71], Wu [93],
Ghesquieres [115]

EBV antibodies TP53BP1 Shen [22]
Haemophagocytic lymphohistiocytosis UNC13D Zhizhuo [59]
X-linked lymphoproliferative disorder XIAP Rigaud [40]

Figure 1. Circos plot [95] of protein–protein interactions of EBV-associated genes. Predicted protein–protein interactions (STRING [94]) of
the EBV infection and disease-associated genes summarised in this paper. Many of the genes identified are found in the same interactome,
which may indicate common pathways involved in the development of EBV-associated diseases
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Interleukin 10 and association with
infectious mononucleosis, Epstein–Barr virus
antibodies, Hodgkin’s lymphoma, post-
transplant lymphoproliferative disorder and
gastric carcinoma
Given the broad range of functions that the anti-
inflammatory cytokine IL10 fulfils in the human
immune system, it is not surprising that
© 2014 The Authors. Reviews in Medical Virology
published by John Wiley & Sons Ltd.
polymorphisms in IL10 have been popular candi-
dates in EBV infection and disease susceptibility
studies. However, the effect of different IL10 ge-
notypes on EBV disease is not clear. Minnicelli
et al. found independent effects of IL10 genotype
and EBV status on BL outcomes [99]. A small
study of organ transplant recipients did not find
a significant association between IL10 expression
Rev. Med. Virol. 2015; 25: 71–84.
DOI: 10.1002/rmv
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and progression to chronic high EBV loads [100].
Other studies have found no association between
IL10 genotype and HL [101]. These studies share
a common feature of small sample sizes, which
may explain their conflicting results, as they are
less robust to statistical errors if the effect in
question is small or rare.

Perforin and association with chronic active
Epstein–Barr virus and haemophagocytic
lymphohistiocytosis
PRF1 permits granzymes A and B to reach the cyto-
plasm of cells targeted for destruction [102]. PRF1
mutations are found in 30% of HLH cases and may
be important to general protection from herpes
virus-driven lymphoproliferation [54,103,104]. For
example, Kaposi’s sarcoma-associated herpesvirus-
positive HLH occurred in two siblings with PRF1
mutations [105]. The association with GZMB poly-
morphisms and HLH suggests an important role
for targeted cell death in control of EBV infection.

Tumour necrosis factor alpha and association
with post-transplant lymphoproliferative
disorder and gastric carcinoma
Small studies of two different conditions (PTLD,
GC) have linked host SNPs within TNF (a major
inflammatory cytokine) to variable susceptibility
to these EBV-related disorders. In vitro, EBV
immediate-early lytic gene BZLF1 down-regulates
the TNFα receptor, preventing TNFα-induced cell
death and signalling [106]. However, no GWAS of
© 2014 The Authors. Reviews in Medical Virology
published by John Wiley & Sons Ltd.
EBV-related conditions have reported an associa-
tion with TNF polymorphisms.
CONCLUSIONS
To further our understanding of the mechanisms by
which EBV causes pathology and predict which
individuals are at greatest risk of EBV-mediated dis-
ease, an increased focus on host genetics of EBV infec-
tion is required. The methodology of these studies
must shift from candidate genes interrogated for asso-
ciations with a disparate range of disorders in small
populations to genome-wide approaches. Only large,
well-powered studies can reliably identify common
genetic polymorphisms contributing to the risk of
EBV-related disease, with the hope of improving
screening and treatment of these conditions. As the
cost of such studies continues to fall, the next 50years
of EBV research may see more progress in this area.
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